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No truth is truly true, the more we reveal the more we revere nature on our voyage
of unprecedented discovery. We argue the soul or anti-soul of Complex Multiscale
Orbifold Spacetime (CMOSpacetime) is the origin of intelligence, and the metric
of metrizable intelligence is the sectional curvature’s absolute value of CMOSpace-
time’s soul or anti-soul. We also argue the intersecting souls and/or anti-souls ,
when their sectional curvatures approaching positive infinity and/or negative in-
finity as singularity, is the origin of quantum entanglement. We further argue
the sectional curvatures of CMOSpacetime’s intersecting souls and/or anti-souls ,
is the origin of convergent evolution through conformal transformation. We de-
rive CMOSpacetime, a N-dimensional orbifold O = M/Fð (M as manifold)/degree
N projective algebraic variety X over CN defined by degree N non-linear polyno-

mial function Fð(X1, ..., XN ) =
∑N
i,j=1(wiX

j
i + bi) in hypercomplex number sys-

tem with X = x1 +
∑N
m=2(xmim) on Non-Abelian quotient group SO(N2 ,

N
2 ) (

8 ≤ N →∞, N = 2n ), neural networks by correlating general relativity and quan-
tum mechanics based on mutual extensions from 3+1 dimensional spacetime R4

to N-dimensional CMOSpacetime CN . CMOSpacetime addresses both singularity
and non-linearity as common issues faced by physics, AI and biology, and enables
curvature-based second order optimization in orbifold-equivalent neural networks
beyond gradient-based first order optimization in manifold-approximated a adopted
in AI. We build CMOSpacetime theoretical framework based on General equiva-
lence principle, a combination of Poincaré conjecture, Fermat’s last theorem, Galois
theory, Hodge conjecture, BSD conjecture, Riemann hypothesis, universal approx-
imation theorem, and soul theorem. We also propose experiments on measuring
intelligence of convolutional neural networks and transformers, as well as new ways
of conducting Young’s double-slit interference experiment. We believe CMOSpace-
time acting as a universal PDE, not only qualitatively and quantitatively tackles
the black box puzzle in AI, quantum entanglement and convergent evolution, but
also paves the way for CMOSpacetime synthesis to achieve true singularity.
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I. INTRODUCTION

Eternity

If groups of ants in soil as spacial agents
Descending gudied by curvatures instead of gradients
Exploring and exploiting structural environments
Searching and researching origin of intelligence
Can they realize they are on earth
In solar system milkyway universe multiverse

So are frogs in well hawks under sky
And dog’s year differs from human’s year
And elephant in your eyes not the same as mine
Human in orbifolds just like ants in soils
Hindsight insight foresight aspiration inspiration passion
War peace love hate all gone with wind

On the journey human being’s searching for beauty, simplicity and unification, whether
in physics113,114 or mathematics13, from synthesis perspective, whether logic synthesis,
physical synthesis, chemical synthesis, or biological synthesis, are all under the um-
brella of commutative geometry and non-commutative geometry26,32,34, or Euclidean,
Riemannian/elliptic and Lobachevsky/hyperbolic geometries60 as Higher dimensional Non-
Euclidean geometry with zero, positive and negative Gaussian/sectional curvature respec-
tively, all supported by commutative algebra and non-commutative algebra such as Clifford
algebra, tensor algebra, spin (Dirac, Pauli) algebra, and von Neumann algebra More
specifically, universal geometry, quantum geometry48, and biological geometry90,118 like
conformal geometry43,81, are the outcome of physical laws and biological laws in modeling
nonlinear physical and biological dynamics, with applications adopting higher dimensional
nonlinear manifold leveraging geometrization power frequently encountered in machine
learning, deep learning62 and deep reinforcement learning,105 deep learning, with stochastic
gradient/subgradient-descent or gradient-free approaches12,35,36,49,64,119,120, and even orb-
ifold with (as negative-curvature descent) or without adopting curvature-based approaches
for higher dimensional unconstrained non-convex optimization3,8,65,70,72,75,77,108.

With radical paradigm shift and impressive progress in both hardware and software, now
we can adopt Artificial/Deep/Convolutional/Recurrent/Graph/Generative neural/Adversarial
networks (ANN/DNN/CNN/RNN/GNN/GAN/QNN) with billions of connections, billions
of parameters, and hundreds of layers for real-life applications on facial recognition, speech
recognition, language translation through universal function approximation, since the
breakthrough made by AlexNet pioneered by LeNet and powered by GPU, along with its
same all man-made successors including VGGNet, GoogleNet, ResNet, and DenseNet on
ImageNet benchmarks. However, the matter of fact is the degree of intelligence demon-
strated by AI including deep learning16 originated from perceptron, reinforcement learning,
deep reinforcement learning,73, AutoML54 with or without40 hyperparameter optimization,
meta-learning, and neural architecture search (NAS)121 and AutoDL all having exploration-
exploitation trade-off dilemma, still falls far behind human intelligence in most cases. AI in
adopting continuous optimization-centric gradient/subgradient-based deep reinforcement
learning augmented with novel game theory such as mean field games, stochastic games,
evolutionary games, beyond traditional and zero-sum game, and Convergent Evolution
Strategies, as well as discrete optimization-centric gradient-free population-based genetic
algorithms, has demonstrated awesome capability on beating human being in specific cat-
egories such as gaming. Since life is a game, so there is nothing wrong in tackling AI
starting from gaming adopting deep reinforcement learning and evolution strategies as an
alternative93: AlphaGo98 AlphaZero,99 DeepStack,17 DeepCubeA,102, and AlphaStar5,110.
This is reasonable, think about that, even in modern time, since Wheeler synthesis and
Miller-Urey Experiment, we have not yet figured out how to synthesize a cell, the basic
unit of life.
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Despite of its wild success in certain domains, AI, particularly deep learning, has a few
issues such as model size blowup and performance bottleneck: imitation learning 100X more
slower than human on learning how to drive, and much worse than that, reinforcement
learning is 1,000X more slower than that of human. However, its biggest challenge lies
on the black box puzzle and reproducibility crisis, though there were a few attempts95,97,
and its associated ad hoc hard-coded programming: no sharp physical intuition and solid
mathematical formulation yet.

II. A FRESH LOOK AT SPACETIME

General relativity leads to spectacular predictions as black holes, gravitational waves,
and the big bang in early universe in macroscopic way, as what quantum mechanics does
in microscopic way. Various efforts on developing Grand unified theory such as quantum
electrodynamics (QED), quantum chrome-modynamics (QCD), and the standard model in
unifying weak force, strong force and electromagnetism, and gravity, with the ultimate goal
as unifying quantum mechincs and general relativity QM = GR20,104, have been made,
yet results are not perfect so far. In general relativity the gravitational field is encoded in
spacetime as (Lorentzian) pseudo-Riemannian manifold. However, general relativity only
models stand-alone systems, there are boundary-induced genuine spacetime singularity-
triggered concerns at big bang and inside black holes82. Furthermore, when the curvature
of spacetime becomes large enough on reaching the order of 1

P 2
l

, quantum effects57 have

to be taken into consideration as they start to dominates general relativity effects so that
such curvature induced coordinate quantum singularity-triggered59 concerns can be elim-
inated. At Planck scale, we must use an extended version of spacetime that fit for both
general relativity and quantum physics. There are efforts on extending 3+1 dimensional
spacetime model such as Kaluza-Klein model by introducing extra space dimension(s), but
never goes to infinite or close to infinite space dimensions, and never extend time dimen-
sion beyond one, let alone allow time reversal. The traditional claims on the impossibility
of going beyond 4-D spacetime is due to their linear partial differential equations (PDE)
assumption while nature is inherently nonlinear107. A nonlinear dynamical system often
can be described in nonlinear differential equations, such as Yang-Mills equation in quan-
tum field theory, Boltzmann equation in statistical mechanics, Navier-Stokes equations in
fluid dynamics, Lotka-Volterra equations in ecology, and Michaelis-Menten equations in
enzyme kinetics. The hardness on solving those PDEs exactly in continuous optimiza-
tion space, is similar to solve NP-complete and NP-hard problems in discrete optimization
space. Amazingly as Planck scale is man-made, we can go even smaller both physically by
introducing CMOSpacetime as multiscale orbifold spacetime model in higher dimensional
Non-Euclidean geometry (hyperbolic geometry as a special case) beyond pseudo-manifold
model in Riemannian geometry.

III. GENERALIZING GENERAL RELATIVITY IN CMOSPACETIME

Based on general relativity, the Einstein field equations are formulated as follows and
Wheeler111 precisely summarize it as: matter tells spacetime how to curve, and spacetime
tells matter how to move. In other words, gravity is geometry, matter sources gravity.

Gµν + Λgµν = 8π
G

C4
Tµν (1)

Gµν ≡ Rµν −
1

2
Rgµν (2)

µ, ν = 1, 2, 3, 4 in (Lorentzian) pseudo-Riemannian manifold based 3+1 dimensional curved
spacetime R4 on the action of Lie group SO(1,3) with metric signature ( - + + +) adopting
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spacetime algebra47, a Special Orthogonal (SO) finite dimensional Clifford algebra Cl1,3(R).
Here gµν is metric tensor.

The initial value boundary problem in general relativity only gives us the metric on a
patch of the spacetime. Other methods must be used to find the true global extension of
that spacetime. Therefore, Einstein field equations alone cannot tell you the topology of
the spacetime. Even ignore the above limitation, being nonlinear in nature, The general
relativity Einstein field equations describe the relation between the geometry of a 3+1
dimensional (Lorentzian) pseudo-Riemannian manifold, as Einstein manifold.

As nonlinear PDEs in modeling dynamical systems, Einstein field equations are very diffi-
cult to solve. de Sitter spacetime is a solution of the vacuum Einstein equations with a pos-
itive cosmological , and it is the maximally symmetric spacetime as spherical (Lorentzian)
pseudo-Riemannian manifold with positive curvature. Anti-de Sitter (Ads) spacetime71

is a solution of the vacuum Einstein equations with a negative cosmological , and it is
the maximally symmetric spacetime as hyperbolic (Lorentzian) pseudo-Riemannian man-
ifold with negative curvature. There are other solutions, such as Schwarzschild solution,
Reissner-Nordstrom solution, Kerr solution, and Friedmann solution.

General relativity and quantum cosmology are invariant under general spacetime dif-
feomorphisms (isomorphism of smooth manifolds). The quantum state of the universe is
invariant under a time reversal change. The semi-classical state of the universe, has one
definite direction of time (arrow of time). The processes occurring in the opposite direction
of time seem to have disappeared in the actual universe. However, quantum entanglement
may be telling us that they have not disappeared but they can be in a region of the space-
time that is not accessible for us. In fact, the time reversal invariance of the spacetime is
broken in the semi-classical universe but a time symmetric solution always coexists because
the time reversal invariance of the Friedmann equation. Therefore, if one consider that these
two universes are created in entangled pairs, then, the time reversal symmetry does not dis-
appear, it only lives in an inaccessible region. When a system behaves no difference when
time is reversed, it is said to show T-symmetry as part of CPT (Charge conjugation, Parity,
Time reversal) symmetry. A similar extension to time is the introduction to imaginary
time, this motivates us to extend 3+1 spacetime R4 to N-dimensional complex CMOSpace-
time CN with both imaginary time and imaginary space58,89,94. Furthermore,112. we also
make a T-symmetry extension for time reversal, which has been proved both theoretically11

and experimentally116, as general relativity does assume arrow of time, then we make a
(Lorentzian) pseudo-Riemannian manifold based 3+1 dimensional curved spacetime R4 to
N-dimensional ( 8 ≤ N →∞, N = 2n ) curved complex CMOSpacetime CN constrained by
multiscale6,10,18 as opposed to planck scale.

gµν(x) =

g11(x) g12(x) g13(x) g14(x)
g21(x) g22(x) g23(x) g24(x)
g31(x) g32(x) g33(x) g34(x)
g41(x) g42(x) g43(x) g44(x)

 (3)

=⇒

gαβ(X) =


g11(X) g12(X) g13(X) g14(X)... g1N (X)
g21(X) g22(X) g23(X) g24(X)... g2N (X)
g31(X) g32(X) g33(X) g34(X)... g3N (X)
g41(X) g42(X) g43(X) g44(X)... g4N (X)
... ... ... ... ...

gN1(X) gN2(X) gN3(X) gN4(X)... gNN (X)

 (4)

Here real number x becomes N-dimensional hypercomplex number X, a generalization of
complex numbers in higher dimension:

X = x1 +
∑N
m=2(xmim)

With that, in N-dimensional CMOSpacetime CN , lets consider two events whose coordi-
nates are



CMOSpacetime: Geometric/Algebraic Complex Analysis of Intelligence/Quantum Entanglement/Convergent Evolution 5

(X11, X21, ..., XN
2 1, ct11, t21, ..., ctN

2 1) and (X12, X22, ..., XN
2 2, ct12, t22, ..., ctN

2 2)

c is the speed of light. The interval between two events in CN ds can be defined as:

ds2 = c2
∑N

2
m=1(tm2 − tm1)2 −

∑N
2
m=1(Xm2 −Xm1)2

And CMOSpacetime interval can be defined as:

r =

√
c2
∑N

2
m=1(tm2 − tm1)2 +

∑N
2
m=1(Xm2 −Xm1)2

Operations on hypercomplex numbers, such as quaternions (Clifford-Lipschitz num-
ber), tessarines, coquaternions, biquaternions, octonions and alike, correspond to non-
commutative geometrical transformations of the hyperplane, algebraically hypercomplex
number system is both Non-Abelian and non-associative as opposed to traditional number
systems.

With that the Extended Einstein field equations are formulated as follows:

Gαβ + Λgαβ = 8π
G

C4
Tαβ (5)

Gαβ ≡ Rαβ −
1

2
Rgαβ (6)

Where α, β = 1, 2, ..., N with metric signature ( -... -...+...+) over CN on the action of
Non-Abelian quotient group SON

2 ,
N
2

(O) with 8 ≤ N →∞, N = 2n

IV. EXTENDING QUANTUM MECHANICS IN CMOSPACETIME

Early quantum theory was profoundly re-conceived by Schródinger, Heisenberg, Born.
There are two mathematical formalization for quantum mechanics which are equivalent:
One is Heisenberg Picture, in which only the operators (observables and others) evolve in
time, but the state vectors are constant with respect to time, an arbitrary fixed basis rigidly
underlying the theory. The other is Schródinger Picture. in which only the state vectors
evolve in time. but the operators (observables and others) are constant with respect to
time. Dirac reconciliated the two pictures in Hilbert space and proved their equivalence33

taking special relativistic effect into consideration. In classical mechanics observable (e.g.
energy, position, momentum, etc.) is a function on a manifold called the phase space of
the system. In contrary, quantum mechanical observable is an operator on a Hilbert space.
Thus the commutative algebra of functions on it is replaced by the non-commutative algebra
on a Hilbert space. Now it is von Neumann who gave the first complete mathematical
formulation of this approach in terms of operators in Hilbert space, known as the Dirac-
von Neumann axioms and von Neumann algebra. It is amazing from pure mathematical
point of view, the infinite-dimensional state space in quantum mechanics offers a genuine
multiverse/many-worlds interpretation of nature.

The Dirac equation was generalized to 3+1 dimensional curved spacetime4 over R4

imposed by Planck scale, and like in what we do with spacetime in general relativity,
we can easily further generalize it to CMOSpacetime by making both imaginary time
and imaginary space extensions, as well T-symmetry extension. Hence a N-dimensional
8 ≤ N <∞, N = 2n curved spacetime imposed by CMOSpacetime scale instead of Planck
scale as follows:

iγaeµaDµΨ−mΨ = 0 (7)

It is written by using Vierbein (frame) field/generalized Vierbein field, a set of 4 or N
orthonormal vector fields interpreted as a model of 3+1 dimensional spacetime R4 or N-
dimensional complex CMOSpacetime CN , and the gravitational spin connection. The Vier-
bein defines a local rest frame, allowing the N ∗N as opposed to 4∗4 constant Dirac matrices
γa to act at each spacetime point. Here µ = 1, ..., N , a = 1, ..., N both for N-dimensional
CMOSpacetime over CN as opposed to µ = 1, 2, 3, 4, a = 1, 2, 3, 4 both for 3+1 dimensional
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spacetime over R4, eµa is the Vierbein with eµae
ν
a = gµν as metric tensor in general relativity,

and Dµ is the covariant derivative for fermionic fields defined as follows:

Dµ = ∂µ −
i

2
ωabµ σab where σab is the commutator of N ∗ N as opposed to 4 ∗ 4 Dirac

matrices: σab = i
2 [γa, γb] and ωabµ are the spin connection components.

V. CMOSPACETIME THEORETICAL FRAMEWORK

Axiom V.1 CMOSpacetime Uncertainty axiom:

∆x∆t > Cs → 0 (8)

with Cs as CMOSpacetime scale, a close to zero sub-Planck size, which makes Planck scale
effect imposed by Heisenberg’s Uncertainty principle irrelevant19,37. So does the string
scale effect imposed in quantum gravity (Loops, M-theory including strings and branes
where spacetime is not fundamental and time only has one-dimension52).

Proposition V.1 CMOSpacetime General equivalence principle: N-dimensional complex
multiscale orbifold O = M/Fð (M as manifold)/degree N projective algebraic variety X de-
fined by degree N polynomial function Fð over CN (Fð ∈ C[X1, ..., XN ]) on Non-Abelian
quotient group in satisfyting closure, identity, inverse, associative but not commutative
SO(N2 ,

N
2 ) with 8 ≤ N →∞, N = 2n:

Fð(X1, ..., XN ) =

N∑
i,j=1

(wiX
j
i + bi)

X = x1 +

N∑
m=2

(xmim)

There is no Hodge class on O or X which is a rational linear combination of the cohomol-
ogy classes of projective algebraic sub-varieties/sub-orbifold of O or X, and such polynomial
equation is not solvable by radicals with real solutions, instead only complex solutions avail-
able.

Furthermore, every homotopy sphere or hyperbolic space (an open or closed N-orbifold
which is homotopy equivalent to the N-sphere or hyperbolic N-space) respectively in the
chosen category of N-orbifold O, i.e. topological orbifolds, piecewise linear orbifolds, or dif-
ferential orbifolds, is isomorphic to the standard N-sphere or hyperbolic N-space respectively.
The above claim is true in all dimensions for topological orbifolds; true in dimensions other
than 4; unknown in 4 for piecewise linear orbifolds; false generally, true in some dimensions
including 1,2,3,5, and 6, unsettled in 4 for differential orbifolds.

The above proposition is drawn from the following theorems, solved and unsolved conjec-
tures as lemmas:

Lemma V.2 Universal approximation theorem28: Let ϕ(.) be a nonconstant, bounded, and
monotonically-increasing continuous function. Let Im denote the m-dimensional unit hy-
percube [0, 1]m. The space of continuous functions on Im0 is denoted by C(Im). Then, given
any function f ∈ C(Im) and ε > 0, there exist an integer N and sets of real constants αi,
bi ∈ R, wi ∈ Rm, where i = 1,...,N such that we may define:

F (x) =
∑N
i=1 αiϕ

(
wTi x+ bi

)
as an approximate realization of the function f; that is, |F (x)f(x)| < ε for all x ∈ Im.

Please note the above theorem justifies the effectiveness of activation functions such as
Sigmoid in order to introduce non-linearity. However, later on it has been proved that it is
Feed-forward neural network (FNN) itself instead of activation function leads to universal
approximation51. Hence in the non-linear polynomial function of the above principle, we
do not need activation function any more. There are similar indepdent work called Group
Method of Data Handling55 as well.
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Lemma V.3 Fermat’s last theorem115: There are no positive integers x, y, z, and N ≥ 3
such that xN + yN = zN .

Lemma V.4 Fundamental theorem of Galois theory74: Let L/K be a finite Galois exten-
sion. Let Gal(L/K) denote the Galois group of the extension L/K. Let H denote a sub-
group of Gal(L/K) and F denote an intermediate field. The mappings: H 7−→ LH, and
F 7−→ Gal(L/F) are inclusion-reversing and inverses. Moreover, these maps induce a bijec-
tion between the normal subgroups of Gal(L/K) and the normal, intermediate extensions of
L/K. .

The above theorem’s application on solutions of rational polynomial equation as follows: A
polynomial equation is solvable by radicals ⇐⇒ its underlying Galois group is a solvable
group. Hence for polynomial equations with degree N > 4, they are solvable by radicals.

Conjecture V.5 Hodge conjecture50: Let X be a projective non-singular degree N algebraic
variety/N-dimensional manifold M defined by polynomials over CN , then any Hodge class
on X (M) is a rational linear combination of the cohomology classes cl(X) of algebraic
cycles/sub-varieties (sub-manifold) of X (M).

Conjecture V.6 BSD conjecture (Birch and Swinnerton-Dyer)14,25: The Taylor expansion
of L(E, s), E as ecliptic curve, at s = 1 has the form L(E, s) = e(s − 1)r + higher order
terms , with e 6= 0 and r = rank(E(Q)). Furthermore L(E, 1) = 0 :⇔ C(Q) is infinite.

Conjecture V.7 Riemann hypothesis: The Riemann zeta-function ζ(s) is a function of a
complex variable s defined by :
ζ(s) =

∑∞
n=1

1
ns

using analytical continuation for all complex s 6= 1, and all of the non-trivial zeroes of
this function ζ(s) = 0 lie on a vertical straight line with real part equal to exactly 1/2.

Lemma V.8 Generalized Poincaré conjecture (solved)39,84–86,101 Every homotopy sphere (a
closed N-manifold which is homotopy equivalent to the N-sphere) in the chosen category, i.e.
topological manifolds, piecewise linear manifolds, or differential manifolds, is isomorphic to
the standard N-sphere. The above claim is true in all dimensions for topological manifolds;
true in dimensions other than 4; unknown in 4 for piecewise linear manifolds; false generally,
true in some dimensions including 1,2,3,5, and 6, unsettled in 4 for differential manifolds.

Theorem V.9 Generalized soul theorem: Whether CMOSpacetime Orbifold conjecture
holds or not, suppose that (O, g) is an open (connected, complete, non-compact, with no
boundary) orbifold O with non-negative (when O being spherical) or non-positive (when O
being hyperbolic) sectional curvature ð, then O contains a soul (when O being spherical)
or anti-soul (when O being spherical) S ⊂ M, which is a compact, totally geodesic, totally
convex (when O being spherical) or non-convex (when O being hyperbolic) suborbifold; oth-
erwise O contains no soul. Furthermore, O is diffeomorphic (when O being spherical) or
homeomorphic when O being hyperbolic) to the total space of the normal bundle of the S in
O.

The above theorem is a corollary of the following Soul theorem23,42,45,83 and its generalized
Anti-soul theorem as lemmas:

Lemma V.10 Anti-soul theorem: Suppose that (M,ð) is an open (connected, complete,
non-compact, with no boundary) Riemannian manifold M of non-positive sectional curvature
ð, then M contains an anti-soul Sa ⊂M , which is a compact, totally geodesic, totally non-
convex submanifold. Furthermore, M is homeomorphic to the total space of the normal
bundle of the Sa in M. If (M,ð) has negative sectional curvature, then any anti-soul of M
is a point, and consequently M is homeomorphic to RN .

The above theorem is a corollary of the following Soul theorem as lemma:
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Lemma V.11 Soul theorem: Suppose that (M,ð) is an open (connected, complete, non-
compact, with no boundary) Riemannian manifold M of non-negative sectional curvature
ð, then M contains a soul S ⊂ M , which is a compact, totally geodesic, totally convex
submanifold. Furthermore, M is diffeomorphic to the total space of the normal bundle of
the S in M. If (M,ð) has positive sectional curvature, then any soul of M is a point, and
consequently M is diffeomorphic to RN .

Theorem V.12 Metric of intelligence theorem: If CMOSpacetime contains a soul or anti-
soul, then the absolute value of the soul’s or anti-soul’s sectional curvature is the metric of
metrizable intelligence.

Proof is straight-forward due to its definition basis.

Conjecture V.13 Origin of intelligence conjecture: The soul or anti-soul of CMOSpace-
time is the origin of intelligence.

Conjecture V.14 Origin of quantum entanglement conjecture: The intersecting souls
and/or anti-souls , when their sectional curvatures approaching positive infinity and/or neg-
ative infinity as singularity, is the origin of quantum entanglement2,9,15,21,29,30,38,44,56,67–69,76,79,80,87,96,103,109.

The above conjecture is partially generalized from ER = EPR conjecture on the possibility
of bridging EPR quantum entanglement as black holes and ER bridge as wormholes.

Conjecture V.15 Origin of convergent evolution conjecture: The sectional curvatures of
CMOSpacetime’s intersecting souls and/or anti-souls , is the origin of convergent evolution
through conformal transformation1,22,27,91.

VI. PROPOSED EXPERIMENTS

TABLE I. Measuring Intelligence of CNNs

CNN Sectional(Gaussian) Curvature of Soul/Anti-Soul
LeNet63

AlexNet7

VGGNet100

GoogleNet106

ResNet46

DenseNet53

TABLE II. Measuring Intelligence of Transformers

Transformer Sectional Curvature of Soul/Anti-Soul
GPT-288

BERT41

ALBERT61

Transformer-XL31

XLNet117

RoBERTa66

CTRL92

Megatron-LM78
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TABLE III. Re-conducting Young’s Double-Slit Interference Experiment

New Way Expected New Result
#1
#2
#3

VII. ONGOING WORK

Forget about Russell’s paradox, Halting problem and Godel’s Incompleteness theorem,
actually there is no universal paradox, hence no ultimate dilemma, as we used to think.
With geometry and algebra in helping us to visualize and reason nature, work in progress to
be reported: Convergent evolution dynamics, CMOSpacetime complexity reduction, CMO-
Spacetime synthesis, and artificial photosynthesis24 if necessary.
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