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Summary 

This paper recaps our electron model – including our classical explanation of the anomalous magnetic 

moment – and slightly revises our interpretation of the elementary wavefunction that describes it. We 

also add some material from previous papers to combine all of the aspects of our electron model in one 

single paper. 
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Introduction: basic concepts 
The electromagnetic force F on a charge q is equal to F = q·(E + vB). This force is the sum of two 

(orthogonal) component vectors: q·E and q·vB.  

The velocity vector v in the equation shows both of these two component force vectors depend on our 

frame of reference. Hence, we should think of the separation of the electromagnetic force into an 

‘electric’ (or electrostatic) and a ‘magnetic’ force component as being somewhat artificial: the 

electromagnetic force is (very) real – because it determines the motion of the charge – but our cutting-

up of it in two separate components depends on our frame of reference and is, therefore, (very) 

relative.  

At this point, we should probably also quickly note that both amateur as well as professional physicists 

often tend to neglect the magnetic force in their analysis because the magnitude of the magnetic field – 

and, therefore, of the force – is 1/c times that of the electric field or force. Hence, they often think of the 

magnetic force as a tiny – and, therefore, negligible – fraction of the electric force. That’s a huge 

mistake, which becomes very obvious when using natural time and distance units so as to ensure 

Nature’s constant is set to unity (c = 1). We will come back to this. 

[…] 

The remarks above sound rather trivial. Somewhat less easy to appreciate, perhaps, is that the concept 

of a force combines two different ideas. One is the idea of inertia: inertia is a measure of the resistance 

to a change of the state of motion. This measure is what we commonly refer to as mass. We think of it 

as a scalar (non-directional) quantity1 and it is reflected in the relativistically correct expression of 

Newton’s Law: 

𝐅 = m𝑣 ∙ 𝒂 =
d(m𝑣 ∙ 𝒗)

d𝑡
=
d𝐩

d𝑡
 

m𝑣 = γ ∙ m0 =
1

√1 − 𝑣2 𝑐2⁄
∙ m0 

 
1 This may sound even more trivial than our introductory remarks but we may usefully remind ourselves that 
Albert Einstein, in his seminal 1905 article introducing the principle of relativity, did not hesitate to make a 
distinction between the “longitudinal” and “transverse” mass of a moving charge. We will come back to this 
because, at one point in the development of our argument, we will actually make use of that distinction ourselves. 
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The second idea is the idea of a charge: the electromagnetic force acts on an ‘electric’ charge.2 

Maxwell’s equations describe how this happens⎯not approximately, but exactly.  

Maxwell’s equations also describe how – in the absence of a charge to act on – an electromagnetic wave 

propagates in space and, thereby, changes the fields. The latter idea – the idea of a field, traveling or 

static – is very deep⎯as fundamental as the idea of a charge, or the idea of a force itself. Indeed, the 

equations below – which combine the idea of inertia to motion and the electromagnetic force law – 

show that the electric and magnetic force are the product of (1) the electric and magnetic field 

respectively and (2) the charge (which is usually measured in terms of the historical Coulomb unit rather 

than in terms of the elementary charge3): 

d

d𝑡
[

m0 ∙ 𝒗

√1 − 𝑣2 𝑐2⁄
] = 𝑭 = 𝑭𝑬 + 𝑭𝑩 

= q𝑬 + q𝒗𝑩 = q(𝑬 +  𝒗𝑩) 

[…] 

As mentioned above, the magnitude of the magnetic field – and, therefore, of the force – is 1/c times 

that of the electric field or force. Because we use the historical meter and second unit for distance and 

time respectively, we think of the magnetic force being a fraction of the electric force only. That distorts 

our picture of what might be going at the smallest scale. Both the meter as well as the second are very 

large units at the sub-atomic scale. What we refer to as the clock speed4 of an electron (which we 

denote as the cycle time T), for example, is expressed in units of 10−21 seconds. Very small, indeed. 

Especially when compared to the unit we use to describe the size of an electron5, which is expressed in 

pico-meter (10−12 m): 10−12 is tiny too, but it is much larger than 10−21.  

[..] 

We can combine the C = hc/E and T = 1/f = h/E equations to get the following fundamental expression 

for what – in our not-so-humble view – an electron actually is: 

 
2 Other forces – not acting on a charge – may be thought of as non-elementary or derived forces. Think of friction 

or a contact force between macroscopic collections of matter. There is no such thing as a ‘magnetic’ charge⎯but 
that’s because the term ‘electric charge’ was there, historically, and it hasn’t changed: a linguistic purist looking at 
the language of physics would probably suggest renaming electric charge as electromagnetic charge. 
3 The elementary charge is the charge of the proton or the electron. They only differ by a plus or minus sign. We 
find it rather weird that no one seems to have attempted to introduce a system of natural units based on the qe = 1 
equation. For an overview of systems of natural units, we refer the reader to the rather decent Wikipedia article 
on them (https://en.wikipedia.org/wiki/Natural_units#Systems_of_natural_units).  
4 We will elaborate this concept later but, as for now, you should think of it as the cycle time which – using the 

energy equivalent of the mass of an electron – is equal to: T = 1/f = h/E  8.110−21 seconds (we use the energy 
equivalent of the mass of an electron here   
5 We may refer to both the Compton wavelength (C = hc/E) or, alternatively, the Compton radius (rC = ħc/E), which 
– in our not-so-humble opinion – both define the effective space of interference between an electron and the 
pointlike photons that scatter of it, elastically or non-elastically (we agree with the interpretation of Thomson 
scattering as the lower-limit of Compton scattering). The difference between the two measures is just a 2π factor. 
This 2π factor has a rather obvious meaning in our interpretation of what an electron actually is. 

https://en.wikipedia.org/wiki/Natural_units#Systems_of_natural_units
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𝑐 =
λC
T
=  
λC
T
·
2π

2π
= 𝑎 ∙ ω (𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑚𝑜𝑑𝑒𝑙) 

The equation above may look trivial (the wavelength is the product of cycle time and velocity) but it is 

not: we are not talking the velocity of the electromagnetic wave here⎯read: the (absolute) velocity of a 

photon traveling through space. We think of c as a tangential velocity of a pointlike charge zittering 

around some center here⎯and the energy in this Zitterbewegung (which – following Hestenes and 

others – we will abbreviate as zbw) is the equivalent mass of the electron. The c = a·ω is, therefore, 

nothing but the formula for the tangential velocity of the pointlike zbw charge.  

To put it differently, the formula above sums up our electron model⎯reflecting the structure of what we 

think an electron actually is. The equation is, therefore, very different from the relation we get from the 

E = h·f Planck-Einstein relation and the more general  = c·T relation for a photon. 

The fundamental difference between the C = c·T for an electron and the  = c·T relation for a photon 

may be related to the fundamental difference between (charged) particles and light (photons): photons 

do not carry charge. They are, therefore, oscillating fields that travel at the speed of light. In contrast, a 

charge must have some tiny non-zero mass so as to make Newton’s force law meaningful.6 Hence, 

instead of a pointlike photon traveling through space, we have a charge – with a small but significant 

non-zero rest mass – in an orbital motion around a center. The tangential velocity v is, therefore, very 

near but not quite equal to c. The c = C/T = a·ω relation is, therefore, approximate only. We will come 

back to this. 

As part of the prolegomena to this paper, we briefly want to walk over some basic oscillator math. 

The metaphor of the two-dimensional oscillator 
We said a force acts on a charge. A harmonic oscillator involves a different concept of force: it involves 

the idea of a restoring force⎯a force that wants to bring something back to a zero position. This idea is 

very different from the idea of a force acting on some charge: we could relate it to the idea of the 

random walk (as time goes by, the likelihood that an object moves much further out goes down), but 

that is not the topic of this paper.7  

If the restoring force is proportional to the distance x from the zero position (x = 0), then we have what 

is, in physics, referred to as a harmonic oscillation. We write: 

F =  
dp

d𝑡
= −k𝑥 

As you can see, k is the factor of proportionality and, as such, it may be said to define the force: for a 

simple mass-spring system, we will refer to it as the stiffness or – the opposite idea – the elasticity of the 

 
6 When m0 is equal to zero, and v is equal to c, we get a division of zero by zero: the mass mv = mc = γm0 is, 
therefore, undefined. We will come back to this in the next section(s). 
7 It is interesting that one of Einstein’s seminal 1905 papers was on the Brownian motion, which is – essentially – a 
motion following the ‘random walk’ pattern in statistics. If our spacetime would, somehow, be a physical 
spacetime (as opposed to our mathematical Cartesian space and the idea of time as some universal clock), then we 
should probably relate the idea of a ‘quantized’ (physical) spacetime to the ‘mathematical’ (statistical) idea of a 
‘random walk’.  
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spring.8 Also note that this equation is relativistically correct if we use the relativistically correct formula 

for the momentum, which is the one we introduced already: p = mvv = γm0v. Note that we don’t use 

boldface here: F and p are scalars⎯magnitudes of what are actually vector quantities: F and p.  

Let’s move forward ! A harmonic oscillation will have an amplitude, which we will write as a: it is just the 

largest possible value of the variable x. If we know the amplitude, we can write the motion of our object 

as: 

x = a·cos(ω0·t + Δ) 

The Δ here is a phase factor: it defines the t = 0 point. The ω0 is the angular frequency of our oscillator. 

The subscript is there because we don’t force the oscillation: ω0 can thus be referred to as the natural or 

fundamental frequency. For a non-relativistic mass-spring system, one can show it is equal to: 

ω0 = √
k

m
 

This formula shows the fundamental frequency of a non-relativistic oscillator does not depend on the 

amplitude. We can – theoretically, at least9 – imagine that the velocity might become very significant. In 

that case, we should use the relativistic mass concept and the formula above is no longer valid. One can 

show that the frequency – and, therefore, the period – of a relativistic oscillator will depend on the 

amplitude.10 However, let us first have some fun with some non-relativistic oscillator. In fact, we want 

you to imagine an oscillation in two dimensions: up and down and sideways at the same time. The 

easiest metaphor to think of here is, perhaps, a V-2 engine with the pistons at a 90-degree angle, as 

illustrated below. 

 

Figure 1: The V-2 metaphor11 

 
8 Strictly speaking, we should refer the term elasticity for the ability of some material to return to its original shape 
after some load or stress has been applied to it. However, at some point in this paper, we will want to vaguely 
discuss the idea of elastic spacetime. The only reason for including the word is, therefore, vanity. The concept of 
elastic spacetime sounds much fancier than the opposite concept: the stiffness of spacetime. 
9 Any actual spring would break long before the mass on it reaches relativistic speeds.  
10 We will let you google this: there are too many possible references here. We also refer to basic textbooks for 
other obvious formulas (e.g. potential or kinetic energy calculations) in this section.  
11 The illustration is from a January 2011 article in the Car and Driver magazine, titled: The Physics of Engine 
Cylinder-Bank Angles. See: https://www.caranddriver.com/features/a15126436/the-physics-of-engine-cylinder-
bank-angles-feature/. The origin of this metaphor is, effectively, rather mundane: I was thinking about the relative 
efficiency of a Ducati versus a Harley-Davidson engines: the Ducati V-2 engine is more efficient because of the 90-
degree angle between the pistons. The Harley-Davidson V-2 engine has a more characteristic sound – an irregular 

https://www.caranddriver.com/features/a15126436/the-physics-of-engine-cylinder-bank-angles-feature/
https://www.caranddriver.com/features/a15126436/the-physics-of-engine-cylinder-bank-angles-feature/
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The 90° angle makes it possible to perfectly balance the counterweight and the pistons, thereby 

ensuring smooth travel always. If we wouldn’t have any friction or heat loss – not only from the 

cylinders but also from the internal motion of the gas – we would have a perpetuum mobile here. 

Indeed, with permanently closed valves, the air inside the cylinder compresses and decompresses as the 

pistons move up and down. It, therefore, provides a restoring force.  

Hence, we have an oscillator here, and it will store potential energy⎯just like a spring. In fact, the 

motion of the pistons will also reflect that of a mass on a spring: it is described by a sinusoidal function, 

with the zero point at the center of each cylinder.12 We can, therefore, think of the moving pistons as 

harmonic oscillators, just like mechanical springs. Despite the obvious shortcomings of this metaphorical 

thinking13, the reader will – hopefully – appreciate the idea. Because of the 90° angle between the two 

oscillators, Δ would be 0 for one and –π/2 for the other. Hence, if the motion of one oscillator is given by 

x = a·cos(ω·t), then the motion of the other is given by y = a·cos(ω·t – π/2) = a·sin(ω·t). It is also easy to 

calculate the kinetic (T) and potential energy (U) of one oscillator and then sum them to get the total 

energy of one oscillator: 

T = m·v2/2 = (1/2)·m·ω2·a2·sin2(ω·t + Δ) 

U = k·x2/2 = (1/2)·k·a2·cos2(ω·t + Δ) 

E = T + U = (1/2)·m·ω2·a2·[sin2(ω·t + Δ) + cos2(ω·t + Δ)] = m·a2·ω2/2 

These energy formulas are illustrated below.  

Figure 2: Kinetic (K) and potential energy (U) of an oscillator14

 

 
sound, actually – because the cylinder bank angle is 45°. Riders love the Harley-Davidson sound, but speed records 
are/were set on Ducati motorbikes. 
12 The sideways motion of the rod connecting the piston to the crankshaft will result in not-so-perfect sinusoidal 

functions⎯but we hope the reader gets the idea. 
13 Apart from friction, we should think of heat – and, therefore, energy – loss as the gas is being compressed and 
then allowed to expand again. 
14 You will find this diagram in many texts, but we took this one from the https://phys.libretexts.org/ site—which is 
a great hub for open-access textbooks.  

https://phys.libretexts.org/
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We can now think of two oscillators in a 90-degree angle working together.15 Think of the pistons of our 

V-2 engine metaphor turning the same crankshaft around. We can show it is a perpetuum mobile by 

doing some very simple math. To make it even easier, we will briefly assume that k = m·ω2 and a are 

both equal to 1.16 The motion of our first oscillator is given by the cos(ω·t) = cosθ function (so the phase 

varies with time only: θ = ω·t). Its kinetic energy will be equal to sin2θ. Hence, the 

(instantaneous) change in kinetic energy at any point in time will be equal to: 

d(sin2θ)/dθ = 2·sinθ·d(sinθ)/dθ = 2·sinθ·cosθ 

Let us look at the second oscillator now. Just think of the second piston going up and down in the V-2 

engine. Its motion is given by the sinθ function, which is equal to cos(θ−π /2). Hence, its kinetic energy is 

equal to sin2(θ−π /2), and how it changes – as a function of θ – will be equal to: 

2·sin(θ−π /2)·cos(θ−π /2) = −2·cosθ·sinθ = −2·sinθ·cosθ 

We have our perpetuum mobile! While transferring kinetic energy from one piston to the other, the 

crankshaft will rotate with a constant angular velocity: linear motion becomes circular motion, and vice 

versa, and the total energy that is stored in the system is T + U = ma2ω2.   

We have a great metaphor here. Somehow, in this beautiful interplay between linear and circular 

motion, energy is borrowed from one place and then returns to the other, cycle after cycle.17  

The ring current model of an electron (1) 
The ring current model of an electron uses the same equations. The motion of the pointlike 

Zitterbewegung charge is described by Euler’s function. Indeed, the origin of both the force and 

momentum vectors in Figure 1 is the position vector r, which we can write using Euler’s function, which 

is nothing but the elementary wavefunction: 

r = a·ei = x + i·y = a·cos(θ) + i·a·sin(θ) = a·cos(ωt) + i·a·sin(ωt) = (x, y) 

 

Figure 3: The ring current (or Zitterbewegung) model of an electron 

 
15 Working together⎯somehow, obviously. We have no idea as to how – in the actual quantum-mechanical world 
that we seem to be living in – this ‘mechanism’ might work in practice!  
16 Think of it as a normalization of units. There is no trick here. You can re-do the calculations for a  1 and k = 

m·ω2  1. 
17 The idea of ‘borrowing energy from space’ is very deep and fundamental. We’ve thought long and hard about it, 

but this metaphor is all we can offer⎯for the time being, that is. 
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The reader may not be familiar with the ring current or Zitterbewegung model. Oliver Consa (2018) 

offers a good overview of its history.18 It was first proposed in 1915, by the British physicist and chemist 

Alfred Lauck Parson⎯but it got a lot more attention when Schrödinger stumbled upon it when exploring 

solutions to Dirac’s wave equation for a free electron. Schrödinger shared the 1933 Nobel Prize for 

Physics with Paul Dirac for “the discovery of new productive forms of atomic theory”, and it is worth 

quoting Dirac’s summary of Schrödinger’s discovery: 

“The variables give rise to some rather unexpected phenomena concerning the motion of the 

electron. These have been fully worked out by Schrödinger. It is found that an electron which 

seems to us to be moving slowly, must actually have a very high frequency oscillatory motion of 

small amplitude superposed on the regular motion which appears to us. As a result of this 

oscillatory motion, the velocity of the electron at any time equals the velocity of light. This is a 

prediction which cannot be directly verified by experiment, since the frequency of the 

oscillatory motion is so high and its amplitude is so small. But one must believe in this 

consequence of the theory, since other consequences of the theory which are inseparably 

bound up with this one, such as the law of scattering of light by an electron, are confirmed by 

experiment.” (Paul A.M. Dirac, Theory of Electrons and Positrons, Nobel Lecture, December 12, 

1933) 

We know the wavefunction consist of a sine and a cosine: the cosine is the real component, and the sine 

is the imaginary component. Could they both be real? If so, each of the two oscillations should 

effectively account for half of the total energy of the electron.19 

Of course, we cannot answer the question as to what is real or not.20 What we do know is that the 

description of an electron in terms of a two-dimensional oscillation should be equivalent to the 

description of what keeps the pointlike Zitterbewegung charge going, and that is – as far as we know21 – 

the electromagnetic force resulting from the current. We will come to that now. 

The ring current model of an electron (2) 
The idea of current rings – or, more generally, of perpetual currents – is all but outlandish: we can 

observe them, not at the nano- or picometer scale but at the macroscopic level! To be precise, when 

temperatures are low enough to cause superconducting materials to become superconducting, we can 

easily create a perpetual electric current—or a persistent current, I should say, as that is what it is 

usually referred to. The principle is illustrated and described below.  

 
18 See: Oliver Consa, Helical Solenoid Model of the Electron (http://www.ptep-online.com/2018/PP-53-06.PDF).  
19 Of course, the reader may want to know how we think of the motion of non-free electrons⎯electron orbitals, 
most notably. We refer our reader to our manuscript (https://vixra.org/abs/1901.0105), which is based on the 
notion of layers of motion. 
20 Only God can, we guess. Or – who knows? – perhaps it’s just an irrelevant question. These may be two 
equivalent statements from a philosophical/epistemological point of view. 
21 Because of the relativity of electric and magnetic forces, we are – for the time being – not willing to accept our 
two-dimensional oscillation would be just some mathematical equivalent to a description in terms of 
electromagnetic fields and forces. We still feel there may be something more real – something more fundamental 
– to our description. We will come back to this. 

http://www.ptep-online.com/2018/PP-53-06.PDF
https://vixra.org/abs/1901.0105
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Figure 4: A perpetual current in a superconducting ring22  

If we have some magnetic field – let us denote it by B0, as in the left-hand side (a) of the illustration 

above – going through a ring made of superconducting material, we can then cool the ring below the 

critical temperature and switch off the field. Lenz’s law – which is nothing but a consequence of 

Faradays’ law of induction – then tells us the change in the magnetic field will induce an electromotive 

force. Hence, we get an induced electric current, and its direction and magnitude will be such that the 

magnetic flux it generates will compensate for the flux change due to the change in the applied field. 

This gives rise to Hestenes’ interpretation of the zbw model of an electron, which he summarizes as 

follows:  

“The electron is nature's most fundamental superconducting current loop. Electron spin 

designates the orientation of the loop in space. The electron loop is a superconducting LC 

circuit. The mass of the electron is the energy in the electron's electromagnetic field. Half of it is 

magnetic potential energy and half is kinetic.”23 

This sounds good but it raises an obvious question: where exactly is the energy? Our answer to this 

question is much more precise than Hestenes: we think half of the energy is in the motion of the zbw 

charge, and the other half is, effectively, in the electromagnetic field which perpetuates the motion. We, 

therefore, introduce the concept of the effective mass (or, what amounts to the same, its energy 

equivalent) of the zbw charge as it whizzes around its center of motion. We write it as mγ and we will – 

in later section(s) of this paper – show why it is, effectively, equal to half of the electron mass24: 

mγ = me/2 

It is a very interesting equation because the concept of effective mass also pops up very naturally in the 

quantum-mechanical analysis of the linear motion of electrons. Feynman, for example, gets the 

equation out of a quantum-mechanical analysis of how an electron could move along a line of atoms in a 

 
22 Source: Open University, Superconductivity, https://www.open.edu/openlearn/science-maths-
technology/engineering-and-technology/engineering/superconductivity/content-section-2.2#. The reader who is 
interested in the detailed equations proving this fact will find them there. 
23 Email from Dr. David Hestenes to the author dated 17 March 2019. 
24 Using Einstein’s mass-energy equivalence relation we can, of course, re-write everything in terms of energies 
rather than masses. 

https://www.open.edu/openlearn/science-maths-technology/engineering-and-technology/engineering/superconductivity/content-section-2.2
https://www.open.edu/openlearn/science-maths-technology/engineering-and-technology/engineering/superconductivity/content-section-2.2
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crystal lattice25. However, his interpretation of it is rather fuzzy: he treats it as just one of those weird 

quantum-mechanical (half-)‘truths’ (like the Uncertainty Principle or other ‘derived laws’ in quantum 

mechanics) and, therefore, limits his comments to a rather confusing connection to the non-relativistic 

kinetic energy formula (E = mv2/2).  

In contrast, we will show (or hope to show) – in our derivations in later section(s) – that the formula is 

actually relativistically correct. 

However, before we go there, we should first do simpler stuff: we will re-visit the two-dimensional 

oscillator model but using relativistically correct equations this time around. We will do that now but – 

as we know we have been asking the reader for an extraordinary amount of patience and dedication 

here (we are already at (almost) 10 pages but have added little or nothing in terms of understanding 

what might actually “be the case”26), we will already mention the results of our analysis. 

The ring current model implements Wheeler’s idea of mass without mass: the rest mass of the electron 

is the equivalent mass of the energy of the Zitterbewegung of the pointlike charge.  

Magic? No. We will get these results from rather plain calculations using the actual mass and the actual 

magnetic moment of the electron, as measured in zillions of experiments. Some more patience, please! 

The relativistic oscillator 
If the velocity of our mass on a spring – on two springs, really – becomes a sizable fraction of the speed 

of light, then we can no longer treat the mass as a constant factor: it will vary with velocity, and its 

variation is given by the Lorentz factor (γ). We already wrote the relativistically correct force equation 

for one oscillator:  

F = dp/dt = F = –kx with p = mvv = γm0v 

The mv = γm0 varies with speed because γ varies with speed: 

γ =
1

√1 − 𝑣2 𝑐2⁄
=

1

√1 − β2
=
dt

dτ
 

What’s the dt/dτ here? We do not need this expression for what follows but we quickly wanted to 

remind the reader that we are, effectively, using relativistically correct equations and that we should, 

therefore, distinguish between the time in our reference frame (t) – aka as the coordinate time – and 

the time in the reference frame of the object itself (τ) – which is known as the proper time.  

Let us now get on with the equation above. It involves a derivative and it is, therefore, a differential 

equation. It is a simple equation but, as simple as it is, we are not going to solve it⎯because we don’t 

have to. We will just derive an energy conservation equation from it. We do so by multiplying both sides 

with v = dx/dt. I am skipping a few steps (we are not going to do all of the work for you) but you should 

be able to verify the following: 

 
25 See: Feynman’s Lectures, Vol. III, Chapter 16: The Dependence of Amplitudes on Position 
(https://www.feynmanlectures.caltech.edu/III_16.html). 
26 We use one of Wittgenstein’s expressions to refer to ‘reality’ here. 

https://www.feynmanlectures.caltech.edu/III_16.html
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𝑣
d(γm0𝑣)

dt
= −kx𝑣 ⟺

d(m𝑐2)

dt
= −

d

dt
[
1

2
k𝑥2] ⟺ 

dE

dt
=
d

dt
[
1

2
k𝑥2 +m𝑐2] = 0 

So what are the energy concepts here? We recognize the potential energy: it is the same kx2/2 formula 

we got for the non-relativistic oscillator. No surprises: potential energy depends on position only, not on 

velocity, and there is nothing relative about position.  

However, the (½)m0v2 term that we would get when using the non-relativistic formulation of Newton’s 

Law – which captures the kinetic energy – is now replaced by the mc2 = γm0c2 term. You should note this 

mc2 = γm0c2 is not a constant: it varies with time – just like kx2/2 – because of the use of the relativistic 

mass concept.   

So how can we calculate the energy? The total energy is constant at any point, so we may equate x to 0 

and calculate the energy there. At that point, the potential energy will be zero and, crossing the x = 0 

point, our pointlike charge will also reach the speed of light. Using the mγ = mc = me/2 equation which – 

admittedly – we still need to motivate, we write this:  

E =
1

2
k ∙ 02 +m𝑥 = 0 ∙ 𝑐

2 = mγ  =
me𝑐

2

2
  

We can now add the energies in both oscillators so as to arrive at the total energy of the electron: 

E = mec2 

It is a wonderful result: we think it actually amounts to a rather elegant and intuitive common-sense 

explanation of Einstein’s mass-energy equivalence relation. However, we will leave it to the reader to 

judge that statement. In terms of progress on this paper, I would say we are now – finally! – ready to get 

into the meat of the matter. 
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The ring current model of an electron (3) 
We mentioned that we think of the ring current model as an implementation of Wheeler’s idea of mass 

without mass: the rest mass of the electron is the equivalent mass of the energy of the Zitterbewegung 

of the pointlike charge.27 We effectively think of the electron as consisting of a pointlike28 charge which 

moves about some center at lightspeed. 

However, unlike Hestenes’ or other ring current model, we will incorporate the reality of the anomalous 

magnetic moment right from the start by assuming that the pointlike charge has some non-zero physical 

(spatial) dimension. This allows us to distinguish an effective radius (r) and an effective speed (v) which is 

nearly but not quite equal to the theoretical radius (a) and the theoretical speed (c). This should also 

address the following inconsistency or difficulty in interpreting the idea of a zbw charge moving about at 

the speed of light. 

Let us copy Figure 3 once again: 

 

The momentum (p) of the zbw charge is relativistic momentum, of course. Hence, its magnitude p = p 

is equal to: 

p = mc = γm0c 

Now, it is easy to see that this formula becomes meaningless when the Lorentz factor (γ) goes to infinity 

as the velocity goes to c. To put it differently – but it amounts to saying the same – we should not 

assume that the pointlike Zitterbewegung charge has zero rest mass. We must, therefore, conclude that 

m0 must be close to zero but not exactly zero. We will calculate the value for m0 in the next section(s). 

Here, we only want to illustrate the problem by the following easy graph, which shows what happens 

with the p = mvv = γm0v function for  m0 = 0.001 for the relative velocity β = v/c ranging between 0 and 

1.29 

 
27 We use the terms ring current model and Zitterbewegung model interchangeably.  
28 Pointlike does not necessarily imply that it has no spatial dimension whatsoever. On the contrary: in our 
previous papers, we do associate the classical electron radius with the zbw charge. 
29 We used the online desmos.com graphing tool to produce the graph. 
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Figure 5: p = mvv = γm0v for m0 → 0 

 

It is quite enlightening: p is (very close to) zero for v/c going from 0 to (very close to) 1 but then 

becomes undefined at v/c = 1 itself. The idea of the momentum of an object with zero rest mass is, 

therefore, not an easy one.30  

The electron anomaly and the rest mass of the zbw charge 
We do not think of the anomaly as an anomaly. We see an immediate perfectly rational explanation for 

it: we think the zbw charge has some very tiny (but non-zero) spatial dimension. As a result, we should 

distinguish between its effective and theoretical (tangential) velocity. The effective velocity – which we 

will denote as v – is very near but not exactly equal to c. Likewise, we should distinguish between an 

effective radius – which we will denote as r – versus its theoretical radius a = ħ/mc. Let us get through 

the logic here. 

We should, first and foremost, note the crucial assumption here, which is that we think the accuracy of 

the Planck-Einstein relation is preserved, always! We, therefore, think we should not only distinguish 

between a theoretical and an actual (i.e. experimentally determined) magnetic moment but also 

between a theoretical and an actual radius of the ring current. To be precise, based on the measured 

value of the magnetic moment (i.e. the CODATA value), we can calculate the anomaly of the radius of 

the presumed ring current. Indeed, the frequency is, of course, the velocity of the charge divided by the 

circumference of the loop. Because we assume the velocity of our charge is equal to c, we get the 

following radius value: 

μ = Iπ𝑎2 = qe𝑓π𝑎
2 = qe

𝑐

2π𝑎
π𝑎2 =

qe𝑐

2
𝑎 ⟺ 𝑎 =

2μ

qe𝑐
≈ 0.38666 pm 

We should note that we get a value that is slightly different from the theoretical a = c/ω = ħ/mc radius 

which was equal to 0.38616… pm. We, therefore, have an anomaly, indeed! We can confirm this 

anomaly by re-doing this calculation using the Planck-Einstein relation to calculate the frequency:  

μ = Iπ𝑎2 = qe𝑓π𝑎
2 =

qeω𝑎
2

2
⟺ 𝑎 = √

2μ

qeω
= √

2μℏ

qeE
= √

2μℏ

qem𝑐
2
≈ 0.38638 pm 

We again get a slightly different value⎯again a slightly larger value that the theoretical a = ħ/mc value. 

How can we explain this? Let us go through the calculations here. 

 
30 The reader will note the same can be said of a photon, but a photon does not carry charge! 
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1. Let us first find a theoretical value for the magnetic moment by equating the two formulas for the 

radius that we have presented so far. Both are based on a different physical concept of the frequency of 

the oscillation. While different, we can only have one radius, of course. We, therefore, get this: 

𝑎 = √
2μℏ

qem𝑐
2
   

𝑎 =
2μ

qe𝑐 }
 
 

 
 

⟺ √
2μℏqe

2𝑐2

4μ2qem𝑐
2
= √

ℏqe
2μm

= 1⟺ μ =
qe
2m

ℏ 

So that confirms the theoretical value of the magnetic moment, which is equal to the above-mentioned 

μCODATA = 9.27401… J·T-1.  

2. Now, we know that a magnetic moment is generated by a current in a loop and, from experiment, we 

know that the actual magnetic moment is slightly higher than the above-mentioned value. We can, 

therefore, calculate the effective radius – using one of the two formulas above – from the actual 

magnetic moment. If you do this, you should get this: 

𝑟 =
2μ

qe𝑐
 0.3866… fm 

We effectively get a larger value than the Compton radius, which is equal to 0.38616 fm⎯more or less. 

We can now calculate an anomaly based on these two radii: 

𝑟 − 𝑎

𝑎
≈ 0.00115965 ⟺

𝑟

𝑎
= 1.00115965… 

We get the same thing here: the anomaly of the radius is, once again, equal to about 99.85% of 

Schwinger’s factor: α/2π = 0.00116141… 

This allows us to guide the reader through the following calculations.31 

3. Our assumption is that the anomaly is not an anomaly at all. We get it because of our mathematical 

idealizations: we do not really believe that pointlike charge are, effectively, pointlike and, therefore, 

dimensionless. In other words, we think the assumption that the electron is just a pointlike or 

dimensionless charge is non-sensical: when thinking of what might be going on at the smallest scale of 

Nature, we should abandon these mathematical idealizations: an object that has no physical dimension 

whatsoever does – quite simply – not exist.  

We should, therefore, effectively distinguish the effective radius r and the effective velocity v from the 

theoretical values a and c. We can write this: 

μ𝑟
μ𝑎
=

qe𝑣𝑟
2
qe
2mℏ

=
𝑣 ∙ 𝑟

𝑐 ∙ 𝑎
=
ω ∙ 𝑟2

ω ∙ 𝑎2
=
𝑟2

𝑎2
  1 +

α

2π
⟺ 𝑟 = √1 +

α

2π
∙ 𝑎 ≈ 1.00058 ∙

ℏ

m𝑐
 

There is a crucial step here: we equated the anomaly to 1 + α/2π. Is that a good approximation? In a 

 
31 We realize this is a long text. However, we beg the reader to bear with us. We feel the view from the top 

warrants the climb⎯and more than a bit! Of course, this is just a mountaineer’s opinion.       
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first-order approximation, it is. In fact, the reader will probably have heard that Schwinger’s α/2π factor 

explains about 99.85% of the anomaly, but it is actually better than. Check it: the μr/μa ratio is about 

99.99982445% of 1 + α/2π.32 

4. We can also calculate the effective velocity. We will use the fact that the v/c and r/a ratios must be 

the same, as we can see from the tangential velocity formula: 

1 =
ω

ω
=
𝑣 𝑟⁄

𝑐 𝑎⁄
⟺

𝑣

𝑐
=
𝑟

𝑎
 

We can, therefore, calculate the relative velocity as: 

1 =
ω

ω
=
𝑣 𝑟⁄

𝑐 𝑎⁄
⟺ 𝑣 =

𝑟

𝑎
 ∙ 𝑐 =

√1 +
α
2π

∙ 𝑎

𝑎
∙ 𝑐 = √1 +

α

2π
∙ 𝑐 ≈ 1.00058 ∙ 𝑐 

Great ! We’re done ! The only thing that’s left to explain is… Well… How can the effective radius be 

larger than the theoretical one? And how can the effectively velocity be larger than c? Think of about 

the physicality of the situation here⎯as depicted below.   

 

If the zbw charge is effectively whizzing around at the speed of light, and we think of it as a charged 

sphere or shell, then its effective center of charge will not coincide with its center. Why not? Because 

the ratio between (1) the charge that is outside of the disk formed by the radius of its orbital motion and 

(2) the charge inside – note the triangular areas between the diameter line of the smaller circle (think of 

it as the zbw charge) and the larger circle (which represent its orbital) – is slightly larger than 1/2. 

It all looks astonishingly simple, doesn’t it? Too simple? We don’t think so, but we will let you – the 

reader – judge, of course! 

To conclude this section, we should add one more formula. It is an interesting one because it brings a 

very important nuance to the quantum-mechanical rule that angular momentum should come in units 

 
32 Needless to say, for r, we use the CODATA value. 
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of ħ.  

5. Indeed, our calculation shows the actual angular momentum of an electron must be 

slightly larger than ħ: 

1 +
α

2π
=
𝑣 ∙ 𝑟

𝑐 ∙ 𝑎
⟺ 𝑣 ∙ 𝑟 = (1 +

α

2π
) ∙ 𝑐 ∙ 𝑎 = (1 +

α

2π
) ∙ 𝑐 ∙

ℏ

m𝑐
= (1 +

α

2π
)
ℏ

m
 

⟺ L = m ∙ 𝑣 ∙ 𝑟 = (1 +
α

2π
) ∙ ℏ = ℏ +

α

2π
ℏ 

Unsurprisingly, the difference is, once again, given by Schwinger’s α/2π factor. 

The oscillator model of an electron 
From Figure 3, it is obvious that we may usefully distinguish the components of the momentum vector p 

in the x- and y-direction respectively. We write: 

p = px + py 

The magnitude of these vectors can then be written as p = p, px = px, andps = py respectively. 

This is easy enough. We will now do something very weird: we will briefly revive Einstein’s idea that, 

perhaps, the concept of mass might be directional as well⎯just like the concepts of momentum and/or 

velocity. Indeed, we may usefully remind ourselves that Einstein actually used velocity-dependent 

concepts of mass in his seminal 1905 article introducing the principle of relativity, distinguishing 

between the “longitudinal” and “transverse” mass of a moving charge.33 It is just a temporary 

assumption we feel we need to introduce here so as to make sure we keep track of directions here. Of 

course, we know the mass concept is scalar: the directional aspect is taken care of in the force law by 

writing both the force F and the acceleration a as vectors⎯using bold type, indeed.  

However, as we will be calculating magnitudes hereunder, we want to make sure we do not make any 

mistakes. Hence, we will distinguish between an effective (relativistic) mass in the x- and y-directions as 

mx and my respectively. If you think this does not make any sense, think again: it is quite intuitive. From 

our experience in daily life, we know it is much easier to change the direction of a massive object than 

its velocity.34 We have the same situation here: the zbw charge whizzes around at near lightspeed, but 

changes direction all the time, which is why we need the distinction when separating out vectors into 

their components along this or that axis. Likewise, we will want – just to be on the safe side – also want 

to distinguish between a Lorentz factor that’s applicable to the motion of the zbw charge along the x-

 
33 See p. 21 of the English translation of Einstein’s article on special relativity, which can be downloaded from: 
http://hermes.ffn.ub.es/luisnavarro/nuevo_maletin/Einstein_1905_relativity.pdf. The distinction is related to the 

distinction between the electrostatic and magnetic forces, which is equally relative⎯in the sense that what is 
electromagnetic and what is magnetic depends on your reference frame! 
34 Think of all the movies involving some asteroid threatening to crash into our planet: the hero in his rocket will 

not try to stop it, but he will try to, somehow, change its direction (or, else, destroy it⎯or some combination of 
both). 

http://hermes.ffn.ub.es/luisnavarro/nuevo_maletin/Einstein_1905_relativity.pdf
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direction as opposed to the one we should apply to the motion along the y-direction.35 We can now 

write px and py as:  

px = mxvx = γxm0vx and py = mγvy = γym0vy 

The origin of both the force and momentum vectors is the position vector r, which we can write using 

the elementary wavefunction, i.e. Euler’s function: 

r = a·ei = x + i·y = a·cos(θ) + i·a·sin(θ) = a·cos(ωt) + i·a·sin(ωt) = (x, y) 

We can also calculate the centripetal acceleration: it’s equal to ac = vt
2/a = a·ω2 (the reader should note 

that this formula is (also) relativistically correct). It might be useful to remind ourselves how we get this 

result. The position vector r has a horizontal and a vertical component: x = a·cos(ωt) and y = a·sin(ωt). 

We can now calculate the two components of the (tangential) velocity vector v = dr/dt as vx = 

−a·ω·sin(ωt) and vx y = −a· ω·cos(ωt) and, in the next step, the components of the (centripetal) 

acceleration vector ac: ax = −a·ω2·cos(ωt) and ay = −a·ω2·sin(ωt). The magnitude of this vector is then 

calculated as follows: 

ac
2 = ax

2 + ay
2 =  a2·ω4·cos2(ωt) + a2·ω4·sin2(ωt) = a2·ω4  ac = a·ω2 = vt

2/a 

Now, Newton’s force law tells us that the magnitude of the centripetal force F= F will be equal to: 

F = mγ·ac = mγ·a·ω2 

However, we again have this problem of determining what the mass of our pointlike charge actually is 

when we assume the m0 in our mγ = γm0 formula is zero ! Fortunately, we did find another way in the 

previous section ! However, we should continue to explore the basic geometry of the model here. 

The horizontal and vertical force component effectively behave like the restoring force that drives a 

(linear) harmonic oscillation: we just need to think of an oscillation along two (independent) dimensions 

here. This restoring force depends linearly on the (horizontal or vertical) displacement from the center, 

and the (linear) proportionality constant is usually written as k. In case of a mechanical spring, this 

constant will be the stiffness of the spring. We do not have a spring here so it is tempting to think it 

models some elasticity of space itself. However, we should probably not engage in such philosophical 

thought. Let us just write down the formulas:  

Fx = dpx/dt = –k·x = –k·a·cos(ωt) = −F·cos(ωt) 

Fy = dpy/dt = –k·y = –k·a·sin(ωt) = −F·sin(ωt) 

Now, it is quite straightforward to show that the constant (k) can always be written as: 

k = m·ω2 

We get that from the solution we find for ω when solving the differential equations Fx = dpx/dt = –k·x 

and Fy = dpy/dt = Fy = dpy/dt = –k·y and assuming there is nothing particular about p and m. In other 

words, we assume there is nothing wrong with this p = m·v = γm0v relation. So we just don’t think about 

the weird behavior of that function. It’s a bit like what Dirac did when he defined his rather (in)famous 

 
35 If you continue to think this sounds nonsensical, then just equate mx and my (and γx and γy too). In other words, 
just drop the subscripts and continue reading: you should find it all makes sense as well!  
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Dirac function: the function doesn’t make sense mathematically but it works – i.e. we get the right 

answers – when we use it.  

So now we have the k = m·ω2 equation and we know m is not the rest mass of our electron here. We 

referred to it as the effective mass of our pointlike charge as it’s whizzing around at the speed of light. 

We need to remember mass is a measure of inertia and, hence, we can measure that inertia along the 

horizontal and vertical axis respectively. Hence, we can, effectively, write something like this: m = mγ = 

mx = my, in line with the distinction we made between p, px and py. Why mγ? The notation is just a 

placeholder: we need to remind ourselves it is a relativistic mass concept and so I used γ (the symbol for 

the Lorentz factor) to remind ourselves of that. So let us write this:  

k = mγ·ω2 

From the equations for Fx and Fx, we know that k·a = F, so k = F/a. Hence, the following equality must 

hold: 

F/a = mγ·ω2   F = mγ·a·ω2  F/a = mγ·a2·ω2 =  F/a·mγ = a2·ω2 

We know the sum of the potential and kinetic energy in a linear oscillator adds up to E = m·a2·ω2/2. We 

have two independent linear oscillations here so we can just add their energies and the ½ factor 

vanishes. 

Hence, if Einstein’s mass-energy equivalence relation applies, we should all accept that the total energy 

in this oscillation must be equal to E = m·c2. The mass factor here is the rest mass of our electron, so it’s 

not that weird relativistic mγ concept. However, we did equate c to a·ω2. Hence, we can now write the 

following: 

E = m·c2 = m·a2·ω2 = m·F/a·mγ  

The force is, therefore, equal to: 

F = (mγ/m)·(E/a) 

What can we do with this result? What can we say about the mγ/m ratio? Let us start yet another 

section in this paper.36 

The effective mass of the zbw charge     
We know mγ is sort of undefined⎯but it shouldn’t be zero and it shouldn’t be infinity. It is also quite 

sensible to think mγ should be smaller than m. It cannot be larger because than the energy of the 

oscillation would be larger than E = mc2. What could it be? We think it is equal to 1/2, but can we prove 

that? In order to do so, we can try to calculate the angular momentum L. Common wisdom is that 

electrons are spin-1/2 particles, but can we show that?37 

In a previous section, we took the ratio of the theoretical and actual magnetic moment so as to get the 

following formula for the anomaly: 

 
36 We apologize this seems to be becoming a small book rather than a paper or an article. 
37 Regular readers will remember we are extremely skeptical of the perceived wisdom in regard to spin-1/2 and 
spin-one particles. See: Feynman’s Worst Jokes and the Boson-Fermion Theory (https://vixra.org/abs/2003.0012). 

https://vixra.org/abs/2003.0012
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μ𝑟
μ𝑎
=

qe𝑣𝑟
2
qe
2mℏ

=
𝑣 ∙ 𝑟

𝑐 ∙ 𝑎
 

We then equated the ratio above to 1 + α/2π. Why? Because we think a 99.99982445…% explanation is 

pretty good. So we get this:  

1 +
α

2π
=
𝑣 ∙ 𝑟

𝑐 ∙ 𝑎
⟺ 𝑣 ∙ 𝑟 = (1 +

α

2π
) ∙ 𝑐 ∙ 𝑎 = (1 +

α

2π
) ∙ 𝑐 ∙

ℏ

m𝑐
= (1 +

α

2π
)
ℏ

m
 

⟺ L = m ∙ 𝑣 ∙ 𝑟 = (1 +
α

2π
) ∙ ℏ = ℏ +

α

2π
ℏ 

This is surprising. Indeed, the reader should note we just derived a rather spectacular non-mainstream 

quantum-mechanical principle here: 

Mainstream quantum mechanics assumes angular momentum must come in units of ħ, and mainstream 

physicists think that is a direct implication of – or even an equivalent to – the Planck-Einstein law: E = h·f 

= ħ·ω. The calculation above brings some nuance to this statement: angular momentum does not come 

in exact units of ħ. There is an anomaly, and we think the anomaly is part and parcel of Nature.  

The reader will or should also immediately note something else here: the formula above suggests our 

electron is a spin-one rather than a spin-1/2 particle ! This cannot be right, right?  

The answer is: yes and no. If you push us, we’ll say: more yes than no. We just need to wonder what 

mass concept we are using here: it is the total mass of the electron. To make sense of the formula, we 

should introduce a 1/2 factor. That is easy enough. All of what we wrote above is about orbital angular 

momentum. We should, therefore, relate it to the effective mass of the zbw charge that is spinning 

around. We can easily do that because the equipartition theorem tells us half of the energy of the 

electron would be in the electromagnetic field, while the other half will be kinetic energy related to the 

motion of the zbw charge. That kinetic energy is the energy equivalent of the effective mass of the zbw 

charge which must, therefore, be equal to 1/2 of the total energy of the electron. 

Exactly equal? No. The same anomaly applies. We write: 

L = mγ ∙ 𝑣 ∙ 𝑟 =
me

2
∙ 𝑣 ∙ 𝑟 =

me

2
∙ (1 +

α

2π
) ∙ 𝑐 ∙ 𝑎 =

me

2
∙ (1 +

α

2π
) ∙

ℏ

me
=

ℎ

2π + α
≈
ℏ

2
 

In the latter part of the formula, we make abstraction of the anomaly, and so we get the simplified 

formula we wanted to find:  

L𝑜𝑟𝑏𝑖𝑡𝑎𝑙 ≈
ℏ

2
 

We can now use the L = r  p formula. Indeed, the lever arm is the radius here, so we get: 

1. L = ħ/2  p = L/a = (ħ/2)/a = (ħ/2)·mc/ħ = mc/2  

2. p = mγc 

 mγc = mc/2  mγ = m/2 
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We found the grand result we expected to find: the effective mass of the pointlike charge – as it whizzes 

around the center of the two-dimensional oscillation that makes up our electron – is (about) half of the 

(rest) mass of the electron. To make mainstream physicists happy, we can plug this back into the more 

general formula for the angular momentum formula using the angular mass formula for a hoop: I = m·r2. 

We write38: 

L =  Iω = mγ𝑎
2
𝑐

𝑎
=
me𝑟𝑐

2
=
meℏ𝑐

2me𝑐
=
ℏ

2
 

Brilliant ! So we’re done with this ! However, before we sign off, we should probably say a few words 

about the higher-order factors in the anomaly.  

The higher-order factors in the explanation of the anomaly 
The μr/μa ratio is about 99.99982445% of 1 + α/2π.39 So that is very good. It is actually much better than 

what is usually said about Schwinger’s α/2π factor explaining about 99.85% explanation of the measured 

anomaly. However, very good is, perhaps not good enough. How can we explain the nth-order factors (n 

 1) that follow the α/2π factor in the expression below:   

μ𝑎 − μ

μ
=
𝑎μ − 𝑎

𝑎
=
α

2π
+⋯ 

We used the CODATA value for , of course, so perhaps there is a small error in the CODATA value? 

Possibly, but not likely: this is one of the most precise measurements in the history of physics, so we 

should not think there has been any fudging here.40 

We have not any detailed calculations here, but we think we have an logical explanation. As mentioned 

earlier, the μ = Iπ𝑟2 = qe𝑓π𝑟
2 = qe

𝑣

2π𝑟
π𝑟2 =

1

2
qe𝑟𝑣 tells us that the moment is proportional to the 

radius of the loop, and the factor of proportionality is qev/2. Hence, electric charge that is closer to the 

theoretical a = ħ/mc radius will make a proportionally larger contribution to the magnetic moment. We 

should, therefore, not assume that the zbw charge has no spatial dimension whatsoever. On the 

contrary: the higher-order factors tell us the zbw should have some radius of its own.  

 
38 The reader should not confuse the two symbols: I is angular mass or rotational inertia, while I denotes electric 
current. Note that we use the theoretical values for radius and velocity, i.e. the Compton radius and the speed of 
light.  
39 Needless to say, for r, we use the CODATA value. 
40 In case you doubt fudging ever happens in physics, think again: Oliver Consa documents some very interesting 
cases in his article on the Rotten State of QED (https://vixra.org/abs/2002.0011). 

https://vixra.org/abs/2002.0011
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Let us illustrate this point by thinking about the physicality of what we are modeling here. From the 

formula for the magnetic moment41 – and from our calculations above – it is easy to see that we can also 

write the anomaly as an anomaly between an actual and a theoretical radius of the electron42:  

𝑎μ − 𝑎

𝑎
=
α

2π
+⋯⟺ 𝑎μ − 𝑎 = (α +⋯) ∙

𝑎

2π
 

This is a very interesting equation. A priori, one might have expected that the difference between the a = 

ħ/mc Compton radius and the actual radius r would be of the order of α·a. Why? Because α·a is the 

classical electron radius, which explains elastic scattering. We, therefore, think it is, in effect, the actual 

radius of the zbw charge inside of the electron. But we have a 1/2π factor here, and it is rather obvious 

that we cannot explain it away. This 1/2π factor is equal to about 0.16.  

So what can we say about this? Nothing much. We should note that we calculated the difference 

between what we think of the real radius of the ring current and its theoretical radius a = ħ/mc. We did 

not directly calculate a radius of the zbw charge ! We need other assumptions and/or other formulas for 

that. Do we have these? 

We do. Richard Feynman gets the following interesting formula when calculating the electromagnetic 

mass or energy of a sphere of charge with radius a43: 
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identities above. The point is: we get only half of the (rest) energy or (rest) mass of the electron out of 

this assembly. Feynman was puzzled by that ½ factor: where is the other half? He should not have been 

puzzled by it: he is assembling the zbw charge here⎯not the electron as a whole. Hence, the missing 

mass is in the Zitterbewegung or orbital/circular motion of the zbw charge. We can now derive the 

classical electron radius from the formula above: 
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41 The magnetic moment is the product of the current times the area of the loop. However, writing that all out 
shows that the magnetic moment is simply inversely proportional to the radius of the current loop. Indeed, we 
calculate the magnetic moment as: 

μ = Iπ𝑎2 = qe𝑓π𝑎
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42 We re-write the nth-order factors (n  1) here: we simply multiply them by 2π as we bring the 1/2π factor out of 
the brackets. 
43 See: https://www.feynmanlectures.caltech.edu/II_28.html. The basic idea is to ‘assemble’ the elementary 
charge by bringing infinitesimally small charge fractions together. 

https://www.feynmanlectures.caltech.edu/II_28.html
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Conclusions 
The formulas above are all very nice, but do they fully solve the enigma of the electron?44  

Maybe, but – let us be honest – probably not. We did gloss over some rather important details here. 

Feynman was assembling a thin spherical shell of charge here⎯as opposed to a uniformly charged 

sphere of charge, in which case the coefficient becomes 3/5 instead of 1/2.45 So is our zbw charge a thin 

spherical shell of charge or a uniformly charged sphere of charge? Our honest answer is: we don’t know. 

The formulas suggest the former⎯and that makes sense, instinctively: negative charges repel each 

other, so they are always on the outside of a conductor. At the same time: such reasoning amounts to 

admitting we don’t fully understand what’s going on here. Consa’s idea of some fractal structure does 

not appeal to us, but we have to admit it might make sense. 

We still have a long way to go. Perhaps we should just accept that we cannot not push our classical ideas 

too far. Indeed, there are a few other – more important – things that don’t make sense here. First, one 

should note that Feynman did not include the energy we associated with the spin of the zbw charge in 

this energy calculation. He only calculated potential energy when assembling the elementary charge by 

bringing infinitesimally small charges together. This undermines the logic of the derivation above.  

So what can we say? Not all that much, for the time being. We don’t think we managed to fully solve all 

of the quantum-mechanical mysteries. However, we are positive, and so we do think that we have a 

perfectly consistent realist interpretation of quantum mechanics here.  

To be precise, we think we have a theory here which explains all of the mysterious intrinsic properties of 

an electron (its mass, its radius for elastic as well as inelastic scattering, and its magnetic moment) using 

common-sense physics. We, therefore, hope that we have managed to convince the reader that the 

assumption that the electron is just a dimensionless charge is non-sensical. When thinking of what might 

be going on at the smallest scale of Nature, we should abandon our mathematical idealizations: an 

object that has no physical dimension whatsoever does – quite simply – not exist. Pointlike and zero-

dimension are not the same: the pointlike zbw charge has some (tiny) dimension. 

In light of the title of this section, we should probably conclude here. We would love to add a few more 

thoughts on the applicability of this oscillator model to the proton. We will do so in a separate paper, 

however. This paper has become way too long.       

For more philosophical considerations, we also refer our reader to the Metaphysics page of our new 

physics blog, which we keep more up to date nowadays than our papers.46 

Jean Louis Van Belle, 25 March 2020 

 
44 The language we use here refers to a book by Malcolm Mac Gregor: The Enigmatic Electron, A Doorway to 
Particle Masses (https://www.amazon.com/Enigmatic-Electron-Doorway-Particle-Masses/dp/1886838100) 
45 See: https://www.feynmanlectures.caltech.edu/II_08.html. 
46 See: https://ideez.org/philosophy/. 

https://www.amazon.com/Enigmatic-Electron-Doorway-Particle-Masses/dp/1886838100
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