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Abstract Analysis of the simultaneous measurement stated in Heisenberg’s uncertainty principle 

reveals its root in special relativity theory. Hence a natural extension of this principle with general 

relativity is shown, where a small gravitational correction term needs to be introduced. This 

gravitational term being small remains negligible in ordinary conditions but becomes significant at 

small Planck scale. At Planck scale the modified uncertainty relation leads to natural calculation of 

Planck scale parameters used in quantum gravity theories. A careful consideration of the gravitational 

term showed its connection with cosmological dark energy and could explain the apparent large 

discrepancy between cosmological observed value and vacuum energy estimate from quantum field 

theory. 
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Introduction 

Heisenberg’s uncertainty principle is one of the characteristic aspects of quantum mechanics. 

Often it is regarded as a distinctive feature which differentiate quantum physics from classical 

physics. For two non commuting quantum mechanical variables, like position and momentum, 

the uncertainty principle suggests one can not measure the simultaneous values of a physical 

system with arbitrary accuracies. In his original work Heisenberg derived the uncertainty 

relation heuristically on the basis of a supposed experiment based on observing an electron 

using a γ-ray microscope and showed that the product of highest possible accuracies ∆𝑥 and 

∆𝑝 for position and momentum respectively can not be smaller than Planck’s constant, that is 

∆𝑥. ∆𝑝 ≥ ℎ.[1, 2] Later on the uncertainty principle was derived under the quantum mechanical 

formalisms based on Schwarz inequality as ∆𝑥. ∆𝑝 ≥ ℏ
2⁄ , where the uncertainties are defined 

as the statistical spread for an ensemble of similarly prepared systems. [3, 4, 5] Recently, while 

interpreting the uncertainty relation as the interplay between error and disturbance for a 

quantum state, claims have been made for refutation of Heisenberg’s principle. [6-8] However, 

interpreting the uncertainty principle heuristically proposed by Heisenberg may not be very 

straightforward and necessarily require consideration of measurement processes in a greater 

detail. [9]  

Although Erwin Schrödinger once suggested [10] that the uncertainty principle is 

incompatible with special theory of relativity, some efforts have been made to search for 

possible links.  Rosen and Vallera considered  an ideal experiment in  which it could be shown 

that when the exact nature of interaction between an electron and light signal is not known, 

∆𝑥. ∆𝑝 has an upper and lower bound which depends on the electron velocity. [11] But the 

upper and lower bounds could only merge to ℎ for infinite velocity of the electron. However, 

here we will see that since the uncertainty principle restricts the accuracies for simultaneous 
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measurements of two variables, the corresponding simultaneity of the measurements between 

the reference frames of the object under study and that of the observer or measuring device, 

needs to be analysed from the special relativity principles.[12] We will intend an answer of this 

fundamental question and will see that Heisenberg’s uncertainty principle can be described as 

a consequence of the simultaneity principle of Einstein’s special theory of relativity. The case 

of position and momentum will be primarily considered but the analysis presented should be 

generally applicable to other conjugate variables as well. Since the uncertainty relation could 

be seen to have origin in the special relativity theory, a natural extension of it will be derived 

from the general relativity principles. The modified uncertainty relation will be shown to have 

very significant implications on estimating cosmological dark energy and Planck scale 

quantum gravity theories, and offer satisfactory answers to the apparent paradoxes in a very 

certain manner. 

 

Heisenberg’s uncertainty principle and special relativity theory 

First, we will see that Heisenberg uncertainty principle can be described in the special 

relativistic framework using simple semiclassical approach. Let first consider the case where 

an observer/measuring device is stationary in the laboratory frame of reference looking to 

measure the position and momentum of a particle moving with a precise velocity 𝑣 (𝑣 < 𝑐, the 

velocity of light in vacuum) along the x-axis (single axis being considered for simplicity of 

description). We need to first assume that in the measurement process employed by the 

observer, the uncertainty principle is not applicable, that is position and momentum can be 

measured with arbitrary accuracy, although laws of relativity hold good. This seems a valid 

assumption since we are trying to see if the laws of relativity could lead to the uncertainty 

principle unknown to the observer. We further assume the observer to be equipped with a 



4 
 

noiseless measurement apparatus and the measurements do not disturb the particle. It may be 

noted that such measurement methods although not presently available, the assumptions justify 

our aim to see whether Heisenberg’s uncertainty principle is only a consequence of the 

disturbance caused by our measurement methods or it is an unavoidable natural consequence 

from the viewpoint of relativity theory. Now, to meet both position and momentum 

measurements, we need to carry out the measurement over an interval ∆𝑡, during which the 

particle moves by distance ∆𝑥.  Let the measurement be described by its start and end points, 

which represent two events (x1, ct1) and (x2, ct2) in the Minkowski space [13], where ∆𝑥 =

𝑥2 − 𝑥1 and ∆𝑡 = 𝑡2 − 𝑡1. The co-ordinates are expressed in the observer’s frame. This should 

be generally applicable to any measurement scheme which produces in each run a position and 

a momentum value of the particle. The intervals ∆𝑡 and ∆𝑥 can be chosen arbitrarily small. It 

is worthwhile to mention here that ∆𝑡 ≠ 0 is not contradictory to our assumption of non-

disturbing measuring method since 𝑣 is assumed to remain unchanged during measurement 

and ∆𝑡 = 0 implies no measurement performed. 

For simultaneous knowledge of the observables, position and momentum, of the 

particle, at a definite instant of time we must have ∆𝑡′ = 0 in the inertial frame attached to the 

particle. This implies the events (x1, ct1) and (x2, ct2) must occur simultaneously in the particle’s 

frame. Under this simultaneity requirement we will try to find out the limits for values of ∆𝑥 

and ∆𝑡 in the observer’s frame. By this we agree to let ∆𝑥 = 𝑥2 − 𝑥1 and ∆𝑡 = 𝑡2 − 𝑡1 get 

violated for meeting the simultaneity requirement. It is worthwhile to mention here that we 

have not assumed anything about the interaction of the particle and the observer’s measurement 

device and it would likely employ quantum principles for measurements to be performed, but 

that should not change our results. The particle is essentially a quantum system where its 

velocity 𝑣 is the corresponding group velocity of the associated de Broglie matter wave [14]. 

It is pertinent to mention here that the wave particle duality or the complementarity principle 
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is an independent phenomenon described in quantum physics unrelated to measurement 

inaccuracies.  

In Minkowsky flat space-time, the relative position and time intervals in the particle’s frame 

are given as, 

(𝑐Δ𝑡′
Δ𝑥′

) = 𝛾 (
1 −𝛽

−𝛽 1
) (

𝑐Δ𝑡
Δ𝑥

)                                               (1) 

Where, 𝛽 = 𝑣
𝑐⁄  and 𝛾 = √1 − 𝑣2

𝑐2⁄ . The condition of simultaneity is obtained by letting 

∆𝑡′ = 0. Hence, 

                                              𝛽Δ𝑥 = 𝑐∆𝑡                                                              (2) 

                                                or    Δ𝑥. Δω = 𝑐/𝛽                                                          (3) 

since the particle can be associated with matter wave with Δ𝜔~
1

∆𝑡
 (for ∆𝑡 is small), phase 

velocity 𝑣𝑝ℎ = 𝑐
𝛽⁄ = 𝜔𝜆/2𝜋, where 𝜆 is the wavelength and 𝜔 is the angular frequency. The 

momentum of the particle is related to the wavelength by the de Broglie formula, 𝑝 = ℎ
𝜆⁄ =

ℏ𝜔
𝑣𝑝ℎ

⁄ . Taking Δ𝑝 = ℏ∆𝜔𝛽/𝑐 (since we have assumed mean velocity, 𝑣 to be precise), 

equation (3) therefore becomes, 

∆𝑥. ∆𝑝 = ℏ                                                             (4) 

Considering this as the lower limit, 

∆𝑥. ∆𝑝 ≥ ℏ                                                              (5) 

Which is the Heisenberg’s uncertainty relation describing limiting condition for measurement 

accuracies on a quantum particle. Recognizing the reciprocal nature of Lorentz 

transformations, equation (5) should also be valid when simultaneous values are sought in the 
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observer’s frame. Since, statistically the errors in measurements can be assumed to be similarly 

distributed between the events (x1, ct1) and (x2, ct2), we can write in terms of measurement 

precisions,  

∆𝑥̅̅̅̅ . ∆𝑝̅̅̅̅ ≥ ℏ/2                                                           (6) 

Since virtually in all quantum measurements we may work with the precision values, we may 

conveniently write, 

∆𝑥. ∆𝑝 ≥ ℏ/2                                                            (7) 

Equation (7) is the more familiar expression of Heisenberg’s uncertainty principle in terms of 

measurement precisions. The above derivation provides us with a valuable physical picture for 

the uncertainty principle. Since for any pointlike particle worldlines always lie within the 

timelike zone in the Minkowski space, relativity principles forbid simultaneous measurement 

of variables. Any simultaneous measurement will inevitable require a lightlike or spacelike 

worldline. Since a quantum particle can be represented by a corresponding matter wave, the 

associated position spread may allow the trajectories to be extended beyond timelike zone when 

we consider the infinitesimal time interval of measurement, hence allowing simultaneous joint 

measurement of variables. However, the measurement will be inevitably associated with 

inaccuracies. Heisenberg’s principle may therefore be viewed as a concise mathematical 

description of the above process.  

Additionally, if we consider small uncertainty in the particle mass (∆𝑚), from equation 

(2) the semi classical approximation shows, 

                                                      ∆𝑡 =  ∆𝑥
∆𝑚𝛽𝑐

∆𝑚𝑐2
   or ∆𝐸. ∆𝑡 = ∆𝑥. ∆𝑝                                  (8)  
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Where ∆𝐸 = ∆𝑚𝑐2 is the energy uncertainty and ∆𝑝 = ∆𝑚𝛽𝑐.  Comapring equation (7) and 

(8), 

                                                                    ∆𝐸. ∆𝑡 ≥ ℏ/2                                                       (9) 

 

Modification in uncertainty relation due to gravity 

It would be worthwhile to consider the scenario for non-inertial frames like in the Rindler 

coordinates [15] or in particular gravitational spacetime [16, 17], that is when a far away 

observer and the particle are placed in regions that have a gravitational potential difference 

between them. We may arrive at a first order adjustment of equation (7) by assuming that over 

a very small measurement time the particle (with small gravitational mass) undergoes uniform 

motion having the gravitation modified local spacetime as background. Further, we consider 

the complete measurement consists of two steps. First, the observer is local, that is experiencing 

the same gravitational field as that of the particle. Since the observer is stationary in the local 

spacetime and particle is moving with constant 𝑣, the observer will measure the uncertainties 

as given by equation (7), say ∆𝑟′. ∆𝑝′ ≥ ℏ/2. Where 𝑟′ or 𝑟 is the radial coordinate, used to 

more suitably describe the space around a spherical gravitational mass. Next, we consider the 

observer moves to a distant place where the gravitational potential becomes small and checks 

how he needs to correct earlier measurements in terms of his new space time co-ordinates. In 

that case, according to general theory of relativity, taking into account time dilation and space 

warping by the gravitational field, the observer will find his earlier measured ∆𝑟′ and ∆𝑝′ 

changed to ∆𝑟 and ∆𝑝 in such a way that ∆𝑟 < ∆𝑟′  and ∆𝑝 < ∆𝑝′ (or ∆𝑡 > ∆𝑡′).  Therefore, 

considering the case of a spherically symmetric gravitational mass (M) described by the 

Schwarzschild metric, 
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𝑑𝑠2 = −𝑐2𝑑𝜏2 = − (1 − 2
𝐺𝑀

𝑟𝑐2
) 𝑐2𝑑𝑡2 + (1 − 2

𝐺𝑀

𝑟𝑐2
)

−1

𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑∅2)       (10) 

the uncertainty relation given in equation (7) needs to be corrected as, 

∆𝑟. ∆𝑝 ≳
ℏ

2

(1−2
𝐺𝑀

𝑟𝑐2)

(1−2
𝐺𝑀

𝑅𝑐2)
                                                    (11) 

where, r and R represents the distance of the particle and the observer respectively from the 

spherical mass. Considering 𝑅 → ∞,  

∆𝑟. ∆𝑝 ≳
ℏ

2
(1 − 2

𝐺𝑀

𝑟𝑐2
)                                                  (12) 

or  Δ𝑟. Δ𝑝 ≥
ℏ

2
(1 −

𝑟∗

𝑟
)

2

                                                (13) 

where the Schwarzschild radius given as, 𝑟∗ = 2𝐺𝑀
𝑐2⁄ . Equation (12) or (13) is the modified 

uncertainty relation under the assumption that since one can always choose ∆𝑡 arbitrarily small 

and thereby consider a locally flat spacetime for the particle’s frame. Under ordinary situations, 

like for an observer carrying out measurements on phenomena occurring on earth’s surface 

from a space station, the change in equation (7) will be only about ℎ × 10−10, and therefore 

can be easily ignored. But this small correction term may have significant effects in specific 

situations.  

 

Planck scale in quantum gravity 

Equation (12) can be similarly expressed in terms of energy time uncertainty as, 

∆𝐸. ∆𝑡 ≳
ℏ

2
(1 − 2

𝐺𝑀

𝑟𝑐2)                                                      (14) 
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Since, at r = r*, the uncertainty product vanishes, we can find corresponding limiting value for 

energy, by taking 𝑟 = 𝑟 ∗= 𝑐∆𝑡𝑚𝑖𝑛 and ∆𝐸𝐻 = 𝑀𝑐2, 

∆𝐸𝐻 =
𝑐5∆𝑡𝑚𝑖𝑛

2𝐺
                                                          (15)  

Equating (15) to the energy value in absence of gravitational correction, ∆𝐸𝑄 = ℏ/2∆𝑡𝑚𝑖𝑛, we 

get ∆𝑡𝑚𝑖𝑛 = √ℏ𝐺
𝑐5⁄   , which is Plank time (tp ≈ 5.4x10-44 s). Therefore, at tp, ∆𝐸 = 0, 

afterwards tor ∆𝑡 < 𝑡𝑝, ∆𝐸 becomes negative. Although physically understanding negative ∆𝐸 

is not straightforward, existence of such energy has been suggested by models of black hole 

physics.[18, 19] 

We may also define a minimum length ∆𝑙𝑚𝑖𝑛 = 𝑟∗ = 𝑐∆𝑡𝑚𝑖𝑛 = √ℏ𝐺
𝑐3⁄ ≈ 1.6 × 10−35 , that 

is Planck length (𝑙𝑝). Clearly below 𝑙𝑝 the internal area becomes invisible as per the laws of 

general relativity.  

For quantum fluctuations of spacetime the uncertainties can be assumed to be equal to 

the corresponding absolute values of the variables. Hence, ignoring higher order terms, we may 

write equation (14) as, 

∆𝐸 ≈
ℏ

2∆𝑡
−

𝐺ℏ2

2𝑐5∆𝑡3                                                             (16) 

This has similarity with generalized uncertainty relations proposed in several forms in recent 

time, based on heuristic arguments or gedanken experiments.[20] Equation (16) gives a 

limiting value of energy as, ∆𝐸𝑚𝑎𝑥 =
1

3√3
√

ℎ𝑐5

𝐺
 ≈ 2.3 ×  1018 GeV, for ∆𝑡 = √3𝑡𝑝. A plot of 

fluctuation energy with ∆𝑡 is shown in Figure 1, where a smooth merging of quantum 

fluctuation energy with gravitational energy at the Planck time scale can be seen. At tp the 
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gravitational correction just cancels the dominant quantum mechanical first term in equation 

(16) making total fluctuation energy zero. Beyond the Planck scale (below tp) the estimated 

 

 

Fig. 1. The variations of fluctuation energy terms ∆𝐸𝐻, ∆𝐸𝑄 and ∆𝐸 with ∆𝑡 are shown. The energy and 

time axes are scaled by ∆𝐸𝑚𝑎𝑥 and Planck time respectively. The shaded area indicate the energy values 

above ∆𝐸𝐻, where the general relativity forbids physical phenomena to be seen from outside. ∆𝐸𝑄 

remains well under the limit of ∆𝐸𝐻 above Planck scale but below 𝑡𝑝 it becomes larger suggesting 

unobservable energy levels from the viewpoint of general relativity. The total energy ∆𝐸, shown in 

green, vanishes at 𝑡𝑝 and asymptotically merges into quantum filed theory calculation (∆𝐸𝑄) for larger 

∆𝑡.  

fluctuation energy becomes negative and the region becomes invisible to an outside observer 

by the effect of gravity. So it seems the Planck scale define a natural limit for the minimum 

values of the fundamental quantities. Away from the Plank scale the fluctuation energy 

asymptotically approaches the quantum mechanical estimate. 
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Dark energy problem and Einstein’s cosmological constant 

A careful consideration of equation (16) suggests, the first term in the right hand side, 

represents the fluctuation energy as seen by a local observer, whereas the second term 

represents a loss in the energy when seen by a distant observer. Therefore, it is reasonable to 

assume, the second term represents the fraction of energy gets entrapped or coupled to the 

space-time fabric and may contribute to large scale cosmological phenomena. Therefore, 

considering the ratio between the first and second term, 

(
𝐺ℏ2

𝑐5𝑡0
3) (

ℏ

𝑡0
)

−1

= (
𝐺ℏ

𝑐5) .
1

𝑡0
2  ≈ 1.57 × 10−122                                    (17) 

Where, ∆𝑡 ~ 𝑡0~ 13.7 × 109  years [21], the age of  our universe in the present epoch given 

by, 

𝑡0 = ∫ 𝑑𝑡
𝑡0

0
= ∫

𝑑𝑎

𝑎𝐻

1

0
                                                            (18) 

H being the scale dependent Hubble parameter and a is the scale factor of the universe. 

Equation (17) is in excellent agreement with the estimated ratio between the observed 

dark energy density in our present epoch [21] and vacuum energy density calculated from 

quantum field theory.  

The left hand side of equation (17) may therefore be matched with the analytical ratio 

between the cosmological dark energy density and the vacuum energy density calculated from 

quantum field theory [22], 

(
𝐺ℏ

𝑐5
) .

1

𝑡0
2 =

Λ𝐺ℏ

2𝜋𝑐3
                                                              (19) 
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Hence we get the cosmological constant, Λ =
2𝜋

(𝑐𝑡0)2
≈ 3.76 × 10−52 m-2, or more generally as, 

Λ =
2𝜋

𝑐2𝑡(𝑎)2                                                                 (20) 

Where 𝑡(𝑎) is the age described in terms of the scale factor [22]. 

This is in excellent agreement with the observed value of Λ in our time.  

 

Conclusions 

A derivation of Heisenberg’s uncertainty principle is presented based on the simultaneity 

concept of special relativity. The origin of Heisenberg’s principle from the special relativity 

naturally suggests extension of this principle with the general theory of relativity. This led us 

to a modified uncertainty principle with an additional small term contributed by spacetime 

warping by gravitational field. While under usual circumstances this term remains small and 

can be neglected for most of the purposes, it has significant implications at small Planck scale. 

The modified uncertainty relation shows the existence of Planck scale as a limiting scenario 

for physical laws. Consideration of the additional term in the modified uncertainty relation 

shows its association with the cosmological dark energy and could explain the large difference 

between values estimated from cosmological data and quantum field theory calculations.  
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