The Clifford algebra of order 3

A.Balan

March 2, 2020

Abstract

We define an algebra like the Clifford algebra but with relations of order 3

1 The Clifford algebra

The Clifford algebra for $(E, g), E$ being a real vector space and g a symmetric bilinear form, is defined as the free algebra over E with the following relations:

$$
e f+f e=-2 g(e, f)
$$

we have:

$$
e^{2}=-g(e, e)
$$

The Clifford algebra is central simple.

2 The Clifford algebra of order 3

Let (E, h) be a real vector space E with a symmetric trilinear form h. Then the Clifford algebra of order 3 is defined by the following relations:

$$
e f g+f g e+g e f+f e g+g f e+e g f=6 h(e, f, g)
$$

we have:

$$
e^{3}=h(e, e, e)
$$

The proper value of e are so $0,1,-1, j,-j, j^{2},-j^{2}$ with a constant.

3 The Laplacian of order 3

We define a tensor with values in the differential operators of order 3 by mean of the connection nabla ∇ :

$$
\begin{gathered}
\nabla(X, Y, Z)=\nabla_{X} \nabla_{Y} \nabla_{Z}-\nabla_{X} \nabla_{\nabla_{Y} Z}-\nabla_{\nabla_{X} Y} \nabla_{Z}+ \\
+\nabla_{\nabla_{\nabla_{X} Y} Z}-\nabla_{Y} \nabla_{\nabla_{X} Z}+\nabla_{\nabla_{Y} \nabla_{X} Z}
\end{gathered}
$$

The Laplacian of order 3 is then defined as:

$$
\Delta_{3}=\sum_{i j k} h\left(e_{i}, e_{j}, e_{k}\right) \nabla\left(e_{i}, e_{j}, e_{k}\right)
$$

with $\left(e_{i}\right)$ an orthonormal basis with respect of a metric. The Dirac operator is then:

$$
\mathcal{D}_{3}=\sum_{i} e_{i} . \nabla_{e_{i}}
$$

with e_{i} in the Clifford algebra of order 3 , such that:

$$
\mathcal{D}_{3}^{3}=\Delta_{3}+\alpha
$$

with α a lower term.

References

[BT] I.M.Benn \& R.W.Tucker, "An Introduction to Spinors and Geometry with Applications in Physics", Adam Hilger, London, 1987.

