On a single page, Beal Conjecture; Equivalent Beal Conjecture \& Fermat's Last Theorem Proved

" 5% of the people think; 10% of the people think that they think; and the other 85% would rather die than think."----Thomas Edison
"The simplest solution is usually the best solution"---Albert Einstein

Abstract

On a single page, the author proves the original Beal conjecture, the equivalent Beal conjecture and Fermat's Last theorem. The original Beal conjecture states that if $A^{x}+B^{y}=C^{z}$, where A, B, C, x, y, z are positive integers and $x, y, z>2$, then A, B and C have a common prime factor. The equivalent Beal conjecture states that if A, B, C, x, y, z are positive integers and A, B, and C are coprime, with $x, y, z>2$, then the equation $A^{x}+B^{y}=C^{z}$ has no solutions. Fermat's Last theorem states that if A, B, C, n are positive integers with A, B, and C being coprime, and $n>2$, then the equation $A^{n}+B^{n}=C^{n}$ has no solutions. The principles applied in the three proofs are based on the same properties of the factored Beal equation. However the proofs of the equivalent Beal conjecture and Fermat's last theorem are by contradiction. The main principle for obtaining relationships between the prime factors on the left side of the equation and the prime factor on the right side of the equation is that the greatest common power of the prime factors on the left side of the equation is the same as a power of the prime factor on the right side of the equation. High school students can learn and prove this conjecture as a bonus question on a final class exam.

Options

Option 1
 Preliminaries
 Introduction

Page 3

Option 2

Page 8
Proofs of Beal Conjecture, Equivalent Beal Conjecture \& Fermat's Last Theorem

Back to Options

Option 1

Preliminaries
 Introduction

The following is from the first page of the author's high school practical physics note book: Science is the systematic observation of what happens in nature and the building up of body of laws and theories to describe the natural world. Scientific knowledge is being extended and applied to everyday life. The basis of this growing knowledge is experimental work. To prove Beal conjecture, one will be guided by the observational properties of the factored Beal equation.

Observation 1: $2^{3}+2^{3}=2^{4}$
Identify the greatest common factor of all three terms of the equation and factor it out on the left side.

$$
\begin{aligned}
& 2^{3}+2^{3}=2^{4} \\
& 2^{3}+2^{3}=2^{3} \bullet 2 \\
& \underbrace{2^{3}}_{k}(\underbrace{1+1}_{L})=\underbrace{2^{3}}_{M} \cdot \underbrace{2}_{P}
\end{aligned}
$$

Observe that the factor K on the left side equals the factor M on the right side of the equation, and the factor L on the left side of the equation equals the factor, P , on the right side..

Note above that the greatest common power of the prime factors on the left of the equation is the same as a power of the prime factor on the right side of the equation.

Note also, the following
The ratio $\frac{K}{M}=\frac{2^{3}}{2^{3}}=1$.
If $\frac{K}{M}=1$, then $K=M$
Similarly, $\frac{P}{L}=\frac{2}{1+1}=1$.
If $\frac{P}{L}=1$, then $P=L$

Corresponding relationship formula

Let r, s and t be prime factors of
A, B and C.respectively, where
D, E and F are positive integers, such
that $A=D r, B=E s, C=F t$.
$(D r)^{x}+(E s)^{y}=(F t)^{z}$
$D^{x} r^{x}+E^{y} S^{y}=F^{z} t^{z}$
$r=s=t=2$
$x=3 . y=3, z=4$
($D=1, E=1, F=1$)
$\underbrace{r^{x}}_{K} \underbrace{\left.D^{x}+E^{y}{ }^{y} \cdot r^{-x}\right]}_{L}=\underbrace{t^{x}}_{M} \underbrace{t^{z-x} F^{z}}_{P}$
$K=M, L=P$

Observation 2: $7^{6}+7^{7}=98^{3}$
Identify the greatest common factor of all three terms of the equation and factor it out on the left side.

$$
\begin{aligned}
& 7^{6}+7^{7}=98^{3} \\
& 7^{6}+7^{6} \cdot 7=(49 \cdot 2)^{3} \\
& 7^{6}+7^{6} \cdot 7=7^{6} \cdot 2^{3} \\
& 7^{6}(1+7)=7^{6} \cdot 2^{3} \\
& \underbrace{7^{6}}_{K}(\underbrace{1+7}_{L})=\underbrace{7^{6}}_{M} \cdot \underbrace{2^{3}}_{P_{C}^{3}}
\end{aligned}
$$

Observe that the factor K on the left side equals the factor M on the right side of the equation, and the factor L on the left side of the equation equals the factor, P , on the right side.
Note the following
The ratio $\frac{K}{M}=\frac{7^{6}}{7^{6}}=1$.
Similarly, $\frac{P}{L}=\frac{2^{3}}{1+7}=1$.

Corresponding relationship formula

Let r, s and t be prime factors of A, B and C.respectively, where D, E and F are positive integers, such that $A=D r, B=E s, C=F t$.

$$
\begin{aligned}
& (D r)^{x}+(E s)^{y}=(F t)^{z} \\
& D^{x} r^{x}+E^{y} S^{y}=F^{z} t^{z} \\
& r=s=t=7 \\
& x=6, y=7, z=3 \\
& (D=1, E=1, F=14) \\
& \underbrace{r^{x}}_{K} \underbrace{D^{x}+E^{y} s^{y} \bullet r^{-x}}_{L}]=\underbrace{t^{x}}_{M} \underbrace{t^{z-x} F^{z}}_{P}
\end{aligned}
$$

Observation 3: $3^{3}+6^{3}=3^{5}$
Identify the greatest common factor of all three terms of the equation and factor it out on the left side.

$$
\begin{aligned}
& 3^{3}+6^{3}=3^{5} \\
& 3^{3}+(3 \cdot 2)^{3}=3^{5} \\
& 3^{3}+3^{3} \cdot 2^{3}=3^{5} \\
& 3^{3}\left(1+2^{3}\right)=3^{3} \bullet 3^{2} \\
& \underbrace{3}_{K} \underbrace{(1+8}_{L})=\underbrace{3^{3}}_{M} \cdot \underbrace{3^{2}}_{P}
\end{aligned}
$$

Observe that the factor K on the left side equals the factor M on the right side of the equation, and the factor L on the left side of the equation equals the factor, P , on the right side.

Note the following
The ratio $\frac{K}{M}=\frac{3^{3}}{3^{3}}=1$.
Similarly, $\frac{P}{L}=\frac{3^{2}}{1+8}=1$.

Corresponding relationship formula

Let r, s and t be prime factors of A, B and C.respectively, where D, E and F are positive integers, such that $A=D r, B=E s, C=F t$.

$$
\begin{aligned}
& (D r)^{x}+(E s)^{y}=(F t)^{z} \\
& D^{x} r^{x}+E^{y} S^{y}=F^{z} t^{z} \\
& r=s=t=3 \\
& x=3, y=3, z=5 \\
& (D=1, E=2, F=1) \\
& \underbrace{r^{x}}_{K}[\underbrace{D^{x}+E^{y} s^{y} \bullet r^{-x}}_{L}]=\underbrace{t^{x}}_{M} \underbrace{t^{z-x} F^{z}}_{P}
\end{aligned}
$$

Back to Options

Observation 4: $2^{9}+8^{3}=4^{5}$
Identify the greatest common factor.of all three terms of the equation and factor it out on the left side.

$$
\begin{aligned}
& 2^{9}+8^{3}=4^{5} \\
& 2^{9}+\left(\left[2^{3}\right]\right)^{3}=\left(\left[2^{2}\right]\right)^{5} \\
& 2^{9}+2^{9}=2^{10} \\
& 2^{9}(1+1)=2^{9} \bullet 2 \\
& \underbrace{2^{9}}_{k}(\underbrace{1+1}_{L})=\underbrace{2^{9}}_{M} \bullet \underbrace{2}_{\sim}
\end{aligned}
$$

Observe that the factor K on the left side equals the factor M on the right side of the equation, and the factor L on the left side of the equation equals the factor, P , on the right side.

Note the following
The ratio $\frac{K}{M}=\frac{2^{9}}{2^{9}}=1$.
Similarly, $\frac{P}{L}=\frac{2}{1+1}=1$.

Observation 5: $34^{5}+51^{4}=85^{4}$
Identify the greatest common factor of all three terms of the equation and factor it out on the left side.

$$
\begin{aligned}
& 34^{5}+51^{4}=85^{4} \\
& (17 \bullet 2)^{5}+(17 \bullet 3)^{4}=(17 \bullet 5)^{4} \\
& 17^{5} \bullet 2^{5}+17^{4} \bullet 3^{4}=17^{4} \bullet 5^{4} \\
& 17^{4}\left(17 \bullet 2^{5}+3^{4}\right)=17^{4} \bullet 5^{4} \\
& \underbrace{17^{4}}_{k}(\underbrace{17 \bullet 2^{5}+3^{4}}_{L})=\underbrace{17^{4}}_{M} \bullet \underbrace{5^{4}}_{P}
\end{aligned}
$$

(Note: $17 \cdot 2^{5}+3^{4}=17 \bullet 32+81=625$; $5^{4}=625$)
Observe that the factor K on the left side equals the factor M on the right side of the equation, and the factor L on the left side of the equation equals the factor, P , on the right side.

Note the following
The ratio $\frac{K}{M}=\frac{17^{4}}{17^{4}}=1$.
Similarly, $\frac{P}{L}=\frac{5^{4}}{17 \bullet 2^{5}+3^{4}}=1$

Corresponding relationship formula

Let r, s and t be prime factors of A, B and C.respectively, where D, E and F are positive integers, such that $A=D r, B=E s, C=F t$.

$$
\begin{aligned}
& (D r)^{x}+(E s)^{y}=(F t)^{z} \\
& D^{x} r^{x}+E^{y} S^{y}=F^{z} t^{z} \\
& r=s=t=2 \\
& x=9, y=3, z=5 \\
& (D=1, E=4, F=2) \\
& \underbrace{r^{x}}_{K} \underbrace{D^{x}+E^{y} s^{y} \bullet r^{-x}}_{L}]=\underbrace{t^{x}}_{M} \underbrace{t^{z-x} F^{z}}_{P}
\end{aligned}
$$

Corresponding relationship formula

Let r, s and t be prime factors of A, B and C.respectively, where D, E and F are positive integers, such

$$
\begin{aligned}
& \text { that } A=D r, B=E s, C=F t . \\
& \begin{array}{l}
(D r)^{x}+(E s)^{y}=(F t)^{z} \\
D^{x} r^{x}+E^{y} s^{y}=F^{z} t^{z} \\
r=s=t=17 \\
x=5, y=4, z=4 \\
(D=2, E=3, F=5) \\
\underbrace{s^{y}}_{K}[\underbrace{E^{y}+D^{x} r^{x} s^{-y}}_{L}] \underbrace{t^{y} y}_{M} \underbrace{t^{z-y} F^{z}}_{P} \\
K=M, L=P
\end{array}
\end{aligned}
$$

Note above that one factored out s^{y}.
One will apply the switch from r^{x} to s^{y} in the conjecture proof.

Observation 6: $3^{9}+54^{3}=3^{11}$
Identify the greatest common factor of all three terms of the equation and factor it out on the left side.

$$
\begin{aligned}
& 3^{9}+54^{3}=3^{11} \\
& 3^{9}+\left(3^{3} \cdot 2\right)^{3}=3^{11} \\
& 3^{9}+3^{9} \cdot 2^{3}=3^{11} \\
& 3^{9}\left(1+2^{3}\right)=3^{9} \cdot 3^{2} \\
& \underbrace{9}_{k}(\underbrace{1+2^{3}}_{L})=\underbrace{3^{9}}_{M} \cdot \underbrace{3^{2}}_{P}
\end{aligned}
$$

Observe that the factor K on the left side equals the factor M on the right side of the equation, and the factor L on the left side of the equation equals the factor, P , on the right side
Note the following The ratio $\frac{K}{M}=\frac{3^{9}}{3^{9}}=1$.
Similarly, $\frac{P}{L}=\frac{3^{2}}{1+2^{3}}=1$
Observation 7: $33^{5}+66^{5}=33^{6}$
Identify the greatest common factor of all three terms of the equation and factor it out on the left side.

$$
\begin{aligned}
& 33^{5}+66^{5}=33^{6} \\
& \left(11 \bullet 3^{5}+(11 \bullet 2 \cdot 3)^{5}=(11 \bullet 3)^{6}\right. \\
& 11^{5} \cdot 3^{5}+11^{5} \bullet 2^{5} \cdot 3^{5}=11^{6} \bullet 3^{6} \\
& 11^{5}\left(3^{5}+2^{5} \bullet 3^{5}\right)=11^{5} \bullet 11 \bullet 3^{6} \\
& \underbrace{11^{5}}_{k}(\underbrace{3^{5}+2^{5} \cdot 3^{5}}_{L})=\underbrace{11^{5}}_{M} \underbrace{11 \bullet 3^{6}}_{P}
\end{aligned}
$$

Observe that the factor K on the left side equals the factor M on the right side of the equation, and the factor L on the left side of the equation equals the factor, P , on the right side.

Note the following
The ratio $\frac{K}{M}=\frac{11^{5}}{11^{5}}=1$.
Similarly, $\frac{P}{L}=\frac{11 \bullet 3^{6}}{3^{5}+2^{5} \cdot 3^{5}}=1$

Corresponding relationship formula

Let r, s and t be prime factors of A, B and C.respectively, where D, E and F are positive integers, such that $A=D r, B=E s, C=F t$.

$$
\begin{aligned}
& (D r)^{x}+(E s)^{y}=(F t)^{z} \\
& D^{x} r^{x}+E^{y} S^{y}=F^{z} t^{z} \\
& r=s=t=3 \\
& x=9, y=3, z=11 \\
& (D=1, E=18, F=1) \\
& \underbrace{r^{x}}_{K} \underbrace{\left.D^{x}+E^{y} s^{y} \bullet r^{-x}\right]}_{L} \underbrace{t^{x}}_{M} \underbrace{t^{z-x} F^{z}}_{P}
\end{aligned}
$$

Corresponding relationship formula

Let r, s and t be prime factors of A, B and C.respectively, where D, E and F are positive integers, such

$$
\begin{aligned}
& \text { that } A=D r, B=E s, C=F t . \\
& \begin{array}{l}
(D r)^{x}+(E s)^{y}=(F t)^{z} \\
D^{x} r^{x}+E^{y} S^{y}=F^{z} t^{z} \\
r=s=t=11 \\
x=5, y=5, z=6 \\
D=3, E=6, F=3 \\
\underbrace{x}_{K}[\underbrace{D^{x}+E^{y} S^{y} \bullet r^{-x}}_{L}]
\end{array} \underbrace{t^{x}}_{M} \underbrace{t^{z-x} F^{z}}_{P} \\
& { }_{\mathrm{V}} K=M, L=P
\end{aligned}
$$

Surprise: The above properties will apply to
$6^{2}+8^{2}=10^{2}$
$6^{2}+8^{2}=10^{2}$
$(2 \cdot 3)^{2}+\left(2^{3}\right)^{2}=(2 \cdot 5)^{2}$
$2^{2} \cdot 3^{2}+2^{6}=2^{2} \cdot 5^{2}$
$\underbrace{2^{2}}_{K}(\underbrace{3^{2}+2^{4}}_{L})=\underbrace{2^{2}}_{M} \cdot \underbrace{5^{2}}_{P} ; K=M, L=P$

Summary of Observations 1-7

The most important and useful observation in the above examples is that the greatest common power of the prime factors on the left side of the equation is the same as a power of the prime factor on the right side of the equation. This observation will be useful in proving Beal conjecture.

Properties of the Factored Beal Equation

Let r, s and t be prime factors of A, B and C.respectively, such that $A=D r, B=E s$,
$C=F t$. where D, E and F are positive integers; and the equation becomes $(D r)^{x}+(E s)^{y}=(F t)^{z}$.
Step 1: Factor out r^{x} on the left side of the equation and on the right side of the equation, replace t^{z} by $t^{x} \bullet t^{z-x} \quad\left(\right.$ Note $t^{x} \bullet t^{z-x}=t^{z}$)

$$
\begin{aligned}
& (D r)^{x}+(E s)^{y}=(F t)^{z} \\
& D^{x} r^{x}+E^{y} S^{y}=F^{z} t^{z} \\
& \underbrace{r^{x}}_{K} \underbrace{D^{x}+E^{y} s^{y} \bullet r^{-x}}_{L}]=\underbrace{t^{x}}_{M} \underbrace{t^{z-x} F^{z}}_{P} ; K=M, L=P
\end{aligned}
$$

For the factorization $\underbrace{r^{x}}_{K}[\underbrace{D^{x}+E^{y} s^{y} \bullet r^{-x}}_{L}]=\underbrace{t^{x}}_{M} \underbrace{t^{z-x} F^{z}}_{P}$ with respect to $r^{x}, r^{x}=t^{x} \quad(K=M)$
Step 2: Factor out s^{y} on the left side of the equation and on the right side of the equation, replace

$$
\begin{aligned}
& t^{z} \text { by } t^{y} \bullet t^{z-y} \quad\left(\text { Note } t^{y} \bullet t^{z-y}=t^{z}\right) \\
& (E s)^{y}+(D r)^{x}+=(F t)^{z} \\
& E^{y} s^{y}+D^{x} r^{x}=F^{z} t^{z} \\
& \underbrace{s^{y}}_{K} \underbrace{E^{y}+D^{x} r^{x} \bullet s^{-y}}_{L}]=\underbrace{t^{y}}_{M} \underbrace{t^{z-y} F^{z}}_{P} ; K=M, L=P
\end{aligned}
$$

For the factorization $\underbrace{s^{y}}_{K}[\underbrace{E^{y}+D^{x} r^{x} \bullet s^{-y}}_{L}]=\underbrace{t^{y}}_{M} \underbrace{t^{z-y} F^{z}}_{P}$ with respect to $s^{y}, s^{y}=t^{y} \quad(K=M)$

Option 2

On a single page, Beal Conjecture; Equivalent Beal Conjecture \& Fermat's Last Theorem are Proved

Beal Conjecture

Given: $A^{x}+B^{y}=C^{z}$
A, B, C, x, y, z are positive integers and $x, y, z>2$.
Required: To prove that A, B and C have a common prime factor

Equivalent Beal Conjecture
Given: A, B, C, x, y, z are
positive integers and A, B, C are coprime with $x, y, z>2$.
Required: To prove that the equation $A^{x}+B^{y}=C^{z}$ has no solutions.

Fermat's Last Theorem
Given: A, B, C, n are positive integers and A, B, and C are coprime, with $n>2$.
Required: To prove that the equation $A^{n}+B^{n}=C^{n}$ has no solutions.

Plan: Let r, s and t be prime factors of A, B and C.respectively, such that $A=D r, B=E s$, $C=F t$. where D, E and F are positive integers. For both the equivalent Beal conjecture, and Fermat's last theorem, one will assume at the beginning of the proof that $r \neq s \neq t$. For all three conjectures, the proofs would be complete after showing that $r=s=t$.
The main principle for obtaining relationships between the prime factors on the left side of the equation and the prime factor on the right side of the equation is that the greatest common power of the prime factors on the left side of the equation is the same as a power of the prime factor on the right side of the equation. In Step 1, one determines how r and t are related, and in Step 2, one determines how s and t are related. From the Beal equation to Fermat's equation let $x, y, z=n>2$. Steps 1 and 2 are identical in all three proofs.

Proofs:

Step 1: One will factor out r^{x}
$(D r)^{x}+(E s)^{y}=(F t)^{z}$
$D^{x} r^{x}+E^{y} S^{y}=F^{z} t^{z}$
$\underbrace{r^{x}}_{K}[\underbrace{\left.D^{x}+E^{y} s^{y} \bullet r^{-x}\right]}_{L}=\underbrace{t^{x}}_{M} \underbrace{t^{z-x} F^{z}}_{P}$
$K=M, L=P$
(Properties of factored Beal equation)
From above, $r^{x}=t^{x}$; If $r^{x}=t^{x}$, then $r=t$.
$\left(\log r^{x}=\log t^{x} ; x \log r=x \log t ;\right.$
$\log r=\log t ; r=t$)

Step 2: One will factor out s^{y}
$(E s)^{y}+(D r)^{x}+=(F t)^{z}$
$E^{y} S^{y}+D^{x} r^{x}=F^{z} t^{z}$
$\underbrace{s^{y}}_{K}[\underbrace{\left.E^{y}+D^{x} r^{x} \bullet s^{-y}\right]}_{L}=\underbrace{t^{y}}_{M} \underbrace{t^{z-y} F^{z}}_{P}$
$K=M, L=P$
(Properties of factored Beal equation)
From above, $s^{y}=t^{y}$; If $s^{y}=t^{y}$, then $s=t$.
$\left(\log s^{y}=\log t^{y} ; y \log s=y \log t ; \log s=\log t ; s=t\right)$
It has been shown in Step 1 that $r=t$, and in Step 2 that, $s=t$; therefore, $r=s=t$.

Step 3: Beal Conjecture

Since $A=D r, B=E s, C=F t$ and $r=s=t, A, B$ and C have a common prime factor,

Step 3: Equivalent Beal Conjecture This result. $r=s=t$, is a contradiction to $r \neq s \neq t$. of the hypothesis, and therefore, the equation $A^{x}+B^{y}=C^{z}$ $\left(=(D r)^{x}+(E s)^{y}=(F t)^{z}\right)$ is not true and has no solutions.

Step 3: Fermat's Last Theorem This result. $r=s=t$, is a contradiction to $r \neq s \neq t$. of the hypothesis, and therefore, the equation $A^{n}+B^{n}=C^{n}$ $\left(=(D r)^{n}+(E s)^{n}=(F t)^{n}\right)$ is not true and has no solutions.

The proofs are complete.

Discussion

It is interesting that to prove the equivalent Beal conjecture and Fermat's last theorem from the proof of the original conjecture, all one had to do was to assume at the beginning of the proof that A, B and C do not have any common prime factors and then produce a contradictory result that A, B and C have a common prime factor. The principles upon which relationships between the prime factors on the left side of the equation and the prime factor on the right side of the equation are sound, since they are based on numerical sample problems research. The results in this paper may encourage those who have already proved the equivalent conjecture to prove the original conjecture, which stresses positively on the common prime factor, and such a proof may make Honorable Beal feel better about his conjecture.

Conclusion

On a single page, the author proved the original Beal conjecture, the equivalent Beal conjecture and Fermat's Last theorem. The principles applied in the three proofs were based on the properties of the factored Beal equation. However, the proofs of the equivalent conjecture and Fermat's Last theorem were by contradiction. The main principle for obtaining relationships between the prime factors on the left side of the equation and the prime factor on the right side of the equation was that the greatest common power of the prime factors on the left side of the equation should be the same as a power of the prime factor on the right side of the equation.

PS: Other proofs of Beal Conjecture by the author are at viXra:2001.0694; viXra:1702.0331; viXra:1609.0383; viXra:1609.0157;

Adonten

Back to Options

