Energy and the tessellated 3-sphere

S. Halayka – sjhalayka@gmail.com

March 5, 2020

Abstract

The tessellation of space is considered for both the 2-sphere and the 3-sphere. As hypothesized in an earlier work, it is found that there is an energy associated with the 3-sphere.

1 Curvature and energy

For a method of calculating the curvature of triangle meshes and tetrahedron meshes, please see [1]. Unlike in [1], the tessellations in this paper will rely on pseudorandomly placed vertices, rather than the vertices placed by Marching Cubes and Marching Hypercubes. Also unlike in [1], we will not be compensating for the variation in simplex extent (e.g. do nothing special even where there are sliver simplices). The vertex count is \(N \). Note that the Planck energy \(E_P = 1.0 \), and so the fundamental constants \(c = G = \hbar = 1.0 \) as well.

On one hand, it is found that for a tessellated 2-sphere, the local curvature vanishes when the tessellation is made up of finer and finer triangles. That is, the more vertices \(N \) used in the tessellation, the less the local curvature is:

\[
\lim_{N \to \infty} K(N) = 0.0.
\]

On the other hand, it is found that for a tessellated 3-sphere, the local curvature does not vanish when the tessellation is made up of finer and finer tetrahedra. The curvature settles around

\[
\lim_{N \to \infty} K(N) = 0.284.
\]

Unexpectedly, this is in line with the matter density measure \(\Omega_M \) used in the xCDM models \([2,3]\) – it is unknown if this is merely a coincidence. If it is not just a coincidence, then this is direct evidence of the discrete nature of space, based on a few simple, first principles. Note that curvature is proportional to energy:

\[
K \propto E.
\]

See Fig. 1 for a 3-sphere edge length histogram, where vertex count \(N = 1,000,000 \). Also see Table 1 for a list of properties of the histograms where the vertex count \(N \) is variable. A C++ code for generating the tessellated 3-sphere can be found at [4]. The code requires the qhull executables for mesh generation, the OpenCV library for plotting histograms, and the OpenGL / GLUT library for visualizing the vertices.
Figure 1: 3-sphere edge length histogram, where vertex count $N = 1,000,000$. Max = 0.0565194, mode = 0.012455. curvature $K = 0.28452$.

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>Max</th>
<th>Mode</th>
<th>Max / Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>0.29473</td>
<td>0.405105</td>
<td>0.132555</td>
<td>3.05612</td>
</tr>
<tr>
<td>10,000</td>
<td>0.28821</td>
<td>0.215664</td>
<td>0.0619268</td>
<td>3.48256</td>
</tr>
<tr>
<td>100,000</td>
<td>0.28413</td>
<td>0.113452</td>
<td>0.0268951</td>
<td>4.21831</td>
</tr>
<tr>
<td>1,000,000</td>
<td>0.28452</td>
<td>0.0565194</td>
<td>0.012455</td>
<td>4.53788</td>
</tr>
</tbody>
</table>

Table 1: Properties of the histograms where vertex count N is variable.
References

https://vixra.org/abs/1812.0423

https://github.com/sjhalayka/4d_universe