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Abstract

This paper is a comparison of the Minkowski, Einstein and Einstein
dual theories of relativity. The dual is based on an identity relating
the observer time and the proper time as a contact transformation on
configuration space, which leaves phase space invariant. The theory
is dual in that, for a system of n particles, any inertial observer has
two unique sets of global variables (X, t) and (X, τ) to describe the
dynamics. Where X is the (unique) canonical center of mass. In the
(X, t) variables, time is relative and the speed of light is unique, while in
the (X, τ) variables, time is unique and the speed of light is relative with
no upper bound. The two sets of particle and Maxwell field equations
are mathematically equivalent, but the particle wave equations are not.
The dual version contains an additional longitudinal radiation term that
appears instantaneously with acceleration and we predict that radiation
from a betatron (of any frequency) will not produce photoelectrons. The
theory does not depend on the nature of the force and the Wheeler-
Feynman absorption hypothesis becomes a corollary.

The homogeneous and isotropic nature of the universe is sufficient
to prove that a unique definition of Newtonian time exists with zero
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set at the big bang. The isotopic dual of R is used to improve the big
bang model, by providing an explanation for the lack of antimatter in
our universe, a natural arrow for time, conservation of energy, momen-
tum and angular momentum. This also solves the flatness and horizon
problems without inflation. We predict that matter and antimatter
are gravitationally repulsive and that experimental data from distant
sources cannot be given a unique physical interpretation. We provide a
table showing the differences between the Minkowski, Einstein and dual
versions of the special theory.

Keywords: dual theory; no-interaction; speed of light; big bang; isotopes;
photo electric

1 Introduction: Background and History

In the beginning of the last century, the problem of reconciling the transforma-
tion properties of the Newtonian and Maxwell theories was the great concern.
We are now starting a new century and this problem is still with us, along
with a host of new ones.

Einstein, Lorentz and Poincaré all faced these problems directly. In the
course of his investigation, Lorentz [1, 2] showed that all of the macroscopic
phenomena of optics and electrodynamics can be explained from a detailed
analysis of the microscopic behavior of electrons and ions. Poincaré discovered
an error in Lorentz’s analysis and realized that, after correction the transfor-
mations formed a group, which he named for Lorentz [3]. By 1906 Poincaré
had already shown that, if time is treated as an imaginary coordinate, the
Lorentz group can be treated as a rotation in four-dimensional space and in-
troduced the metric (proper-time) later introduced by Minkowski (see [4]).
Poincaré’s strong background in physics and philosophy of science, in addition
to his insight and understanding of the difference between mathematics and
physics helped him to resist the temptation to use this “physically unjusti-
fied” mathematical observation as a (necessary) tool for the representation of
physical reality.

Independently, Einstein related the photoelectric effect to the quantum
ideas of Planck and derived the Lorentz transformations from basic kinematical
arguments, as opposed to the symmetry properties of Maxwell’s equations (as
was done by Lorentz). Einstein chose this approach because he did not believe
Maxwell’s theory would survive the existence of photons (see Brown [5]).

Observing that the constant c appears in Maxwell’s equations for all inertial
observers, Einstein [6] realized that a formal postulate on the velocity of light
was necessary. He proposed that all physical theories should satisfy the (well-
known) postulates of special relativity:
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(1) The physical laws of nature and the results of all experiments are
independent of the particular inertial frame of the observer (in which the ex-
periment is performed.

(2) The speed of light in empty space is constant and is independent of the
motion of the source or receiver.

Minkowski was the first to suggest that Poincaré’s discovery be made a
fundamental part of the special theory. He was a well-known number theorist
with few accomplishments in physics and a strong belief in Hilbert’s program
to geometrize physics [7]. (A complete analysis of Minkowski’s motivation, his
knowledge of Poincaré’s work and his background in physics can be found in
Walters [8].) Thus, we make explicit Minkowski’s unacknowledged additional
postulate to the special theory of relativity:

(3) The correct implementation of the first two postulates requires that
time be treated as a fourth coordinate, and the relationship between compo-
nents so constrained as to satisfy the invariance induced by the Lorentz group,
using the proper time (Minkowski space).

1.1 Newtonian Mechanics

As reported by Sommerfeld, Minkowski knew that the differential of proper
time is not an exact one-form (see the notes in [9]). Thus, he introduced the
co-moving observer as a substitute in order to use it as a metric.

Einstein, Lorentz, Poincaré, Ritz and other important thinkers on the sub-
ject maintained their belief that space and time had distinct physical proper-
ties. Einstein was the first to oppose Minkowski’s postulate openly. As noted
by Sommerfeld, Einstein was critical of Minkowski’s implicit assumption that
no physics was lost by constraining the differential of proper time. Einstein
and Laub later published two papers on electrodynamics, which offered a dif-
ferent approach, was simpler and did not depend on the spacetime formalism
(see [10], [11]). They argued that the spacetime formalism was complicated,
required additional assumptions and did not add any new physics.

Sommerfeld later simplified Minkowski’s complicated formulation, making
it easy for physicists to understand the new tensor methods. The new trend
towards abstracting concepts and methods automatically made the theory at-
tractive to mathematicians. This made Minkowski’s ideas even more popular
and helped to bring them to the attention of the masses. In this air of eupho-
ria, it was not noticed that the theory did not work for two or more particles
and thus was far from an extension of Newton’s mechanics. (This is the true
cause of the twin paradox.) By the time problems in attempts to merge the
special theory with quantum mechanics forced researchers to take a new look
at the foundations of electrodynamics, Minkowski’s postulate had become sa-
cred. When Einstein considered the extension of the special to the general
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theory, he was only interested in one which extended Minkowski’s postulate
(see Pais [12] and [13]).

Once it was accepted that the proper Newtonian theory should be invariant
under the Lorentz group, the problem was ignored until after World War Two
when it was realized that quantum theory did not solve the problems left open
by the classical theory.

In classical electrodynamics, Dirac partially by-passed many of the prob-
lems by replacing particles with fields (see [14]). However, this approach led to
the first example of a divergent theory (infinite self-energy). This divergency
was the main motivation for the Wheeler-Feynman approach to classical elec-
trodynamics (see [15]). Their theory solved the divergency problem, but could
not be used as the foundations for quantum theory. However, it still give
Feynman a different approach to quantum electrodynamics (QED).

The failure to solve the classical problem forced researchers to use the
Dirac theory as the basis for relativistic quantum mechanics and QED. This
approach maintained the infinite self-energy divergence and introduced a few
others. These problems were later by-passed by Feynman, Schwinger and
Tomonaga in the late 1940’s leading to the great successes of that era. It was
expected that the mathematicians would eventually find the correct theory to
justify the methods of QED. However, by the early 1980’s, it became clear
that this was not to be and the next generation pinned their hopes on string
theory as the best way forward. At this time, we have no definitive answers.
The development of the electro-weak theory and the standard model have each
added additional problems. Thus another serious look at the classical situation
can’t make things worst.

1.1.1 The 2-particle time problem

In order to understand the two particle time problem, we consider two inertial
observers O and O′. Without loss, assume both clocks begin when their origins
coincide and O′ is moving with uniform velocity v as seen by O. Let two
particles, each the source of an electromagnetic field, move with velocities
wi (i = 1, 2), as seen by O, and w′i (i = 1, 2), as seen by O′, so that:

x′i = xi − γ(v)vt+ (γ(v)− 1)(xi · v/ ‖v‖2)v

and (1.1)

xi = x′i + γ(v)vt′ + (γ(v)− 1)
(
x′i · v/ ‖v‖

2)v,

with γ(v) = 1/
[
1− (v/c)2]1/2 represent the spacial Lorentz transformations

between the corresponding observers. Thus, there is clearly no problem in
requiring that the positions transform as expected. However, when we try
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to transform the clocks, we see the problem at once since we must have, for
example,

t′ = γ(v)
(
t− x1 · v/c2

)
and t′ = γ(v)

(
t− x2 · v/c2

)
. (1.2)

This is clearly impossible unless x1 ·v = x2 ·v. Thus we cannot use the observer
clock to share information (with other observers) about two or more particles.
Thus, we conclude that we cannot use the observer’s clocks to maintain the
first postulate.

1.1.2 The n-particle position problem

Pryce was the first to study the center of mass problem for n particles (see
[16]). He concluded that there are three possibilities, but only one is canonical
and available to all observers. His representation led to the implication that
the canonical center-of-mass cannot be the three-vector part of a four-vector.
(This problem is almost seventy five years old.) The analysis of Pryce will be
discussed fully in the next section and the problem will be made explicit.

After Pryce’s investigation, Bakamjian and Thomas showed that they could
construct a many-particle quantum theory that satisfied Einstein’s two postu-
lates, but not Minkowski’s (see [17]). They further suggested that, with the
addition of Minkowski’s postulate, their theory would only be compatible with
free particles.

1.1.3 No-Interaction

There are two major no-interaction theorems: the first was due to Haag [18]
and applies to the foundations of quantum field theory. Today It is often con-
fused with the one proved by Currie et al [19], which shows that Bakamjian-
Thomas were correct. The theorem has since been extended to an arbitrary
number of particles by Leutwyler [20]. We present the general form. (For a
recent version, see [40].)

Theorem 1.1. (No-Interaction Theorem) Consider a system of parti-
cles {(xi,pi)}ni=1 defined on R3n × R3n (phase space). Supposed that the fol-
lowing is satisfied:

1. The system has a Hamiltonian representation.

2. The system has a canonical representation of the Poincare group.

3. Each xi is the vector part of a four-vector.

Then these assumptions are only compatible with free particles.
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All attempts to keep Minkowski’s postulate, avoid The No-Interaction The-
orem, include Newtonian mechanics and merge with quantum mechanics have
failed.

In 1963, in the same paper where he suggested the study of strings, Dirac
[21] openly challenge the fundamental nature of Minkowski’s postulate. He
wrote:

What appears to our consciousness is really a three-dimensional
section of the four-dimensional picture. We must take a three-
dimensional section to give us what appears to our consciousness at
one time; at a later time we shall have a different three-dimensional
section. The task of the physicist consists largely of relating events
in one of these sections to events in another section referring to a
later time. Thus the picture with four-dimensional symmetry does
not give us the whole situation. This becomes particularly impor-
tant when one takes into account the developments that have been
brought about by quantum theory. Quantum theory has taught us
that we have to take the process of observation into account, and
observations usually require us to bring in the three-dimensional
sections of the four-dimensional picture of the universe. ...

when one looks at gravitational theory from the point of view of
the sections, one finds that there are some degrees of freedom that
drop out of the theory. The gravitational field is a tensor field with
10 components. One finds that six of the components are adequate
for describing everything of physical importance and the other four
can be dropped out of the equations. One cannot, however, pick
out the six important components from the complete set of 10 in
any way that does not destroy the four-dimensional symmetry.

The invariance requirement for Maxwell’s equations can be satisfied by the
Lorentz group without Minkowski’s postulate (see [22]). We conclude that
Minkowski’s postulate imposes an additional condition on Einstein’s special
theory of relativity for one particle, but fails completely for two or more par-
ticles at the classical level and creates even more problems at the quantum
level.

1.2 The 2.7 ◦K mbr and Mach’s Principle

Two years after Dirac’s paper, Penzias and Wilson discovered, the 2.7 ◦K
microwave background radiation (mbr). It has been known since, that this
radiation defines a unique preferred frame of rest, which exists throughout the
universe and is available to all observers (see [23]). This radiation is highly
isotropic with anisotropy limits set at 0.001%. Direct measurements have been



The Einstein Dual Theory of Relativity 7

made of the velocity of our Solar System and Galaxy relative to the mbr (370
and 600 km/sec respectively, see Peebles [24] ).

Peebles has suggested that, the special theory is valid with or without a
preferred frame, so that the mbr does not violate the special theory. However,
this statement is not obvious, in addition, general relativity predicts that at
each point one can adjust their acceleration locally to find a freely falling frame
where the special theory holds. In this frame, observers with constant velocity
are equivalent. Thus, according to the general theory there is an infinite family
of freely falling frames. The Penzias and Wilson findings show that, one can
set the acceleration equal to zero.

1.3 Major Foundational Problems

There are many opinions about the role of mathematics in physics. In this
section, we first define the proper role of theoretical physics and the proper
role of mathematics in relationship to physics. We then identify seven ma-
jor problems, that must be solved if we are to provide a solid foundation for
physics to move forward in the twenty first century.

Remark 1.2. Many may think that the role of theoretical physics and
of mathematics in relationship to physics is obvious and strongly question the
necessity for this section. However, we live at a time when the majority view
is that the previously unsolved problems are of no real concern, pointing out
the great empirical successes of the past.

These unsolved problems have been with us so long, that the role and view
of theoretical physics as a tool for (and a part of) science is in question. The
recent book by Frisch [41] on classical electrodynamics not only provides a
clear discussion of the problems, and internal (mathematical) inconsistances,
he further assumes they have no solution and suggests that this state of affairs
be accepted as a natural part of the theoretical landscape. Similar sentiments
have been expressed by Schweber [42] concerning the well-known difficulties in
QED.

1.3.1 Theoretical Physics

The objective of theoretical physics is to design faithful representations or
models of the physical world. These designs must be able to describe the
cause effect relationships observed in experiment and, they must be physically
and mathematically consistent. To be useful, these designs must also be con-
structed using a minimal number of variables and parameters.
The basic postulate is that:

Mathematics is the correct tool for the design, analysis and certification
of the consistency of representations of physical reality.
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1.3.2 Mathematics

From the (restricted) view of theoretical physics, mathematics is defined as:

1. A tool for the design of internally consistent languages and structures.

2. A tool for the design of representations of the physical world.

3. A tool for the qualitative and quantitative analysis of data about and
representations of the physical world.

In some cases, mathematical languages and structures, designed for other pur-
poses, have become perfect tools for certain parts of physics (e.g., group theory,
probability theory, statistics). However, the most useful languages and struc-
tures have been those specifically designed for physics (e.g., geometry, calculus,
differential and partial differential equations, vector analysis, geometric alge-
bra and isotopes).

Thus, the role of mathematics in theoretical physics is that of a tool. This
is where there appears to be confusion. We should be clear that, any math-
ematical model resulting from a theoretical design is not physical reality, but
at most, the best representation we can design at this point in our intellectual
evolution. (Anyone seeking absolute understanding or knowledge will not find
it in physics).

Remark 1.3. From this perspective, “mathematics is amazingly effective
in physics” because it was designed for just that purpose.

We have identified seven major problems that must be faced directly if we
want to design a consistent structure, which will provide a clear path forward
in the twenty first century. Any design:

1. must be compatible with the two postulates of Einstein;

2. must be compatible with Newtonian mechanics;

3. must be compatible with classical electrodynamics;

4. must be compatible with the 2.7 ◦K MBR;

5. must be compatible with quantum mechanics;

6. must be compatible with the results of general relativity and,

7. must be mathematically consistent.

These are the seven foundational pillars of theoretical physics. In the remain-
ing sections of the paper, we develop the first four requirements above while
insuring that they satisfy the last requirement. The remaining requirements
are part of an ongoing effort.
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2 Newton and Einstein without Minkowski

We begin with the design of a general model that includes Newton and Ein-
stein. We assume a classical interacting system of n-particles defined in terms
of physical variables and observed by O in an inertial frame. Observer O is
able to identify each particle and attach a vector xi to the ith particle, denoting
its spacial distance to the origin.

2.1 One-Particle Clock

First, we construct a unique clock for each particle. Let O observe the dynam-
ics of particle i using coordinates (xi, t). If wi is the velocity of particle i as
seen by O, let γ−1 (wi) =

√
1−w2

i /c
2. The ith particle proper time is defined

by:

dτi = γ−1(wi)dt, wi =
dxi
dt
, dτ 2

i = dt2 − 1
c2
dx2

i . (2.1)

We can also rewrite the last term to get:

dt2 = dτ 2
i + 1

c2
dx2

i ,⇒ cdt =

(√
u2
i + c2

)
dτi, ui =

dxi
dτi

= γ(wi)wi.

(2.2)
If we let bi =

√
u2
i + c2, the second term in equation (2.2) becomes cdt = bidτi.

This leads to our first identity:

1

c

d

dt
≡ 1

bi

d

dτi
(2.3)

This identity provides the correct way to define the relationship between the
proper time and the observer time for the ith particle. If we apply the identity
to xi, we obtain our second new identity, which shows that the transformation
leaves the configuration (or tangent) space invariant:

wi

c
=

1

c

dxi
dt
≡ 1

bi

dxi
dτi

=
ui
bi
. (2.4)

The new particle coordinates are (xi, τi). In this representation, the position
xi is uniquely defined relative to O, while τi is uniquely defined by the ith

particle. Using γ(wi) = Hi/mic
2, we can also write dτi = (mic

2/Hi) dt. The
ith particle momentum can be represented as pi = miγ(wi)wi = miui, where
mi is the particle rest mass. Thus, the phase space variables are left invariant.

2.2 Many-Particle Clock

To construct the many-particle clock, we suppose the interacting particles have
proper clocks τi, Hamiltonians Hi and total Hamiltonian H =

∑n
i=1 Hi. We
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define the effective mass M and total momentum P by

Mc2 =
√
H2 − c2P2, P =

n∑
i=1

pi.

We can then represent H as H =
√
c2P2 +M2c4.

Pryce, found that there are three possible definitions for the center of mass
position vector. However, only one of them is canonical and independent of
the frame in which it is defined. This is the natural and necessary choice if we
want a theory that provides the same physics to all observers and is compatible
with quantum mechanics. In our case, X is defined in the O frame by (see
[25]):

X =
1

H

n∑
i=1

Hixi +
c2 (S×P)

H (Mc2 +H)
, (2.5)

where S is the global spin of the system of particles relative to O. (It is clear
that (2.5) cannot represent the vector part of a four-vector.) If there is no
interaction, S,H and M are constant, with no dependence on the {xi, pi}
variables, so that:

{Xi, Xj} =
n∑
k=1

∂Xi

∂pk
· ∂Xj

∂xk
− ∂Xj

∂pk
· ∂Xi

∂xk
≡ 0.

However, when interaction is present, S,H and M may all depend on the
{xi, pi} variables, so that in general {Xi, Xj} 6= 0. Since X is the canonical
conjugate of P, it precisely what we need for a consistent merge with quantum
mechanics.

Let V be the velocity of X with respect to O. It follows that H also
has the representation H = Mc2γ(V), so that γ(V)−1 = (Mc2/H). In this
representation, we see that dτ = γ(V)−1dt = (Mc2/H)dt does not depend on
the number of particles in the system. It follows that, as long as Mc2/H is
fixed, τ is invariant, so that the number of particles n, can increase or decrease
without changing τ . (This means that number n is not conserved and, in some
cases of physical interest, may even be a integer-valued random variable).

From dt2 = dτ 2 + dX2/c2, we see that (U = dX/dτ)

c2dt2 =
(
c2 + U2

)
dτ 2 ⇒ cdt =

(√
c2 + U2

)
dτ.

It is easy to see that U = γ(V)V, so that U is constant. If we define b =√
U2 + c2, we can write cdt = bdτ . Since b is constant we have: ct = bτ .

For observer O′ the same system has velocity V′ for the center of mass and,

by the same calculations, we obtain ct′ = b′τ , where b′ =
√

U′2 + c2. This
shows that a unique (operational) measure of time is available to all observers.
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Furthermore, τ differs from t (respectively t′), by a constant scale factor. Thus,
all observers may uniquely define the local-time of the center of mass for the
system of particles (independent of their chosen inertial frame). We also obtain
our third identity:

1

c

d

dt
≡ 1

b

d

dτ
≡ 1

bi

d

dτi
(2.6)

Applying the above to xi we see that:

1

c

dxi
dt
≡ 1

b

dxi
dτ
≡ 1

bi

dxi
dτi

.

Theorem 2.1. If O is observing any system of particles, there are two sets
of global variables available: (X, t) and (X, τ). Use of (X, t) provides a relative
definition of time and a constant speed of light; while use of (X, τ) provides a
unique definition of time and a relative definition of the speed of light, with no
upper bound.
Proof. The first part is clear. To prove the second statement, from above, we
see that any other observer O′ investigating the same system of particles also
has two sets of global variables available: (X′, t′) with a constant speed of light
and (X′, τ) with b′ relative. We are done if we can show that Einstein’s first
postulate holds.

Let W be the relative velocity between observer O and O′. Since τ is the
same for both we only need the relationship between the two scale factors b and
b′ to satisfy the first postulate. Starting with t′ = b′

c
τ = γ (W)

(
b
c
τ −X ·V/c2

)
,

we see that, since U = (X/τ), we get:

b′ = γ (W) [b− (X/τ) · (W/c)] = γ (W) (b−U ·W/c) .

A similar calculation shows that b = γ(W) (b′ + U′ ·W/c). This shows that
each observer can have direct access to all information available to any other
observer once they know their relative velocities. Thus the first postulate of
Einstein is satisfied at the global level.

Corollary 2.2 The two global sets of variables produce mathematically
equivalent theories, but do not produce physically equivalent theories.

Theorem 2.3 The special theory of Einstein holds for any many-particle
system and is independent of the Minkowski postulate.

This result is fundamental to our approach, since we do not require the
particle coordinates to transform as four-vectors. Thus, the no-interaction
theorem does not apply. In the following section, we study the dynamics of
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the system.

Remark 2.4 This distinction may also prove important in the future, be-
cause there continues to appear research in cosmology, applied physics and
engineering, suggesting that the constant c is not an upper bound in all cases
(see for example [36, 37, 38, 39]).

For many experiments (e. g., high energy particle studies) the center of
mass is the natural frame of choice. In this case, t = τ and one has a constant
speed of light for all events associated with the global system of (interacting)
particles. (However, from equation (2.3) individual particles can still have
velocities much larger than c.)

3 General Dynamics

In this section, we focus on the general dynamics of our system of particles.
The study of external and internal dynamics will be accomplished in section
4.

3.1 Poincaré algebra

If we let L be the generator of pure Lorentz transformations (boost) and define
the total angular momentum J by

J =
n∑
i=1

xi × pi,

we obtain the following Poisson Bracket relations characteristic of the Lie
algebra for the Poincaré group, when we use the time t of our observer O:

dP

dt
= {H,P} = 0

dJ

dt
= {H,J} = 0 {Pi, Pj} = 0

{Ji, Pj} = εijkPk {Ji, Jj} = εijkJk {Ji, Lj} = εijkLk (3.1)

dL

dt
= {H,L} = −P {Pi, Lj} = δij

H

c2
{Li, Lj} = εijk

Jk
c2
.

It is easy to see that M commutes with H, P, and J, and to show that M
commutes with L.

3.1.1 Canonical Hamiltonian

If we treat the system of particles as a single entity, then (X,P) are the
natural phase space variables for the external system dynamics. In this case,
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if W (X,P) is a dynamical parameter in X and P, the time evolution of W is
defined by:

dW

dt
= {H,W} =

∂H

∂P
· ∂W
∂X
− ∂H

∂X
· ∂W
∂P

. (3.2)

In order to represent the dynamics using the proper time of the system, we
use the representation dτ = (Mc2/H)dt, so that:

dW

dτ
=
dt

dτ

dW

dt
=

H

Mc2
{H,W} =

(
H

Mc2

∂H

∂P

)
· ∂W
∂X
−
(

H

Mc2

∂H

∂X

)
· ∂W
∂P

.

The ratio H/Mc2 is constant and Mc2 is a well-defined (invariant) for the
system, so we can determine the canonical Hamiltonian K, related to τ by:

{K,W} =
H

Mc2
{H,W} , K|P=0 = H|P=0 = Mc2.

In this case:

{K,W} =

[
H

Mc2

∂H

∂P

]
∂W

∂X
−
[
H

Mc2

∂H

∂X

]
∂W

∂P

=
∂

∂P

[
H2

2Mc2
+ a

]
∂W

∂X
− ∂

∂X

[
H2

2Mc2
+ a′

]
∂W

∂P
,

we get that a = a′ = 1
2
Mc2, so that

K =
H2

2Mc2
+
Mc2

2
=

P2

2M
+Mc2, and

dW

dτ
= {K,W} . (3.3)

Thus, K looks like the standard (Newtonian) Hamiltonian except for the Mc2

term.

3.1.2 Proper time Poincaré algebra

We can use the same definitions for P, J, and L to obtain our new commutation
relations:

dP

dτ
= {K,P} = 0,

dJ

dτ
= {K,J} = 0, {Pi, Pj} = 0,

{Ji, Pj} = εijkPk, {Ji, Jj} = εijkJk, {Ji, Lj} = εijkLk, (3.4)

dL

dτ
= {K,L} = −H

Mc2
P, {Pi, Lj} = −H

c2
δij, {Li, Lj} = −Jk

c2
εijk.

We see again that, except for a (constant) change of scale, we obtain the same
Lie algebra for the Poincaré group. Thus, the replacement of t with τ still
produces a relativistic theory. We will explicitly construct and discuss the
corresponding Lorentz transformations that fix τ in section 4.
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3.1.3 The t→ τ contact group

The mapping between t and τ is a member of the family of contact groups, often
used in celestial mechanics (see [26]). Contact transformations are sometimes
called tangency transformations in mechanics, because they leave invariant the
tangent at the point of contact. In what follows (from our identities) we use
w/c with γ−1 and u/b with γ. In this case, an explicit representation is easy:

dτ = γ−1dt = γ′
−1
dt′ ⇒

dt = γdτ and dt′ = γ′dτ

These transformations are clearly invertible. Since the observer frames are
inertial, we have that t = γτ and t′ = γ′τ . Thus the transformation t → τ
induces the contact mapping of C−1[ t, τ ] : (O, t) → (O, τ). (See [27] pg.
1312, for the general case.)

Let observer O′ with time t′ observe the same system of particles. From
this frame the total Hamiltonian is H ′. One can also construct P′ and M ′,
leading to the same form for the commutation relations as in (3.4).

Let the contact maps from (O, τ) → (O, t) and from (O′, τ) → (O′, t′)
be denoted by C[ t, τ ] and C[ t′, τ ] respectively. Let P(O′, O) be the Poincaré
map from O → O′.

Theorem 3.1. The system of particles as seen by an observer at O is
related to that of an observer at O′ by the Zachary transformation:

O′(X′, τ) = Z[O′, O, τ ]O(X, τ) = C[ τ, t′]P(O′, O)C−1[ t, τ ]O(X, τ). (3.5)

Remark 3.2. The above transformation is named for our deceased col-
league Woodford W. Zachary (see [27], equation (5.21)).

proof The proof follows since the diagram below is commutative.

O(X, t)
P−→ O′(X′, t′)

C−1[ t, τ ]

x
y C[ t′, τ ]

O(X, τ)
Z−→ O′(X′, τ)

Since K does not depend on the center-of-mass position X, it is easy to see
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that

U =
dX

dτ
=
∂K

∂P
=

P

M
=

1

M

n∑
i=1

pi =
1

M

n∑
i=1

miui =
1

M

n∑
i=1

mi
dxi
dτi

. (3.6)

For the O′ observer, the same calculation leads to:

U′ =
dX′

dτ
=
∂K

∂P′
=

P′

M ′ =
1

M ′

n∑
i=1

p′i =
1

M ′

n∑
i=1

m′iu
′
i =

1

M ′

n∑
i=1

m′i
dx′i
dτi

. (3.7)

We now observe that

dt =
Hi

mic2
dτi =

H

Mc2
dτ ⇒ mi

M

d

dτi
=
Hi

H

d

dτ
.

Thus, we can replace (3.6) and (3.7) by:

dX

dτ
=
∂K

∂P
=

P

M
=

1

M

n∑
i=1n

pi =
1

M

n∑
i=1

miui =
1

H

n∑
i=1

Hi
dxi
dτ

(3.8)

and

dX′

dτ
=
∂K

∂P′
=

P′

M ′ =
1

M ′

n∑
i=1

p′i =
1

M ′

n∑
i=1

m′iu
′
i =

1

H ′

n∑
i=1n

H ′i
dx′i
dτ

. (3.9)

Since the Hi (respectively H ′i) do not depend on τ , we can integrate both
equations to get:

X =
1

H

n∑
i=1n

Hixi + Y and X′ =
1

H ′

n∑
i=1n

H ′ix
′
i + Y′,

where Y and Y′ are constants of integration. (This shows that the canonical
Hamiltonian determines the canonical position up to a constant.)

To see directly that the clock transformation is also a canonical change
of variables (time), which leaves phase space invariant, we have the following
theorem.

Theorem 3.3. There exists a function S = S (X, P, τ) such that

P · dX−Hdt ≡ P · dX−Kdτ + dS.

Proof. Set S = [Mc2 −K]τ . An easy calculation, using the fact that both
Mc2 and K are conserved quantities, shows that dS = [Mc2 −K]dτ . An ad-
ditional easy calculation gives the result.
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We note that

n∑
i=1

[pi · dxi −Hidt] =
n∑
i=1

pi · dxi −
n∑
i=1

Hidt =
n∑
i=1

pi · dxi −Hdt.

This result and dS = [Mc2 −K]dτ is sufficient to justify the following:

Corrolary 3.4. There exists a function S = S ({xi}, {pi}, τ) such that

n∑
i=1

pi · dxi −Hdt ≡
n∑
i=1

pi · dxi −Kdτ + dS.

Definition 3.5. A theory is said to be Einsteinian if at least one repre-
sentation exists, which satisfies the two postulates of the special theory.

Theorem 3.6. Any closed system of interacting particles is Einsteinian
and independent of the Minkowski postulate. Furthermore, there always exists
two distinct sets of inertial frame coordinates for each observer, to describe
each particle in the system and the system as a whole. The following holds:

1. In one frame, the speed of light is an invariant upper bound and time is
relative, while in the other, time is invariant and the speed of light b, is
relative with no upper bound.

2. For the whole system and for each particle, the equations of motion are
mathematically equivalent.

We have already proven all but the last part of the above theorem. The next
section is devoted to external dynamics. We complete our proof in the second
part, when we study electrodynamics.

3.2 General System Dynamics

In this section we view the system from an external perspective as if it is one
interacting particle. At this level, it suffices to assume the interaction is via a
potential V (X). We can add V to the equation for H, to get:

H =
√
c2P2 +M2c4 + V (X) = H0 + V (X)

⇒ (3.10)

dX

dt
=
c2P

H0

and
dP

dt
= −∇V (X).
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For comparison, if we use the proper clock, we get:

K =
H2

2Mc2
+
Mc2

2
⇒ dX

dτ
=
∂K

∂P
=

H

Mc2

c2P

H0

=
b

c

dX

dt
,

(3.11)

dP

dτ
=
∂K

∂X
= − H

Mc2
∇V (X) =

b

c

dP

dt
.

Comparison of (3.10) and (3.11) shows that the two clocks give mathematically
equivalent equations of motion for the general system dynamics.

3.3 The Clock Relationship

There is a basic relationship between the global system clock and the clocks
of the individual particles. To derive this relationship, return to our definition
of the global Hamiltonian K and let W be any observable. Then

dW

dτ
= {K,W} =

H

Mc2
{H,W} =

H

Mc2

n∑
i=1

{Hi,W}

=
H

Mc2

n∑
i=1

mic
2

Hi

[
Hi

mic2
{Hi,W}

]
=

n∑
i=1

Hmi

MHi

{Ki,W}. (3.12)

Using the (easily derived) fact that dτi/dτ = Hmi/MHi = bi/b, we get

dW

dτ
=

n∑
i=1

dτi
dτ
{Ki,W}. (3.13)

Equation (3.13) allows us to relate the global system dynamics to the local
systems dynamics. Let us combine equations (3.12) and (3.13), to get our
third identity:

dτ {K,W} ≡
n∑
i=1

dτi {Ki,W} ⇒ dτKP =
n∑
i=1

dτiK
P
i . (3.14)

Where the last equation is strictly defined with the Poisson brackets. This
provides the basis for a many particle relativistic quantum theory with a uni-
versal wave function, using the transition to Heisenberg brackets on both sides
(geometric quantization).

In closing this part, we recall that, in some cases, it is natural to place the
observer at the center of mass. In this case, equation (3.13) can be written as:

dW

dt
=

n∑
i=1

dτi
dt
{Ki,W} (3.15)
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and equation (3.14) can be written as:

dt {H,W} ≡
n∑
i=1

dτi {Ki,W} ⇒ dtHP =
n∑
i=1

dτiK
P
i . (3.16)

4 Maxwell and Einstein without Minkowski

If we replace t by τ at the global level for electrodynamics, no new results are
produced other then what is expected from section 2. Thus, we focus on the
direct interaction of a particle with an external field, another particle or the
local interaction of particles as seen from the center of mass.

4.1 Maxwell Particle Dynamics

4.1.1 Dynamics of a Particle

We now investigate the corresponding single particle dynamical theory. In this
section, b = bi, τ = τi and u = ui.

Since τ is invariant during interaction (minimal coupling), we make the
natural assumption that the form of K also remains invariant. Thus, if√
c2p2 +m2c4 →

√
c2π2 +m2c4 +V , where A is the vector potential, V = eΦ

is the potential energy, E = −1
b

(∂A/∂τ)−∇Φ and π = p− e
c
A. In this case,

K becomes:

K =
H2

2mc2
+
mc2

2
=
π2

2m
+mc2 +

V 2

2mc2
+
V
√
c2π2 +m2c4

mc2
.

If we set H0 =
√
c2π2 +m2c4, use standard vector identities with ∇ × π =

− e
c
B, and compute Hamilton’s equations, we get:

dx

dτ
=
∂K

∂p
=

H

mc2

(
c2π

H0

)
=
b

c

(
c2π

H0

)
=
b

c

dx

dt
(4.1)

and

dp

dτ
=
b

c

[
(c2π ·∇) A + e

b
(c2π ×B)

]
H0

− b

c
∇V

=
b

c

[
(u ·∇) A + e

b
(u×B)

]
− b

c
∇V

(4.2)

=
b

c

[
eE + e

b
(u×B) + e

b

dA

dτ

]
⇒

c

b

dπ

dτ
=
[
eE + e

b
(u×B)

]
=
dπ

dt
.
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Equations (4.1) and (4.2) show that the standard and dual equations of motion
are mathematically equivalent. Thus, our assumption that K remain invariant
with minimal coupling was the correct choice. This also completes the proof
of Theorem 3.6.

4.1.2 Field of a Particle

To study the field of a particle, we write Maxwell’s equations (in c.g.s. units):

∇ ·B = 0, ∇ · E = 4πρ,

(4.3)

∇× E = −1

c

∂B

∂t
, ∇×B =

1

c

[
∂E

∂t
+ 4πρw

]
.

Using equations (2.3) and (2.4) in (4.3), we have (the mathematically identical
representation):

∇ ·B = 0, ∇ · E = 4πρ,

(4.4)

∇× E = −1

b

∂B

∂τ
, ∇×B =

1

b

[
∂E

∂τ
+ 4πρu

]
.

Thus, we obtain a mathematically equivalent set of Maxwell’s equations using
the local time of the particle to describe its fields.

To derive the corresponding wave equations, we take the curl of the last
two equations in (4.4), and use standard vector identities, to get:

1

b2

∂2B

∂τ 2
− u · a

b4

[
∂B

∂τ

]
−∇2 ·B =

1

b
[4π∇× (ρu)] ,

(4.5)

1

b2

∂2E

∂τ 2
− u · a

b4

[
∂E

∂τ

]
−∇2 · E = −∇(4πρ)− 1

b

∂

∂τ

[
4π(ρu)

b

]
,

where a = du/dτ is the particle acceleration. Thus, a new term arises when
the proper-time of the charge is used to describe its fields. This makes it
clear that the local clock encodes information about the particle’s interaction
that is unavailable when the clock of the observer, co-moving observer or the
proper clock of the center of mass is used to describe the fields. The new term
in equation (4.5) is dissipative, acts to oppose the acceleration, is zero when
a = 0 or perpendicular to u. It also arises instantaneously with the force.
Furthermore, this term does not depend on the nature of the force. This is
exactly what one expects of the back reaction caused by the inertial resistance
of the particle to accelerated motion and, according to Wheeler and Feynman
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[13], is precisely what is meant by radiation reaction.

Remark 4.1 It is of particular interest that this implies a charged particle
can distinguish between inertial and accelerating frames. Thus, an observer in
an elevator can always determine the state of motion. From this point of view,
it is no surprise that the 2.7 ◦K MBR represents a unique preferred frame of
rest.

If we make a scale transformation (at fixed position) with E → (b/c)1/2E
and B→ (b/c)1/2B, the equations in (4.5) transform to

1

b2

∂2B

∂τ 2
− ∇2 ·B +

[
b̈

2b3
− 3ḃ2

4b4

]
B =

c1/2

b3/2
[4π∇× (ρu)] ,

(4.6)

1

b2

∂2E

∂τ 2
− ∇2 · E +

[
b̈

2b3
− 3ḃ2

4b4

]
E = −c

1/2

b1/2
∇(4πρ)− c1/2

b3/2

∂

∂τ

[
4π(ρu)

b

]
.

This is the Klein-Gordon equation with an effective mass µ given by

µ =

{
~2

c2

[
b̈

2b3
− 3ḃ2

4b4

]}1/2

=

{
~2

c2

[
u · ü + u̇2

2b4
− 5 (u · u̇)2

4b6

]}1/2

. (4.7)

In the following sections, we verify that our view of µ as an effective mass is
correct.

4.2 Radiation from the Accelerated Charge

In this section, we directly compute the radiation from an accelerated charge.
Using potentials, it easy to check that, with the Lorentz condition and

B = ∇×A, E = −1

b

∂A

∂τ
−∇Φ, (4.8)

the wave equations for the potentials are:

1

b2

∂2A

∂τ 2
− (u · a)

b4

∂A

∂τ
−∇2A =

4πρu

b
(4.9)

1

b2

∂2Φ

∂τ 2
− (u · a)

b4

∂Φ

∂τ
−∇2Φ = 4πρ

We could solve the equations (4.9), but it is easier to first obtain the solution
using the proper-time of the observer and then transform our result to the
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proper-time of the source. This makes the computations easier to follow and
also provides the result quicker. We follow the approach due to Panofsky and
Phillips [34]. In this regard, (x(t), t) represent the field position and (x′(t′), t′)
represent the retarded position of a point charge source q, with r = x − x′,
dr/dt′ = −w, and d2r/dt′2 = ẇ. The solutions are the standard Lienard-
Wiechert potentials, given by

A =
qw

cs
, Φ =

q

s
, s = r −

(r ·w
c

)
. (4.10)

We obtain the proper-time form by replacing w/c by u/b to get

A =
qu

bs
, Φ =

q

s
, s = r −

(r · u
b

)
. (4.11)

The source-point and field variables are related by the condition

r = |x− x′| = c(t− t′). (4.12)

In the proper time variables, dr/dτ ′ = −u = −dx′/dτ ′ and τ ′ is the retarded
proper-time of the source. The corresponding E and B fields are computed
using equation (4.9) in the form

E(x, τ) = −1

b̄

∂A(x, τ)

∂τ
−∇Φ(x, τ), B(x, τ) = ∇×A(x, τ) (4.13)

with ū = dx/dτ , where τ is the proper-time of the present position of the

source and b̄ = (ū2 + c2)
1/2

. To compute the fields from the potentials, we
observe that the components of the ∇ operator are partials at constant τ , and
therefore are not partials at constant τ ′. Also, the partial derivatives with
respect to τ imply constant x and hence refer to the comparison of potentials
at a given point over an interval in which the coordinates of the source will
have changed. Since only variations in time with respect to τ ′ are given, we
must transform (∂/∂τ) |x and ∇ |τ to expressions in terms of ∂/∂τ ′ |x . For
this, we must first transform (4.12) into a relationship between τ and τ ′. The
required transformation is

c(t− t′) =

∫ τ

τ ′
b(s)ds. (4.14)

The best approach is to first relate ∂/∂t |x to ∂/∂t′ |x and then convert them
to relationships between ∂/∂τ |x and ∂/∂τ ′|x . This leads to (see [34], pg. 298):

∂r

∂t′
= −r ·w

r
,
∂r

∂t
= c

(
1− ∂t′

∂t

)
=
∂r

∂t′
· ∂t

′

∂t
= −r ·w

r

∂t′

∂t
. (4.15)
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Since ∂τ/∂t = c/b, we get:

∂r

∂t
= c

∂

∂t
(t− t′) =

∂τ

∂t

∂

∂τ

∫ τ

τ ′
b(s)ds =

c

b̄

[
b̄− b∂τ

′

∂τ

]
. (4.16)

We also have, using ∂τ ′/∂t′ = c/b , that

∂r

∂t′
=

∂r

∂τ ′
∂τ ′

∂t′
=
c

b

∂r

∂τ ′
⇒ 1

b

∂r

∂τ ′
= −r ·w

rc
= −r · u

rb
, (4.17)

so ∂r/∂τ ′ = −r · u/r and hence

∂r

∂t
=
∂r

∂τ

c

b̄
=
c

b̄

[
b̄− b∂τ

′

∂τ

]
⇒ ∂r

∂τ
=

[
b̄− b∂τ

′

∂τ

]
,

(4.18)

∂r

∂τ
=

∂r

∂τ ′
∂τ ′

∂τ
= −r · u

r

∂τ ′

∂τ
⇒ −r · u

r

∂τ ′

∂τ
=

[
b̄− b∂τ

′

∂τ

]
.

If we solve the above for ∂τ ′/∂τ , we have:

∂τ ′

∂τ
=
b̄

b

r

s
, s = r − r · u

b
. (4.19)

Using this, we see that
1

b̄

∂

∂τ
=

1

b
· r
s

∂

∂τ ′
. (4.20)

From ∇r = −c∇t′ = ∇1r + (∂r/∂t′)∇t′, we see that

∇r =
r

r
− c

b
· r · u
r
∇t′ ⇒ −c∇t′ = r

r
− c

b
· r · u
r
∇t′.

Using c∇t′ = b∇τ ′ and solving for ∇τ ′, we get ∇τ ′ = − (r/bs), so that

∇ = ∇1 −
r

bs
· ∂
∂τ ′

.

We now compute ∇1s and ∂s/∂τ ′. The calculations are easy, so we simply
state the results:

∇1s =
r

r
− u

b
=

1

r

(
r− ru

b

)
,

∂s

∂τ ′
=

u2

b
− r · u

r
− r · a

b
+

(r · u) (u · a)

b3
.

We can now calculate the fields. The computations are long but follow those
of [34], so we only record a few selected results. We obtain

−∇Φ =
q

s2
∇s =

q

s2

(
∇1s−

r

bs

∂s

∂τ

)
⇒

(4.21)

−∇Φ =
q [r (1− u2/b2)− usb]

s3
+
qr (r · a)

b2s3
− qr (r · u) (u · a)

b4s3
.
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Now use equation (4.20) to get

− 1

b̄

∂A

∂τ
=

(
−1

b

)(r
s

) ∂A

∂τ ′
⇒

− 1

b

∂A

∂τ
=
− (qru/b) [(r/r − u/b) · (u/b)]

s3
+
−qr2a + qr [r× (a× u/b)]

b2s3

+
qu (r · r) (u · a)

b4s3
.

Combining the above with (4.13), and using standard vector identities, with
ru = r− ur/b, we have:

E (x, τ) = −1

b

∂A (x, τ)

∂τ
−∇Φ (x, τ)

=
qru

(
1− u2/b

2
)

s3
+
q [r× (ru × a)]

b2s3
+
q (u · a) [r× (u× r)]

b4s3
.

The computation of B is similar:

B =
q (ru × r)

(
1− u2/b

2
)

rs3
+
qr× [r× (ru × a)]

rb2s3
+
qr (u · a) [r× u]

b4s3
.

It is easy to see that B is orthogonal to E. The first two terms in the above
two equations are the same as (19-13) and (19-14) in [34] (pg. 299). The last
term in each case arises because of the dissipative terms in equations (4.5) and
(4.9). These terms are zero if a is zero or orthogonal to u. In the first case, there
is no radiation and the particle moves with constant velocity so that the field
is massless. The second case depends on the creation of motion which keeps a
orthogonal to u (for example a betatron). Since r× (u× r) = r2u− (u · r) r,
we see that there is a component along the direction of propagation (longitu-
dinal). (Thus, the E field has a longitudinal part.) This confirms our claim
that the new dissipative term is equivalent to an effective mass. This means
that the cause for radiation reaction comes directly from the use of the local
clock to formulate Maxwell’s equations. Thus, there is no need to assume
advanced potentials, self-interaction or mass renormalization along with the
Lorentz-Dirac equation in order to account for radiation reaction as is required
when the observer clock is used (Dirac theory). Furthermore, no assumptions
about the structure of the source are required (i.e., Poincaré stresses).

Remark 4.2. We conjecture that this effective mass is the actual source
of the photoelectric effect and that the photon is a real particle of non-zero
(dynamical) mass, which travels with the fields but is not a field in the normal
sense. If this conjecture is correct, radiation from a betatron (of any frequency)
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exposed to a metal surface will not produce photo electrons. Such an experiment
is within reach with current equipment. There are other implications of this
observation, but further reflection is required.

4.3 Radiated Energy

The difference in the calculated fields for the two representations, makes it
important to also compute the radiated energy for the (local) dual theory and
compare it with the standard formulation. The radiated energy is determined
by the Poynting vector, which is defined by P = (c/4π) (E×B). We closely
follow the calculations in [28].

To compute the angular distribution of the radiated energy, we must care-
fully note that the rate of radiation is the amount of energy lost by the charge
in a time interval dτ ′ during the emission of a signal (−dU/dτ ′). At a field
point, the Poynting vector P represents the energy flow per unit time mea-
sured at the present time (τ). With this understanding, the same approach
that leads to the above formula gives P =

(
b̄
/

4π
)

(E×B) in the proper-time
formulation. We thus obtain the rate of energy loss of a charged particle into
a given infinitesimal solid angle dΩ as

−dU
dτ ′

(Ω)dΩ =
(
b̄
/

4π
)

[n · (E×B)] r2 dτ

dτ ′
dΩ. (4.22)

Using equation (4.19), we get that (dτ/dτ ′) = bs
/
b̄r, so that (4.22) becomes

−dU
dτ ′

(Ω)dΩ = (b/4π) [n · (E×B)] rsdΩ. (4.23)

As is well-known, only those terms that fall off as (1/r) (the radiation terms)
contribute to the integral of (4.23). It is easy to see that our theory gives the
following radiation terms:

Erad =
q {r× [ru × a]}

b2s3
+
q (u · a) [r× (u× r)]

b4s3
= Ec

rad + Ed
rad, (4.24)

Brad =
qr× {r× [ru × a]}

rb2s3
+
qr (u · a) (r× u)

b4s3
= Bc

rad + Bd
rad, (4.25)

where Ec
rad,B

c
rad are of the same form as the classical terms with c replaced by

b, w′ by u, and ẇ′ by a. The two terms Ed
rad,B

d
rad, are new and come directly

from the dissipation term in the wave equations. (Note the characteristic
(u · a)/b4.) We can easily integrate the classical terms to see that∫∫

Ω

(−dU c/dτ)dΩ =
b

4π

∫∫
Ω

[n · (Ec
rad ×Bc

rad)]rsdΩ =
2

3

q2|a|2

b3
. (4.26)
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This agrees with the standard result for small proper- velocity and proper-
acceleration of the charge when b ≈ c and a ≈ dw/dt.

In the general case, our theory gives additional effects because of the dissi-
pative terms. To compute the integral of (4.23), we use spherical coordinates
with the proper-velocity u directed along the positive z-axis. Without loss
of generality, we orient the coordinate system so that the proper-acceleration
a lies in the xz-plane. Let α denote the acute angle between a and u, and
substitute (4.24) and (4.25) in (4.23) to obtain

− dU

dτ
dΩ =

q2|a|2

4πb3

×
{(

1− β2 cos θ
)−4 [

1− sin2θsin2α cosφ− cos2θcos2α− 1
2

sin 2θ sin 2α cosφ
]

− 2β(1− β cos θ)−5 (sin2θ cosα− 1
2

sin 2θ sinα cosφ
)
χ

+ β2sin2θ(1− β cos θ)−6 χ2
}

(4.27)

where

χ =
b2

r |a|
(
1− β2

)
+ β cosα

(
1− 1

β
cos θ

)
− sin θ sinα cosφ, (4.28)

and β = (|u|/b).
The integration of (4.23) over the surface of the sphere is elementary, and

we obtain, after some extensive but easy computations (see the appendix of
[27]):

lim
r→∞

∫∫
Ωr

−dU
dτ
dΩ =

2q2|a|2

3b3(1− β2)3

[
1− 1

5
β2
(
4 + β2

)
+ 1

5
β2
(
6 + β2

)
sin2α

]
.

(4.29)
As can be seen, this result agrees with (4.23) at the lowest order. For com-
parison, the same calculation using the observer’s clock for the case of general
orientation of velocity dx′/dt′ and acceleration dw′/dt′ is

lim
r→∞

∫
Ωr

−dU
dτ
dΩ =

2q2|ẇ′|2

3c3

(
1− β2

)−3 [
1− β2sin2α

]
, (4.30)

where β = (|w′|/c).
We observe that, in general, for an arbitrary angle α with 0 ≤ α ≤ π/2

and arbitrary β between 0 and 1, our result does not agree with (4.29) even
if we replace b with c and a with dw′/dt′. These relatively large changes may
prove important in the study of the physical and quantum electronics of nano
systems.
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4.4 Proper-time Group

In section 3, we constructed the Poincaré algebra for the global system and
produced the transformation between scale factors. This was sufficient to show
that observers could share information when they knew their relative velocity.
In this section, we directly identify the new (proper-time) transformation group
at the particle level necessary to preserve the first postulate. As will be seen,
this transformation is both nonlinear and nonlocal because b is not constant
in this case, but depends on τ . In this section, x = xi, x′ = x′i, τ = τi and V
is the relative velocity between two observers.

The standard (Lorentz) time transformations between two inertial ob-
servers can be written as

t′ = γ(V)
[
t− x ·V

/
c2
]
, t = γ(V)

[
t′ + x′ ·V

/
c2
]
. (4.31)

We want to replace t, t′ by τ . To do this, use the relationship between dt and
dτ to get:

t = 1
c

∫ τ

0

b(s)ds = 1
c
b̄τ, t′ = 1

c

∫ τ

0

b′(s)ds = 1
c
b̄′τ, (4.32)

where we have used the mean value theorem of calculus to obtain the final
result, so that both b̄ and b̄′ represent an earlier τ -value of b and b′ respec-
tively. Thus, the transformations represent explicit nonlinear and nonlocal
relationships between t, t′ and τ (during interaction). If we set

d∗ = d/γ(V)− (1− γ(V))
[
(V · d)

/
(γ(V)V2)

]
V,

we can write the transformations that fix τ as:

x′ = γ(V)
[
x∗ − (V/c)b̄τ

]
, x = γ(V)

[
x′
∗

+ (V/c)b̄′τ
]
,

u′ = γ(V) [u∗ − (V/c)b] , u = γ(V)
[
u′
∗

+ (V/c)b′
]
, (4.33)

a′ = γ(V) {a∗ −V [(u · a)/(bc)]} , a = γ(V)
{
a′
∗

+ V [(u′ · a′)/(b′c)]
}
.

If we put equation (4.32) in (4.32), differentiate with respect to τ and cancel
the extra factor of c, we get the transformations between b and b′:

b′(τ) = γ(V) [b(τ)− u ·V/c] , b(τ) = γ(V) [b′(τ) + u′ ·V/c] . (4.34)

A version of proper time group has been independently discussed in the works
of A. A. Unger (see [52, 53, 54]).
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4.4.1 The Transformation of Maxwell’s equations

It is shown in [28], that Maxwell’s equations transform the same as in the
conventional theory. However, the current and charge densities transform in
the following manner:

J′ = J + (γ − 1)
(J ·V)

V2
V − γ b

c
ρV, (4.35)

b′ρ′ = γ [bρ− (J ·V/c)] . (4.36)

Using the first equation of (4.34) in (4.36), we have:

ρ′ =
ρ− (J ·V/bc)

1− (u ·V/bc)
. (4.37)

This differs from the standard result, which we obtain if we set b′ = b = c in
(4.36):

ρ′ = γ
[
ρ− (J ·V

/
c2)
]
.

If we insert the expression J/c = ρ(u/b) in (4.37); we obtain:

ρ′ = ρ
1− (u ·V/b2)

1− (u ·V/bc)
. (4.38)

To see the impact of equation (4.38), suppose that a (arbitrary) charge distri-
bution is at rest in the unprimed frame. From (4.38), we see that u = 0, so
that ρ′ = ρ. Since the primed frame is arbitrary, the charge distribution will
appear the same to all observers. This is what we would expect on physical
grounds, so that relatively moving frames should not change the symmetry
properties of charged objects. In particular, a charge distribution in one frame
should not display physical effects due to another observer’s relative motion.

4.5 Global Internal Dynamics Revisado

In this section, we study the motion of one particle as seen from the global
internal point of view. We assume that, if there is an external force on the
system as a whole, the system as a whole has reached equilibrium. In this
case, we have

Hi = Hi0 + Vi =
√
c2π2

i +m2
i c

4 + Vi,

where πi = pi − ei
c
Ai, Ai =

∑
j 6=i Aji and Vi =

∑
j 6=i Vji. We assume that

Aji, Vji represents the action of the retarded vector potential (respectively
scalar potential) of the j-th particle on the i-th particle. Since, in this case,
eiAji 6= ejAij (respectively, Vji 6= Vij), we do not include the customary factor
of 1/2 in our definition of the scalar and vector potentials for particle i (see
[27]).
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Recall that wi = dxi/dt and ui = dxi/dτi. We define vi = dxi/dτ . From
our identities, its easy to show that

wi

c
=

vi
b

=
ui
bi
⇒ γ−1

i =

√
1−

(
wi

c

)2
=

√
1−

(
vi

b

)2
=

√
1−

(
ui

bi

)2

.

The velocity vi is the one our observer sees when he uses the global canonical
proper-clock (τ), of the system to compute the particle velocity, while wi is the
one seen when he uses his clock to compute the particle velocity. if U is zero,
b = c and, from the global perspective, our theory looks like the conventional
one. As the system is closed, U is constant and τ is linearly related to t. Since
γ−1
i = 1

b

√
U2 + c2 − v2

i , the physical interpretation is very different if U is not
zero. Furthermore, it is easy to see that, even if U is zero in one frame, it
will not be zero in any other frame which is in relative motion. Using K, the
equations of motion are:

vi =
dxi
dτ

=
∂K

∂pi
=

H

Mc2

c2πi
Hi0

=
b

c

c2πi
Hi0

,

dpi
dτ

=
∂K

∂pi
=

H

Mc2

n∑
k=1

[
c2∇iπk
Hi0

−∇iVk

]
=
b

c

n∑
k=1

[
c2∇iπk
Hi0

−∇iVk

]
.

Factoring out the k = i term ei
b

[(vi · ∇i) Ai + vi × (∇i ×Ai)], we have:

c

b

dpi
dτ

= ei
b

[(vi · ∇i) Ai + vi × (∇i ×Ai)]

(4.39)

+
n∑
k 6=i

{ek
b

[(vk · ∇i) Ak + vk × (∇i ×Ak)]−∇iVk

}
.

Using

(vi · ∇i) Ai =
dAi

dτ
− ∂Ai

∂τ
,

equation (4.39) becomes

c

b

dpi
dτ
− ei

b

dAi

dτ
= ei

b
[vi ×Bi]− ei

b

∂Ai

∂τ
−∇iVi

(4.40)

+
n∑
k 6=i

{ek
b

[(vk · ∇i) Ak + vk × (∇i ×Ak)]−∇iVk

}
.
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Note that equation (4.40) can also be written as:

dpi
dt
− ei

c

dAi

dt
= ei

c
[wi ×Bi]− ei

c

∂Ai

∂t
−∇iVi

(4.41)

+
n∑
k 6=i

{ek
c

[(wk · ∇i) Ak + wk × (∇i ×Ak)]−∇iVk

}
.

Thus, equations (4.40) and (4.41) are mathematically equivalent. Set Vi = eiΦi

and Ei = −1
b

(∂Ai/∂τ)−∇iΦi, then we can write:

Fi =
ei
b

(vi ×Bi)−
ei
b

∂Ai

∂τ
−∇iVi = eiEi +

ei
b

(vi ×Bi) .

We can then write equation (4.40) as:

c

b

dπi
dτ

= Fi

−
n∑
k 6=i

{ek
b

[(vk · ∇k) Aik + vk × (vk ×Aik)]−∇kVik

}
.

If we now use

(vk · ∇k) Aik =
dAik

dτ
− ∂Aik

∂τ
, Bik = ∇k ×Aik,

Eik = −1

b

∂Aik

∂τ
−∇kΦik, Fik = ekEik +

ek
b

(vk ×Bik) ,

the above becomes:

c

b

dπi
dτ

= Fi −
n∑
k 6=i

[
Fik −

ek
b

dAik

dτ

]
. (4.42)

If we simplify and put the last term on the other side, we have:

c

b

n∑
i=1

dπi
dτ

+
n∑
i=1

n∑
k 6=i

ek
b

dAik

dτ
=

n∑
i=1

Fi −
n∑
i=1

n∑
k 6=i

Fik.

Performing the summations on both sides give us:

c

b

n∑
i=1

dπi
dτ

+
n∑
i=1

ek
b

dAik

dτ
= 0⇒

n∑
i=1

dpi
dτ

= 0 =
dP

dτ
.
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4.6 Discussion

We want to first discuss the relationship between equation (4.2) and equation
(4.42). For comparison, we first rewrite equation (4.2) with its indices:

c

bi

dπi
dτi

=
[
eiEi + ei

bi
(ui ×Bi)

]
=
dπi
dt

. (4.43)

If we use
Fi = eiEi +

ei
b

(vi ×Bi, ) .

We can write equation (4.42) as

dπi
dt

=
c

b

dπi
dτ

=
[
eiEi +

ei
b

(vi ×Bi, )
]
−

n∑
k 6=i

[
Fik −

ek
b

dAik

dτ

]
. (4.44)

Equation (4.43) represents one particle in a field of force, as seen locally. It
does not react via action at a distance, but its reaction shows up in its field via
the additional term in its wave equation. When we look at the same particle
from the center of mass frame (equation (4.44)), we see the force which acts
on the particle and the action at a distance reaction force of the particle on
all the other particles in the system.

We interpret the extra term on the (far) right-hand side of equation (4.44)
as the long-sought back reaction field of the i-th particle on all the other par-
ticles (the cause for its acceleration). Furthermore, this term accounts for ra-
diation reaction without the Lorentz-Dirac equation, self-energy (divergence),
advanced potentials or any assumptions about the structure of the source. It is
important to point out that the mathematical equivalence is manifest in both
cases and yet these equations cannot be obtained if we start with the observer
clock.

It also follows that equation (4.44) is consistent with conservation of global
momentum. This along with conservation of total energy implies the following:

Corrolary 4.3. (Wheeler-Feynman) In the (X, t) or (X, τ) variables,
the closed system of interacting charged particles exchange energy and momen-
tum via fields and photons (action at a distance) and all emitted energy and
momentum is absorbed internally.
Thus, the absorption hypothesis of Wheeler and Feynman is automatically
satisfied, without the use of advanced solutions to Maxwell’s equations.

4.6.1 Relationship to Quantum Theory

Suppose there are only two particles interacting. The retarded nature of the
potentials means that their interactions will always be slightly off target, so
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that the law of action and reaction is only approximate at this level. The
more particles involved, the more likely that the reaction radiation will miss
its intended mark. The assumption that the system is closed and Theorem
4.3 implies that, after a short time, the system will reach equilibrium with
particles, fields and photons. Thus, blackbody radiation is a natural conse-
quence of charged particle interaction in a closed system. This also suggests
that the quantum behavior we observe in atoms is a consequence of the same
mechanism.

5 Implications and Applications

5.1 Newtonian Clock

A fundamental conclusion of the last two sections is that, for any system of
particles there always exists a unique observer-independent measure of time.
One consequence is the following theorem, which we first proved in [28].

Theorem 5.1. Suppose that the observable universe is homogenous, isotropic
and representable in the sense that it is independent of our observed portion
of the universe. Then the universe has a unique clock that is available to all
observers.
Proof Under the stated conditions H/Mc2 is constant for our observed portion
of the universe. Since this property is observer independent, every observer
will obtain the same ratio. Thus, for any two observer’s

dτ =
Mc2

H
dt =

Mc2

H
dt′, ⇒ t = t′ ≡ τN .

It follows that τN is uniquely defined.

Theorem 5.2. Peebles Suppose all observers choose a frame that is at
rest with respect to the 2.7 ◦K microwave background radiation, then all laws
will be invariant and not just covariant with respect to Lorentz transformations.

In the study of physical systems one may not be interested in the behavior
of the global system, but in some subsystem. The cluster decomposition prop-
erty is a requirement of any theory purporting to represent the real world. This
is the property that, if any two or more subsystems become widely separated,
then they may can treated as independent systems (clusters). We prove the
following in [28].

Theorem 5.3 Suppose the system of particles can be decomposed into two
or more clusters. Then there exists a unique (local) clock and corresponding
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canonical Hamiltonian for each cluster.

5.2 The Big Bang

The current cosmological model for the universe assumes that it began around
13.8 billion years ago from a singularity (hot big bang). There was no before,
at one moment there was nothing and at the next moment the singularity
appeared. The theory only proposes to explain the time after this event when
the singularity begin to expand to the universe we see today. It is not a
complete theory in the normal sense of a physical model. The model leaves
the following questions unanswered:

1. How is it that the universe appears to be so close to flat and uniform on
a scale of almost 10 billion light years (flatness problem)?

2. How is it that regions in causally disconnected parts of space and time
appear to have the same physical properties (horizon problem)?

3. How is it that we see matter and have not detected equal amounts of
antimatter?

4. How does the universe begin without conservation of energy (second law
of thermodynamics)?

5. How does the universe begin without conservation of linear and angular
momentum?

The theory of (cosmic ) inflation was introduced by A. Guth in 1981 [29] to pro-
vide a solution to the first two problems. In our view, the last three questions
are equally (if not more) important. Inflation assumes that, immediately after
the big bang, a superluminal (exponential) expansion rate happened, so that
the space between any two points expanded faster than (our assumed) speed
of light could travel between them. This expansion solved the flatness problem
and the horizon problem. The observable universe inflated from a very small
volume and quickly became flat homogeneous and isotropic. The inflation hy-
pothesis is a solution to the first two problems, but lacking any evidence for
a field that drives it, the theory has many critics and other approaches have
been suggested (see [30, 31, 32, 33] and references).

At a minimum, any model of the beginning should be consistent with our
current (experimentally obtained) understanding about the laws of the uni-
verse:

• Whenever an antiparticle is observed in experiment, we always find that
it is also accompanied by a particle.
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• Whenever an interaction is observed in experiment, a complete analysis
always shows that energy is conserved.

• Whenever an interaction is observed in experiment, a complete analysis
always shows that linear momentum and angular momentum are con-
served.

There are no compelling reasons for these known laws of physics to be violated
for the big bang model to be true. In this section, we suggest a slight alteration
of the beginning, which brings the big bang model in line with our experimental
understanding of the universe without the need for inflation, (unknown or
observed) new particles, fields, dark energy or other hypothetical devices.

We first revisit our conceptual view of the real numbers and their repre-
sentation. Recall that a field is a set A that has two binary operations ⊕ and
� that satisfies all our common experience with real numbers. Formally:
Definition 5.4. The real numbers is a triplet (R,+, ·), which is a field, with
0 as the additive identity (i.e., a + 0 = a for all a ∈ R) and 1 as the multi-
plicative identity (i.e., a · 1 = a for all a ∈ R).

This structure was designed by mathematicians without regard to its possi-
ble use in physics. As a consequence the structural asymmetry went unnoticed
and physicists accepted it without investigation until Santilli [34] defined the
isodual number field. His definition is more general. For our purpose, we only
need the following.

Definition 5.5. The isodual real numbers (R̂,+, ∗) is a field, with 0 = 0̂
as the additive identity (i.e., â+ 0̂ = â for all −a = â ∈ R̂) and 1̂ = −1 as the
multiplicative identity (i.e., â ∗ 1̂ = (−a)(−1)(−1) = â for all â ∈ R̂).
We note that we can obtain the isodual of any physical quantity Â from the
equation A+ Â = 0.

Example 5.6. A simple example from quantum theory is the following: the
evolution of particle is defined on a Hilbert space H over the complex numbers
C = R+ iR, with Hamiltonian H by the equation:

i~
∂ψ

∂t
= Hψ.

The conjugate equation is:

−i~∂ψ
∗

∂t
= Hψ∗.

If we use Ĉ as our number field, we can write the above equation as:

î ∗ ~̂ ∗ ∂ψ
∗

∂t̂
= Ĥ ∗ ψ∗
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Thus, this approach allows us to naturally view anti-particles as time reversed
particles, with their evolution defined on H∗ over Ĉ.

Remark 5.7 Santilli [34] has shown that charge conjugation and isodual-
lity are equivalent for the particle-antiparticle symmetry operation. However,
isoduallity allows us to view the existence of antimatter and charge conserva-
tion as fundamental aspects of the universe, while also explaining why large
amounts of antimatter are not found in this universe.

In the diagram below, we provide a new picture of the big bang beginning.
In this case, two universes are created, one going forward in τN and one going
backward in τN (Newtonian time), relative to our reality.

Our solution follows the suggestions of Moffet [34]. His varying speed of
light hypothesis is consistent with the use of b =

√
U2 + c2 for the fine tuning

mechanism, with U sufficiently large. After equilibrium is reached, U can slow
down to zero, while b reduces to c. This would explain the flatness and horizon
problems, but requires no new particles, fields, dark energy or other devices.

τ̂N←− ↖
↙

τN=0

| ↗
↘

τN−→ .

This view has the following advantages: we obtain

1. a natural arrow for time, with a zero initial point.

2. a natural explanation for the lack of antimatter in this universe.

3. antiparticles as particles moving backward in (Newtonian) proper time.

4. conservation of energy, linear and angular momentum.

It is important to be clear that our assumption does not imply that there are
any other symmetries or necessary similarities between the two universes.

After writing this review, we came across a paper by Nielsen and Ninomiya
[43], which also suggests a time reversed theory as an approach to saving the
second law of thermodynamics.

5.2.1 The Problem of Origin

The possibility of other causes for the 2.7◦K mbr have been suggested in the
past. In a recent series of papers, Ares de Parga and co-workers [44, 45, 46,
47, 48, 49, 50] have developed a complete and consistent theory of relativistic
thermodynamics. They have extended it to both classical statistical mechanics
and quantum statistical mechanics and obtained the particle number density
due to Henry [51]. As an application, they have studied the superposition of
the radiation distributions from a number of blackbodies radiating at different
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temperatures and were able to reproduce the present 2.7◦K mbr. This led
them to suggest that the 2.7◦K mbr may have a galactic origin. In [48] they
proposed a feasible experiment that will determine if such a cause is possible.

6 Conclusion

In this paper, we have discussed the only possible direct approaches to a
relativistic theory for two or more particles. These approaches are: that of
Minkowski, that of Einstein and that of the recently discovered dual to the
latter. We provide a table below, comparing the three approaches. The one
supported by the Minkowski postulate is the least complete of the three. The
Einstein and the dual version are both physically and mathematically consis-
tent for any number of particles and have mathematically equivalent equations
of motion. However, the particle wave equations for their fields are not math-
ematically equivalent. The dual version contains an additional longitudinal
radiation term that appears instantaneously with acceleration and does not
depend on the nature of the force. This version predicts photons are particles
with nonzero effective dynamical mass. It further predicts that radiation from
a betatron of any frequency will not produce photoelectrons. At the global
level, the Wheeler-Feynman absorption hypothesis is a corollary of both the
Einstein and dual theories, without advanced potentials or any assumptions
about the structure of the source. This also proves the Wheeler-Feynman con-
jecture that action at a distance and field theory are complimentary aspects
of each other.

By introducing a symmetric view of the number line, we have modified the
standard version of the big bang to provide an arrow for time, explain the lack
antimatter in the universe, explain the flatness problem, the horizon problem,
provide conservation of time, energy, linear and angular momentum, without
inflation or any additional hypothesis. In addition, we predict that matter and
antimatter are gravitationally repulsive.

One important conclusion from this investigation is that the physical in-
terpretation of experimental observations of distant events is not unique. In
order to make this last statement explicit, recall that many measurements are
based on the dimensionless ratio β = w/c. However, w/c ≡ u/b, so we see
that measurements of velocity and the speed of light for distant objects are
totally ambiguous. For example, ([35], pp. 556-561), the red shift factor z,
used to determined distances in astronomy, is defined by:

z =

√
1 + w

c

1− w
c

− 1 ≡

√
1 + u

b

1− u
b

− 1.

We thus conclude that distant objects may have much higher velocities and
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light may have a velocities higher than c, without any contradiction.

7 Table

For n > 1: Minkowski Einstein Dual

reference frame inertial inertial inertial

speed of light independent of source independent of source depends on source

space-time dependent variables independent variables independent variables

transfomation group linear Lorentz linear Lorentz nonlinear Lorentz

cluster property non-existent possible theory general theory

many-particle non-existent possible theory general theory

radiation reaction highly problematic partial theory complete theory

quantum theory non-existent follows from theory follows from theory

arrow for time non-existent follows from theory follows from theory

universal clock non-existent follows from theory follows from theory

big bang possible theory possible theory possible theory

theory of gravity possible theory* possible theory** possible theory**
*The general theory of relativity. **The program suggested by Dirac (see quotes before section 1.2).
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Birkhäuser, Boston, 1999.

[9] W. Perret and G. B. Jeffery (translators, with additional notes by A.
Sommerfeld), The Principle of Relativity by H. A. Lorentz, A. Einstein,
H. Minkowski and H. Weyl, Dover, New York, 1952.
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