
THE NEW MATRIX MULTIPLICATION

ORGEST ZAKA

Abstract. In this article, we are giving the meaning of a ’New Multiplication’
for the matrices. I have studied the properties of this multiplication in two
cases, in the case of 2−D matrices and in the case of 3−D matrices, with
elements from over whatever field F .

1. Introduction, Historical overview of the Common
Matrix-Multiplication

When matrix multiplication had first appeared in history? This is a difficult
question! During the search for a response I encountered the following facts: 200
BC: Han dynasty, coefficients are written on a counting board [16]. In year 1545
Cardan: Cramer rule for 2x2 matrices [16]. 1683 Seki and Leibnitz independently
first appearance of Determinants 1750 Cramer (1704-1752) rule for solving systems
of linear equations using determinants [16]. 1764 Bezout rule to determine deter-
minants. 1772 Laplace expansion of determinants. 1801 Gauss first introduces
determinants [16]. 1812 Cauchy multiplication formula of determinant. Indepen-
dent of Binet. 1812 Binet (1796-1856) discovered the rule det(AB) = det(A)·det(B)
[18]. 1826 Cauchy Uses term ”tableau” for a matrix [16]. 1844 Grassman, geom-
etry in n dimensions [18], (50 years ahead of its epoch ([14] p. 204-205). In year
1850 Sylvester first use of term ”matrix” (matrice=pregnant animal in old french or
matrix=womb in latin as it generates determinants). 1858 Cayley matrix algebra
[16], but still in 3 dimensions [18]. 1888 Giuseppe Peano (1858-1932) axioms of
abstract vector space. I have also encountered these facts: In his 1867 treatise on
determinants, C. L. Dodgson objected to the use of the term ”matrix”, stating, ”I
am aware that the word ’Matrix’ is already in use to express the very meaning for
which i use the word ’Block’; but surely the former word means rather the mould,
or form, into which algebraical quantities may be introduced, than an actual as-
semblage of such quantities.” However, Dodgson’s objections have passed unheeded
and the term ”matrix” has stuck (see [10]).

A matrix is a concise and useful way of uniquely representing and working with
linear transformations. In particular, every linear transformation can be repre-
sented by a matrix, and every matrix corresponds to a unique linear transforma-
tion. The matrix, and its close relative the determinant, are extremely important
concepts in linear algebra, and were first formulated by Sylvester (1851) and Cay-
ley. In his 1851 paper, Sylvester wrote, ”For this purpose we must commence, not
with a square, but with an oblong arrangement of terms consisting, suppose, of
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m lines and n columns (see [11]). This will not in itself represent a determinant,
but is, as it were, a Matrix out of which we may form various systems of determi-
nants by fixing upon a number p, and selecting at will p lines and p columns, the
squares corresponding of p th order.” Because Sylvester was interested in the deter-
minant formed from the rectangular array of number and not the array itself (see
[13] p. 804), Sylvester used the term ”matrix” in its conventional usage to mean
”the place from which something else originates” (see [12]). Sylvester (1851) subse-
quently used the term matrix informally (see [14]), stating ”Form the rectangular
matrix consisting of n rows and (n+ 1) columns. Then all the n+ 1 determinants
that can be formed by rejecting any one column at pleasure out of this matrix are
identically zero.” However, it remained up to Sylvester’s collaborator Cayley to use
the terminology in its modern form in papers of 1855 and 1858 (see [12]).

1.1. General Definitions of Matrix-Multiplication. Let’s have two matrices
A and B, as follows

A =


A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

. . .
...

An1 An2 · · · Anm

 , B =


B11 B12 · · · B1p

B21 B22 · · · B2p

...
...

. . .
...

Bm1 Bm2 · · · Bmp


the ”matrix product” AB (denoted without multiplication signs or dots) is de-

fined to be the ”n× p” matrix

AB =


(AB)11 (AB)12 · · · (AB)1p
(AB)21 (AB)22 · · · (AB)2p

...
...

. . .
...

(AB)n1 (AB)n2 · · · (AB)np


where each ”i, j” entry is given by multiplying the entries Aik by the entries

Bkj , for k=1, 2, ...,m, and summing the results over k:

(AB)ij =

m∑
k=1

AikBkj

Thus the product AB is defined only if the number of columns in A is equal
to the number of rows in B, in this case m. Each entry may be computed one at
a time. Sometimes, the summation convention is used as it is understood to sum
over the repeated index ”k”. To prevent any ambiguity, this convention will not be
used in the article.

Definition 1. The product C of two matrices A and B is defined as
Ci,k = Ai,jBj,k

where ”j” is summed over for all possible values of ”i” and ”k” and the notation
above uses the Einstein summation convention.

The implied summation over repeated indices without the presence of an explicit
sum sign is called Einstein summation, and is commonly used in both matrix and
tensor analysis. Therefore, in order for matrix multiplication to be defined, the
dimensions of the matrices must satisfy (m × n)(n × p) = (m × p) where (m × n)
denotes a matrix with m rows and n columns (see [2], [3], [4], [5]).
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Matrix multiplication is one of the most fundamental tasks in mathematics and
computer science.

1.2. Other Forms of Matrix Multiplication. The term ”matrix multiplication”
is most commonly reserved for the definition given in this article. It could be more
loosely applied to other definitions (see [5]).

• Hadamard Product
In mathematics, the Hadamard product is a binary oper ation that takes

two matrices of the same dimensions, and produces another matrix where
each element i, j is the product of elements ij of the original two matri-
ces. It should not be confused with the more common matrix product. It
is attributed to, and named after, either French mathematician Jacques
Hadamard, or German mathematician Issai Schur.

The Hadamard product is associative and distributive, and unlike the
matrix product it is also commutative (see [6]).

Definition 2. For two matrices, A,B of the same dimension, m × n,
the Hadamard product, A ◦B, is a matrix, of the same dimension as the
operands, with elements given by

(A ◦B)i,j = (A)i,j ◦ (B)i,j .

For matrices of different dimensions (m × n and p × q, where m 6= p or
n 6= q or both) the Hadamard product is undefined.

• Frobenius Inner Product
In mathematics, the Frobenius inner product is a binary operation that

takes two matrices and returns a number. It is often denoted 〈A,B〉F The
operation is a component-wise inner product of two matrices as though
they are vectors. The two matrices must have the same dimension—same
number of rows and columns—but are not restricted to be square matrices
(see [7]).

Definition 3. For two matrices, A,B of the same dimension, m × n,the
Frobenius inner product is defined by the following summation Σ of matrix
elements

〈A,B〉F = Trace(ATB) =
∑
i

∑
j

AijBij .

We have the properties
〈A,B〉F = 〈B,A〉F ; 〈A,A〉F ≥ 0,

for all A; 〈A,A〉F = 0 ⇔ A = 0.
• Kronecker Product

In mathematics, the Kronecker product, denoted by ⊗, is an operation
on two matrices of arbitrary size resulting in a block matrix (see [8]). It is a
generalization of the outer product (which is denoted by the same symbol)
from vectors to matrices, and gives the matrix of the tensor product with
respect to a standard choice of basis. The Kronecker product should not be
confused with the usual matrix multiplication, which is an entirely different
operation.

The Kronecker product is named after Leopold Kronecker, even though
there is little evidence that he was the first to define and use it. Indeed, in
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the past the Kronecker product was sometimes called the Zehfuss matrix,
after Johann Georg Zehfuss who in 1858 described the matrix operation we
now know as the Kronecker product (see [15]).

Definition 4. If A is an m × n matrix, and B is an p × q matrix, then
the Kronecker product A⊗B is an mp× nq block matrix

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB


Property: The Kronecker product is a special case of the tensor prod-

uct, so it is bilinear and associative:
(1) A⊗ (B+C)= A⊗B+A⊗C;
(2) (A+B)⊗C = A⊗C+B⊗C;
(3) (kA)⊗B =k (A⊗B) ; (A⊗B)⊗C = A⊗ (B⊗C) ,

where A,B and C are matrices and k is a scalar.
Non-commutative: In general, A⊗B and B⊗A are different matri-

ces. However, A⊗B and B⊗A are permutation equivalent, meaning that
there exist permutation matrices P and Q (so called commutation matri-
ces) such that: A⊗B = P (B⊗A)Q.If A and B are square matrices,
then A⊗B and B⊗A are even permutation similar, meaning that we can
take P = QT.

The mixed-product property: If A,B,C and D are matrices of such
size that one can form the matrix products AC and BD, then (A⊗B) (C⊗D) =
(AC)⊗ (BD) . This is called the mixed-product property, because it mixes
the ordinary matrix product and the Kronecker product.

The inverse of a Kronecker product: It follows that A⊗B is in-
vertible if and only if both A and B are invertible, in which case the inverse
is given by (A⊗B)

−1
= A−1⊗B−1. Transposition and conjugate transpo-

sition are distributive over the Kronecker product: (A⊗B)
T
= AT⊗BT .

• Cracovian Product
The Cracovian products of two matrices, say A and B, is defined by

A ∧B = BTA,

where BT and A are assumed compatible for the common (Cayley) type
of matrix multiplication (see [9]).

Since (AB)
T
= BTAT, the products (A ∧B) ∧C and A ∧ (B ∧C) will

generally be different; thus, Cracovian multiplication is non-associative.
Cracovians are an example of a quasigroup.

2. My Results, My New Matrix-Multiplication and their Properties

2.1. Zaka-Product of 2−D Matrix.

Definition 5. Let U = (Ui,j)i=1.m;j=1.n and A = (Ai,j)i=1.m;j=1.n ,two 2D
matrices of the same size from the Mm×n(F), the ZAKA product of 2D matrices
U, A, we will call matrix C = U � A, it is easy to check that the matrix has
the same size C = (Ci,j)i=1.m;j=1.n . Where, the coefficients of this matrix are
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calculated as follows

Ci,j =

{
Ai,jUi,j +Ai−1,jUi−1,j +Ai+1,jUi+1,j

+Ai,j−1Ui,j−1 +Ai,j+1Ui,j+1

}
where

Ai−1,j = 0 and Ui−1,j = 0 for i = 1;
Ai,j−1 = 0 and Ui,j−1 = 0 for j = 1;
Ai+1,j = 0 and Ui+1,j = 0 for i = m;
Ai,j+1 = 0 and Ui,j+1 = 0 for j = n;

it is clear that,
} : Mm×n(F)×Mm×n(F) −→ Mm×n(F).

Example 1. Let’s have the 3× 3 matrices

A =

 1 4 7
2 5 8
3 6 9

 ; B =

 9 6 3
8 5 2
7 4 1


The Zaka product matrix C = A}B is:

C = A}B =

 1 4 7
2 5 8
3 6 9

}

 9 6 3
8 5 2
7 4 1

 =

 9 · 1 + 4 · 6 + 2 · 8 4 · 6 + 7 · 3 + 5 · 5 + 1 · 9 7 · 3 + 8 · 2 + 4 · 6
2 · 8 + 1 · 9 + 5 · 5 + 3 · 7 5 · 5 + 4 · 6 + 8 · 2 + 6 · 4 + 2 · 8 8 · 2 + 7 · 3 + 9 · 1 + 5 · 5

3 · 7 + 2 · 8 + 6 · 4 6 · 4 + 5 · 5 + 9 · 1 + 3 · 7 9 · 1 + 8 · 2 + 6 · 4



⇒ C = A}B =

 49 79 61
71 105 71
61 79 49

 .

Figure 1. The Zaka matrix-multiplication, for 2−D matrix
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Remark 1. To have the Zaka product site between the 2−D matrices, the matrices
should have the same size.

For example if we have the matrix Am×n and Bk×l to have the Zaka product �
site between these two matrices, then m = k and n = l.

2.2. Properties of the Zaka-product of 2−D Matrices.

Proposition 1. (Zaka product is comutativ)
∀U,A ∈ Mm×n(F),U}A = A}U.

Proof. By Definition 5 we have:

Ci,j = (U}A)i,j
= Ai,j · Ui,j + (Ai−1,j · Ui−1,j +Ai+1,j · Ui+1,j +Ai,j−1 · Ui,j−1 +Ai,j+1 · Ui,j+1)
= Ui,j ·Ai,j + (Ui−1,j ·Ai−1,j + Ui+1,j ·Ai+1,j + Ui,j−1 ·Ai,j−1 + Ui,j+1 ·Ai,j+1)
= (A}U)i,j �

Proposition 2. (Zaka product is distributive)

∀U,A,B ∈ Mm×n(F),
1. (U+B)}A = U}A+B}A;
2.U} (B+A)= U}B+U}A;

Proof. By Definition 5 we have:
((U+B)}A)i,j = Ai,j · [Ui,j + Bi,j ] + Ai−1,j · [Ui−1,j + Bi−1,j ] + Ai+1,j ·

[Ui+1,j +Bi+1,j ] +Ai,j−1 · [Ui,j−1 +Bi,j−1] +Ai,j+1 · [Ui,j+1 +Bi,j+1]
= {Ai,j ·Ui,j +(Ai−1,j ·Ui−1,j +Ai+1,j ·Ui+1,j +Ai,j−1 ·Ui,j−1 +Ai,j+1 ·Ui,j+1)}+
{Ai,j ·Bi,j + (Ai−1,j ·Bi−1,j +Ai+1,j ·Bi+1,j +Ai,j−1 ·Bi,j−1 +Ai,j+1 ·Bi,j+1)}
= (U}A)i,j +(B}A)i,j
= (U}A+B}A)i,j .

�

Proposition 3. (Zaka product is non-associative)
For three matrices ∀U,A,B ∈ Mm×n(F),different from the zero matrix, have

the inequality:
(A}U)}B 6= A} (U}B)

Proof. By following the definition 5, have:
[(A}U)}B]i,j = [C}B]i,j

= Bi,j · Ci,j +Bi−1,j · Ci−1,j +Bi+1,j · Ci+1,j ++Bi,j−1 · Ci,j−1 +Bi,j+1 · Ci,j+1

= Bi,j ·{Ai,j · Ui,j +Ai−1,j · Ui−1,j +Ai+1,j · Ui+1,j +Ai,j−1 · Ui,j−1 +Ai,j+1 · Ui,j+1}+
Bi−1,j ·{Ai−1,j · Ui−1,j +Ai−2,j · Ui−2,j +Ai,j · Ui,j +Ai−1,j−1 · Ui−1,j−1 +Ai−1,j+1 · Ui−1,j+1}+
Bi+1,j ·{Ai+1,j · Ui+1,j +Ai,j · Ui,j +Ai+2,j · Ui+2,j +Ai+1,j−1 · Ui+1,j−1 +Ai+1,j+1 · Ui+1,j+1}+
Bi,j−1·{Ai,j−1 · Ui,j−1 +Ai−1,j−1 · Ui−1,j−1 ++Ai+1,j−1 · Ui+1,j−1 +Ai,j−2 · Ui,j−2 +Ai,j · Ui,j}+
Bi,j+1·{Ai,j+1 · Ui,j+1 +Ai−1,j+1 · Ui−1,j+1 ++Ai+1,j+1 · Ui+1,j+1 +Ai,j · Ui,j +Ai,j+2 · Ui,j+2}

Hence,
[(A}U)}B]i,j = Bi,j ·Ai,j ·Ui,j +Bi,j ·Ai−1,j ·Ui−1,j +Bi,j ·Ai+1,j ·Ui+1,j +

Bi,j ·Ai,j−1 ·Ui,j−1 +Bi,j ·Ai,j+1 ·Ui,j+1 +Bi−1,j ·Ai−1,j ·Ui−1,j +Bi−1,j ·Ai−2,j ·
Ui−2,j+Bi−1,j ·Ai,j ·Ui,j+Bi−1,j ·Ai−1,j−1 ·Ui−1,j−1+Bi−1,j ·Ai−1,j+1 ·Ui−1,j+1+
Bi+1,j ·Ai+1,j ·Ui+1,j +Bi+1,j ·Ai,j ·Ui,j +Bi+1,j ·Ai+2,j ·Ui+2,j +Bi+1,j ·Ai+1,j−1 ·
Ui+1,j−1 +Bi+1,j ·Ai+1,j+1 · Ui+1,j+1 +Bi,j−1 ·Ai,j−1 · Ui,j−1 +Bi,j−1 ·Ai−1,j−1 ·
Ui−1,j−1 +Bi,j−1 ·Ai+1,j−1 ·Ui+1,j−1 +Bi,j−1 ·Ai,j−2 ·Ui,j−2 +Bi,j−1 ·Ai,j ·Ui,j +
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Bi,j+1 ·Ai,j+1 · Ui,j+1 +Bi,j+1 ·Ai−1,j+1 · Ui−1,j+1 +Bi,j+1 ·Ai+1,j+1 · Ui+1,j+1 +
Bi,j+1 ·Ai,j · Ui,j +Bi,j+1 ·Ai,j+2 · Ui,j+2

and
[A } (U } B)]i,j = [A }D]i,j = [D }A]i,j
= Ai,j ·Di,j + (Ai−1,j ·Di−1,j +Ai+1,j ·Di+1,j +Ai,j−1 ·Di,j−1 +Ai,j+1 ·Di,j+1)

where
Di,j = Bi,j ·Ui,j+(Bi−1,j ·Ui−1,j+Bi+1,j ·Ui+1,j+Bi,j−1 ·Ui,j−1+Bi,j+1 ·Ui,j+1)

= Ai,j · [Bi,j · Ui,j + (Bi−1,j · Ui−1,j + Bi+1,j · Ui+1,j + Bi,j−1 · Ui,j−1 + Bi,j+1 ·
Ui,j+1)+Ai−1,j · [Bi−1,j ·Ui−1,j +(Bi−2,j ·Ui−2,j +Bi,j ·Ui,j +Bi−1,j−1 ·Ui−1,j−1+
Bi−1,j+1 ·Ui−1,j+1)]+Ai+1,j · [Bi+1,j ·Ui+1,j+(Bi,j ·Ui,j+Bi+2,j ·Ui+2,j+Bi+1,j−1 ·
Ui+1,j−1 + Bi+1,j+1 · Ui+1,j+1)] + Ai,j−1 · [Bi,j−1 · Ui,j−1 + (Bi−1,j−1 · Ui−1,j−1 +
Bi+1,j−1 · Ui+1,j−1 +Bi,j−2 · Ui,j−2 +Bi,j · Ui,j)] +Ai,j+1 ·Di,j+1[Bi,j+1 · Ui,j+1 +
(Bi−1,j+1 · Ui−1,j+1 +Bi+1,j+1 · Ui+1,j+1 +Bi,j · Ui,j +Bi,j+2 · Ui,j+2)]
= Ai,j ·Bi,j ·Ui,j+Ai,j ·Bi−1,j ·Ui−1,j+Ai,j ·Bi+1,j ·Ui+1,j+Ai,j ·Bi,j−1 ·Ui,j−1+Ai,j ·
Bi,j+1·Ui,j+1+Ai−1,j ·Bi−1,j ·Ui−1,j+Ai−1,j ·Bi−2,j ·Ui−2,j+Ai−1,j ·Bi,j ·Ui,j+Ai−1,j ·
Bi−1,j−1 ·Ui−1,j−1+Ai−1,j ·Bi−1,j+1 ·Ui−1,j+1+Ai+1,j ·Bi+1,j ·Ui+1,j+Ai+1,j ·Bi,j ·
Ui,j+Ai+1,j ·Bi+2,j ·Ui+2,j+Ai+1,j ·Bi+1,j−1 ·Ui+1,j−1+Ai+1,j ·Bi+1,j+1 ·Ui+1,j+1+
Ai,j−1 ·Bi,j−1 · Ui,j−1 +Ai,j−1 ·Bi−1,j−1 · Ui−1,j−1 +Ai,j−1 ·Bi+1,j−1 · Ui+1,j−1 +
Ai,j−1 ·Bi,j−2 ·Ui,j−2+Ai,j−1 ·Bi,j ·Ui,j +Ai,j+1 ·Bi,j+1 ·Ui,j+1+Ai,j+1 ·Bi−1,j+1 ·
Ui−1,j+1 +Ai,j+1 ·Bi+1,j+1 · Ui+1,j+1 +Ai,j+1 ·Bi,j · Ui,j +Ai,j+1 ·Bi,j+2 · Ui,j+2.

This seems clear that is different from the first result. �

2.3. Zaka Multiplication of 3−D Matrix. We recall the definition of 3−D
matrix addition, (see [1])

Definition 6. [1] Let U = (Ui,j,k)i=1.m;j=1.n;k=1.p and A = (Ai,j,k)i=1.m;j=1.n;k=1.p ,

two 3D matrices of the same size, the addition of 3D matrix [1], to matrices U,
A, we will call matrix C = (Ci,j,k)i=1.m;j=1.n;k=1.p , where Ci,j,k = Ui,j,k + Ai,j,k,

∀i = 1.m; j = 1.n; k = 1.p.

Definition 7. Let U = (Ui,j,k)i=1.m;j=1.n;k=1.p and A = (Ai,j,k)i=1.m;j=1.n;k=1.p ,

two 3D matrices of the same size [1], the Zaka product matrix, to 3D-matrices
U,A, we will call 3D-matrix C = (Ci,j,k)i=1.m;j=1.n;k=1.p , where the coefficients
of this matrix are calculated as follows:

Ci,j,k =

 Ai,j,k · Ui,j,k +Ai−1,j,k · Ui−1,j,k +Ai+1,j,k · Ui+1,j,k

+Ai,j−1,k · Ui,j−1,k +Ai,j+1,k · Ui,j+1,k+
Ai,j,k−1 · Ui,j,k−1 +Ai,j,k+1 · Ui,j,k+1


Where

Ai−1,j,k = 0 and Ui−1,j,k = 0, for i = 1;
Ai+1,j,k = 0 and Ui+1,j,k = 0, for i = m.
Ai,j−1,k = 0 and Ui,j−1,k = 0, for j = 1;
Ai,j+1,k = 0 and Ui,j+1,k = 0, for j = n.
Ai,j,k−1 = 0 and Ui,j,k−1 = 0, for k = 1;
Ai,j,k+1 = 0 and Ui,j,k+1 = 0, for k = p.
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it is clear that,

} : Mm×n×p(F)×Mm×n×p(F) −→ Mm×n×p(F).

Remark 2. To have the ZAKA product site between the 3D matrices, the matrices
should have the same size.

For example if we have the matrix Am×n×p and Bk×l×q to have the ZAKA
product ”} ” site between these two matrices, then m = k, n = l and p = q.

Example 2. Let’s have the 3× 3× 3 matrices

A =



 2 3 7
1 1 5
2 4 0


 0 1 1

−1 5 2
3 2 1


 1 4 7

2 5 8
3 6 9




;B =



 6 5 2
3 4 1
1 7 9


 0 4 7

3 1 8
1 2 5


 9 6 3

8 5 2
7 4 1




The Zaka-Product, C = A}B is:

Figure 2. The Zaka matrix-multiplication, for 3−D matrices.
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C = A}B =



 2 3 7
1 1 5
2 4 0


 0 1 1

−1 5 2
3 2 1


 1 4 7

2 5 8
3 6 9




}



 6 5 2
3 4 1
1 7 9


 0 4 7

3 1 8
1 2 5


 9 6 3

8 5 2
7 4 1





=



 2 · 6 + 3 · 5 + 1 · 3 3 · 5 + 7 · 2 + 1 · 4 + 2 · 6 7 · 2 + 5 · 1 + 3 · 5
1 · 3 + 2 · 6 + 1 · 4 + 2 · 1 1 · 4 + 3 · 5 + 5 · 1 + 4 · 7 + 1 · 3 5 · 1 + 7 · 2 + 0 · 9 + 1 · 4

2 · 1 + 1 · 3 + 4 · 7 4 · 7 + 1 · 4 + 0 · 9 + 2 · 1 0 · 9 + 5 · 1 + 4 · 7


 0 · 0 + 1 · 4 + (−1) · 3 1 · 4 + 1 · 7 + 5 · 1 + 0 · 0 1 · 7 + 2 · 8 + 1 · 4

(−1) · 3 + 0 · 0 + 5 · 1 + 3 · 1 5 · 1 + 1 · 4 + 2 · 8 + 2 · 2 + (−1) · 3 2 · 8 + 1 · 7 + 1 · 5 + 5 · 1
3 · 1 + (−1) · 3 + 2 · 2 2 · 2 + 5 · 1 + 1 · 5 + 3 · 1 1 · 5 + 2 · 8 + 2 · 2


 1 · 9 + 4 · 6 + 2 · 8 4 · 6 + 7 · 3 + 5 · 5 + 1 · 9 7 · 3 + 8 · 2 + 4 · 6

2 · 8 + 1 · 9 + 5 · 5 + 3 · 7 5 · 5 + 4 · 6 + 8 · 2 + 6 · 4 + 2 · 8 8 · 2 + 7 · 3 + 9 · 1 + 5 · 5
3 · 7 + 2 · 8 + 6 · 4 6 · 4 + 5 · 5 + 9 · 1 + 3 · 7 9 · 1 + 8 · 2 + 6 · 4





=



 12 + 15 + 3 15 + 14 + 4 + 12 14 + 5 + 15
3 + 12 + 4 + 2 4 + 15 + 5 + 28 + 3 5 + 14 + 9 + 4
2 + 1 · 3 + 4 28 + 4 + 0 + 2 0 + 5 + 28


 0 + 4− 3 4 + 7 + 5 + 0 7 + 16 + 4

−3 + 0 + 5 + 3 5 + 4 + 16 + 4− 3 16 + 7 + 5 + 5
3− 3 + 4 4 + 5 + 5 + 3 5 + 16 + 4


 9 + 24 + 16 24 + 21 + 25 + 9 21 + 16 + 24

16 + 9 + 25 + 21 25 + 24 + 16 + 24 + 16 16 + 21 + 9 + 25
21 + 16 + 24 24 + 25 + 9 + 21 9 + 16 + 24





=⇒ C = A}B =



 30 45 34
21 55 32
33 34 33


 1 16 27

5 26 33
4 17 25


 49 79 61

71 105 71
61 79 49
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2.4. Properties of the Zaka-product of 3−D matrices.

Proposition 4. (Zaka product is comutativ)
∀U,A ∈ Mm×n×p(F) =⇒ U}A = A}U

Proof. By Definition 7 we have:
(U}A)i,j,k = Ai,j,k · Ui,j,k + Ai−1,j,k · Ui−1,j,k + Ai+1,j,k · Ui+1,j,k + Ai,j−1,k ·

Ui,j−1,k +Ai,j+1,k · Ui,j+1,k +Ai,j,k−1 · Ui,j,k−1 +Ai,j,k+1 · Ui,j,k+1

= Ui,j,k ·Ai,j,k +Ui−1,j,k ·Ai−1,j,k +Ui+1,j,k ·Ai+1,j,k +Ui,j−1,k ·Ai,j−1,k +Ui,j+1,k ·
Ai,j+1,k + Ui,j,k−1 ·Ai,j,k−1 + Ui,j,k+1 ·Ai,j,k+1

= (A}U)i,j,k �

Proposition 5. (Zaka product is distributive)

∀U,A,B ∈ Mm×n×p(F)
1. (U+B)}A = U}A+B}A.
2. U} (B+A)= U}B+U}A

Proof. By following the definition 5 and definition 7, have
((U+B)}A)i,j,k = Ai,j,k · [Ui,j,k +Bi,j,k] +Ai−1,j,k · [Ui−1,j,k +Bi−1,j,k]

+Ai+1,j,k · [Ui+1,j,k+Bi+1,j,k]+Ai,j−1,k · [Ui,j−1,k+Bi,j−1,k]+Ai,j+1,k · [Ui,j+1,k+
Bi,j+1,k] +Ai,j,k−1 · [Ui,j,k−1 + Bi,j,k−1] +Ai,j,k+1 · [Ui,j,k+1 +Bi,j,k+1]

= Ai,j,k ·Ui,j,k+Ai−1,j,k ·Ui−1,j,k+Ai+1,j,k ·Ui+1,j,k+Ai,j−1,k ·Ui,j−1,k+Ai,j+1,k ·
Ui,j+1,k +Ai,j,k−1 ·Ui,j,k−1 +Ai,j,k+1 ·Ui,j,k+1 +Ai,j,k ·Bi,j,k +Ai−1,j,k ·Bi−1,j,k +
Ai+1,j,k ·Bi+1,j,k+Ai,j−1,k ·Bi,j−1,k+Ai,j+1,k ·Bi,j+1,k+Ai,j,k−1 ·Bi,j,k−1+Ai,j,k+1 ·
Bi,j,k+1

= (U}A+B}A)i,j,k

= (U}A)i,j,k + (B}A)i,j,k . �

Proposition 6. (Zaka product is non-associative)
For three matrices ∀U,A,B ∈ Mm×n×p(F),different from the zero matrix,

have the inequality:
(A}U)}B 6= A} (U}B)

Proof. The proof is obvious, and the same as in Proposition 3, of 2D matrix. �

Notation 1. Hope and I think that the ”ZAKA” multiplication, there will be good
applications in differential equations with partial derivatives, perhaps even in dif-
ferent simulations.
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