
1 
 

On the Delta Function and its Derivatives 

Anamitra Palit 

Physicist, Free Lancer 

P154 Motihjeel Avenue, Flat C4, Kolkata 700074 

Email:palit.anamitra@gmail.com 

Cell: +919163892336 

Abstract 

In this writing the conventional law concerning the derivatives of the delta function and those 
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Introduction 

The conventional derivative laws in relation to the delta function and their examples have been 

analyzed to bring out certain conflicting features.  

Inconsistencies with Derivatives of the Delta Function 

We consider the fundamental  result[1][2] on derivatives of the delta function as given below 

∫ 𝑓(𝑥)𝛿𝑛(𝑥)
+∞

−∞

𝑑𝑥 = − ∫ 𝑓′(𝑥)𝛿𝑛−1(𝑥)
+∞

−∞

𝑑𝑥  (1) 

The above holds for any arbitrary function and we have the following result[3] 

𝑓(𝑥)𝛿′(𝑥) = −𝑓′(𝑥)𝛿(𝑥)  (2) 

But we have considered the same delta function for all f(x). This notion will be proved erroneous in the 

article later. 

It would be considered more reasonable to consider (1) valid for any  subinterval on (−∞, +∞) and then 

conclude(2). If the subinterval does not contain zero each side of (1) would be zero else each side would 

be the same non zero quantity. 

∫ 𝑓(𝑥)𝛿𝑛(𝑥)
+𝜖

−𝜖

𝑑𝑥 = − ∫ 𝑓′(𝑥)𝛿𝑛−1(𝑥)
+𝜖

−𝜖

𝑑𝑥   
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𝛿′(𝑥) = −
𝑓′(𝑥)

𝑓(𝑥)
𝛿(𝑥)  (3) 

∫ 𝛿′(𝑥)𝑑𝑥
+∞

−∞

= − ∫
𝑓′(𝑥)

𝑓(𝑥)
𝛿(𝑥)

+∞

−∞

 

[𝛿(𝑥)]−∞
+∞

= −
𝑓′(0)

𝑓(0)
 

0 = −
𝑓′(0)

𝑓(0)
⇒ 𝑓′(0) = 0  (4) 

Since 𝑓(𝑥) Is an arbitrary function, well behaved in relation to continuity and differentiability of course,, 

equation (4) becomes questionable. 

Equation (2) is differentiated with respect to 𝑥: 

𝑓′(𝑥)𝛿′(𝑥) + 𝑓(𝑥)𝛿′′(𝑥) = −𝑓′(𝑥)𝛿′(𝑥) − 𝑓′′(𝑥)𝛿(𝑥) 

2𝑓′(𝑥)𝛿′(𝑥) + 𝑓(𝑥)𝛿′′(𝑥) + 𝑓′′(𝑥)𝛿(𝑥) = 0 

Applying (3) on the last equation we have, 

−2𝑓′(𝑥) [
𝑓′(𝑥)

𝑓(𝑥)
𝛿(𝑥)] + 𝑓(𝑥)𝛿′′(𝑥) + 𝑓′′(𝑥)𝛿(𝑥) = 0 

𝛿(𝑥) [𝑓′′(𝑥) − 2
[𝑓′(𝑥)]2

𝑓(𝑥)
] + 𝑓(𝑥)𝛿′′(𝑥) = 0  (5) 

𝛿′′(𝑥) = −
1

𝑓(𝑥)
[𝑓′′(𝑥) − 2

[𝑓′(𝑥)]2

𝑓(𝑥)
] 𝛿(𝑥)   (6) 

𝛿′′(𝑥) depends on the nature of the test function  𝑓(𝑥) which is not an acceptable idea. 

Integrating (4) with respect to 𝑥 we obtain, 

 

∫ 𝛿(𝑥) [𝑓′′(𝑥) − 2
[𝑓′(𝑥)]2

𝑓(𝑥)
] 𝑑𝑥

+∞

−∞

+ ∫ 𝑓(𝑥)𝛿′′(𝑥)𝑑𝑥
+∞

−∞

= 0 (7) 

[𝑓′′(0) − 2
[𝑓′(0)]2

𝑓(0)
] + ∫ 𝑓(𝑥)𝛿′′(𝑥)𝑑𝑥

+𝜖

−𝜖

= 0 

Since for 𝑥 ≠ 0,𝛿(𝑥) = 0 we have 𝛿′(𝑥) = 0 and 𝛿′′(𝑥) = 0 [for 𝑥 ≠ 0]. Moreover from (5) 𝛿′′(𝑥) is a 

peaked function like 𝛿(𝑥): 𝑓(𝑥)  is expected to vary much slowly than 𝛿′′(𝑥) on an infinitesimally small 

interval – 𝜖 < 𝑥 < +휀. Therefore 
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[𝑓′′(0) − 2
[𝑓′(0)]2

𝑓(0)
] + 𝑓(0) ∫ 𝛿′′(𝑥)𝑑𝑥

+𝜖

−𝜖

= 0 

 

∫ 𝛿′′(𝑥)𝑑𝑥
+𝜖

−𝜖

= −
1

𝑓(0)
[𝑓′′(0) − 2

[𝑓′(0)]2

𝑓(0)
] (8) 

[𝛿′(𝑥)]−𝜖
+𝜖

= −
1

𝑓(0)
[𝑓′′(0) − 2

[𝑓′(0)]2

𝑓(0)
]   

−
1

𝑓(0)
[𝑓′′(0) − 2

[𝑓′(0)]2

𝑓(0)
] = 0 

𝑓′′(0) = 2
[𝑓′(0)]2

𝑓(0)
  (9) 

The above formula[represented by (9) ]is not acceptable  

We consider the following result[4] : 

𝑥𝛿′(𝑥) = −𝛿(𝑥)  (10)   

𝑥𝑛𝛿𝑛(𝑥) = −𝑛! (−1)𝑛𝛿(𝑥) 

𝑥2𝛿′(𝑥) = −𝑥𝛿(𝑥) 

∫ 𝑥2𝛿′
∞

−∞

(𝑥) = − ∫ 𝑥𝛿(𝑥)
+∞

−∞

𝑑𝑥 

⇒ ∫ 𝑥2𝛿′
𝜖

−𝜖

(𝑥)𝑑𝑥 = − ∫ 𝑥𝛿(𝑥)
+𝜖

−𝜖

𝑑𝑥 = 0 

⇒ ∫ 𝑥2𝛿′
𝜖

−𝜖

(𝑥)𝑑𝑥 = 0 (11) 

The above is true of any arbitrary interval(−𝜖, 𝜖). Therefore 𝑥2𝛿′(𝑥) should be an odd function. 

Since 𝑥2is an even function  𝛿′(𝑥) should be odd. That implies 𝛿(𝑥)should be even. 

Indeed by integration  

∫ 𝛿′(𝑥) 𝑑𝑥 = 𝑓𝑒𝑣𝑒𝑛(𝑥) 

𝛿(𝑥) = 𝑓𝑒𝑣𝑒𝑛(𝑥) 

Since a constant is an even function it may be included in 𝑓𝑒𝑣𝑒𝑛(𝑥) 
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[In general any arbitrary function may be expressed as the sum of an even and an odd function. If the 

even part is not a constant the derivative  will be the sum of an even and an odd function. ] 

Now we consider 

𝑥3𝛿′(𝑥) = −𝑥2𝛿(𝑥) 

∫ 𝑥3𝛿′
∞

−∞

(𝑥) = − ∫ 𝑥2𝛿(𝑥)
+∞

−∞

𝑑𝑥 

⇒ ∫ 𝑥3𝛿′
𝜖

−𝜖

(𝑥)𝑑𝑥 = − ∫ 𝑥2𝛿(𝑥)
+𝜖

−𝜖

𝑑𝑥 = 0 

∫ 𝑥3𝛿′
𝜖

−𝜖

(𝑥)𝑑𝑥 = 0 (12) 

The above is true of any (−𝜖, 𝜖). Therefore 𝛿′(x) should be an even function. With 𝛿′(𝑥) we have  

∫ 𝛿′(𝑥) 𝑑𝑥 = 𝑓𝑜𝑑𝑑(𝑥) + 𝐶 

 

𝛿(𝑥) = 𝑓𝑜𝑑𝑑 (𝑥) + 𝐶 

[In general any arbitrary function may be expressed as the sum of an even and an odd function. If the 

even part is not a constant the derivative  will be the sum of an even and an odd function. ] 

 

 and 𝛿(𝑥), consequently, an odd function at most with an additive constant  as opposed to what we saw 

earlier: 𝛿(𝑥)= 𝑓𝑒𝑣𝑒𝑛(𝑥), 

From (10) cannot arrive at (2) by power series technique:(10) ⇏ (2). Consequently 

Let 

𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + 𝑎𝑛−2𝑥𝑛−2 + ⋯ … . +𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 

𝑓′(𝑥) = 𝑎𝑛𝑛𝑥𝑛−1 + (𝑛 − 1)𝑎𝑛−1𝑥𝑛−2 + (𝑛 − 2)𝑎𝑛−2𝑥𝑛−3 + ⋯ … . +2𝑎2𝑥 + 𝑎1 

 

From the above expansions it is evident that 𝑓(𝑥)𝛿′(𝑥) = −𝑓′(𝑥)𝛿(𝑥) ⇏ 𝑥𝛿′(𝑥) = −𝛿(𝑥) and  

𝑥𝛿′(𝑥) = −𝛿(𝑥) ⇏ 𝑓(𝑥)𝛿′(𝑥) = −𝑓′(𝑥)𝛿(𝑥) though 𝑓′(𝑥) = 1 if 𝑓(𝑥) = 𝑥 

The reason ,as we shall see soon is , that  for each function f(x) we require a separate sequence of 

functions representing the delta function: we have to consider distributions: mapping from functions to 
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real numbers in the form of a linear functional . Even that does not help as we shall see. The delta 

function, as we know and the idea is a highlighted one in literature , is not a function in the usual sense 

of being a function. We have ignored this fact while arriving at the contradiction. 

Next we consider the standard formula[ 5] 

𝛿(𝑥) =
1

2𝜋
∫ 𝑒𝑖𝑘𝑥𝑑𝑥  (13)

+∞

−∞

 

Differentiating with respect to x, we have, 

⇒ 𝛿′(𝑥) = 𝑖𝑥
1

2𝜋
∫ 𝑒𝑖𝑘𝑥𝑑𝑘

+∞

−∞

= 𝑖𝑘𝛿(𝑥) 

𝛿′(𝑥) = 𝑖𝑥𝛿(𝑥)  (14) 

The result given by (14) stands opposed to the standard result given by (10) 

𝑥𝛿′(𝑥) = −𝛿(𝑥)  (15) 

 

The Delta Function in Formal Theory and with Applications 

We consider the formal definition of the delta function[6] as a distribution, The Dirac delta function is a 

linear functional that maps every function to its value at zero. ... In many applications, the Dirac delta 

is regarded as a kind of limit (a weak limit) of a sequence of functions having a tall spike at the origin 

(in theory of distributions, this is a true limit). 

〈δ, φ〉 = φ(0) (16) 

We have a mapping from a function to a real number[functional] 

δ: φ → φ(0)  

By way of example the mapping may be achieved as 

∫ φ(x)δ(x)dx = φ(0)
+∞

−∞

  (17) 

The above example is relevant in applications like physics . As an example[7] we may refer to the 

derivation of Helmholtz theorem where the following is considered 

∇F = −∇2U = −
1

4π
∫ D(r⃗′)∇2

1

|r⃗′ − r⃗|
dV′ = ∫ D(r⃗′)δ(r⃗′ − r⃗)dV′ = D(r⃗)  (18) 

But we have seen the serious errors with  
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∫ φ(x)δ(x)dx = φ(0)
+∞

−∞

 

when it comes to the derivatives 

 

Further Investigation[for locating the source of error] 

A distribution is a mapping from a asset of functions to real numbers. To that end we consider a 

sequence of functions 𝐺𝑛(𝑥) such that 

1. 𝐺𝑛(𝑥) ≠ 0for – 𝜖1(𝑛) < 𝑥 < 𝜖2(𝑛) else 𝐺𝑛(𝑥) = 0; 𝜖1(𝑛) > 0, 𝜖2(𝑛) > 0; 𝐺𝑛(𝑥) smooth 

functions[differentiable and of course continuous] 

2. .   𝑙𝑖𝑚𝑛→∞𝜖𝑖(𝑛) = 0; 𝑖 = 1,2; 𝑙𝑖𝑚𝑛→∞𝐺𝑛(0) = ∞;and 𝑙𝑖𝑚𝑛→∞ ∫ 𝐺𝑛(𝑥) = 1
+𝜖2(𝑛)

–𝜖1(𝑛)
 

We consider the following identity 

∫ 𝐺𝑛(𝑥) 𝐺𝑛
′ (𝑥)𝑑𝑥 =

1

2
[𝐺𝑛(𝑥)]2 + 𝐶 

Since 𝐺𝑛(−𝜖1) = 𝐺𝑛(𝜖2) = 0, then, 

∫ 𝐺𝑛(𝑥)𝐺𝑛
′ (𝑥)𝑑𝑥 = 0

+𝜀2

−𝜖1

 

If 𝐺𝑛 > 0on (−𝜖1 , 𝜖2) then  𝐺𝑛
′ (𝑥) will have both positive and negative values on (– 𝜖, 𝜖).,At some point 

– 𝜖1 < 𝑐 < 𝜖2 , 𝐺𝑛
′ (𝑐) = 0 

𝐺𝑛
′ (𝑥) will have at least two turning points 

If 𝐺𝑛(𝑥) > 0on (– 𝜖, 𝜖) then 𝐺𝑛
′ (𝑥) > 0 on the nearside of 𝑥 = −𝜖 . The peak lying on x=0 or very close 

to x=0 

 

∫ 𝑓(𝑥)𝐺𝑛
′ (𝑥)𝑑𝑥 = [𝑓(𝑥)𝐺𝑛(𝑥)]−𝜖1

0
− ∫ 𝑓′(𝑥)𝐺𝑛(𝑥)𝑑𝑥

0

−𝜖1

0

−𝜖1

 

With 𝑛 → ∞[for 𝑓(0) ≠ 0] 

∫ 𝑓(𝑥)𝐺′(𝑥)𝑑𝑥 = ±∞ − 𝑓′(0)
0

−𝜖1

 

With 𝑛 → ∞[for 𝑓(0) ≠ 0] 
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⇒ ∫ 𝑓(𝑥)𝐺′(𝑥)𝑑𝑥 → ±∞
0

−𝜖1

 

Now, 𝐺𝑛
′ (−휀1) = 𝐺𝑛

′ (휀) = 𝐺𝑛
′ (휀2) = 0 ; −휀1 < 휀 < 휀2 

∫ 𝐺𝑛
′ 𝐺𝑛 ′′(𝑥)𝑑𝑥

𝜀

−𝜀1

= ∫ 𝐺𝑛
′ 𝑑𝐺𝑛

′ = [
𝐺𝑛

′ 2

2
]

−𝜀1

𝜀
𝜀

−𝜀1

= 0; 𝐺𝑛
′ (𝜖) = 0 

𝐺𝑛
′′ will have at least four turning points two on the interval (−휀1, 휀) and two on (휀, 휀2) 

Extending our argument we conclude:𝐺𝑛
𝑠 will have at least  2s turning points  

Taylor Series Interpretation 

We carry out a Taylor expansion of 𝐺𝑛(𝑥) about 𝑥 = −휀1 

𝐺𝑛(𝑥) = 𝐺𝑛(−휀1) +
𝑥 + 휀1

1!
𝐺𝑛

′ (−휀1) +
(𝑥 + 휀1)2

2!
𝐺𝑛

′′(−휀1) +
(𝑥 + 휀1)3

3!
𝐺𝑛

′′′(−휀1) + ⋯

+
(𝑥 + 휀1)𝑛

𝑛!
𝐺𝑛

(𝑛)(−휀1) + ⋯. 

The right side is convergent each term being exactly zero if 𝐺𝑛
(𝑛)(−휀1) = 0. That implies 

𝐺𝑛(𝑥) = 0 for any x 

We rule out the possibility of derivatives of all orders being zero unless the function is  zero everywhere. 

Assume derivatives upto order m are zero . We expand about the point 𝑥 = −휀1 

𝐺𝑛(𝑥) = 𝐺𝑛(−휀1 + (𝑥 + 휀1))

=
(𝑥 + 휀1)𝑚+1

(𝑚 + 1)!
𝐺𝑛

𝑚+1(−휀1) +
(𝑥 + 휀1)𝑚+2

(𝑚 + 2)!
𝐺𝑛

𝑚+2(−휀1)

+
(𝑥 + 휀1)𝑚+3

(𝑚 + 3)!
𝐺𝑛

𝑚+3(−휀1) +
(𝑥 + 휀1)𝑚+4

(𝑚 + 4)!
𝐺𝑛

𝑚+4(−휀1) + ⋯ + ⋯ (𝐴). 

For non zero x the series will converge. The derivatives are obviously not of an unfriendly nature 
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Fo r x=0 for the same set of derivatives at𝑥 = −휀1 the right side will diverge 

𝐺𝑛(0) =
(휀1)𝑚+1

(𝑚 + 1)!
𝐺𝑛

𝑚+1(−휀1) +
(휀1)𝑚+2

(𝑚 + 2)!
𝐺𝑛

𝑚+2(−휀1) +
(휀1)𝑚+3

(𝑚 + 3)!
𝐺𝑛

𝑚+3(−휀1)

+
(휀1)𝑚+4

(𝑚 + 4)!
𝐺𝑛

𝑚+4(−휀1) + ⋯ + ⋯ . (𝐵) 

The right side of B will diverge, 𝐺𝑛
𝑚+𝑘(−휀1) remaining the same[for n tending to zero].This is 

quite unusual .This trouble ensues as an effect of the Taylor series. 

Ne3xt we consider the following 

𝑓(𝑥 + 2ℎ) = 𝑓((𝑥 + ℎ) + ℎ)  (1) 

Expanding about (𝑥 + ℎ) 

𝑓(𝑥 + 2ℎ) = 𝑓(𝑥 + ℎ) +
ℎ

1!
𝑓′(𝑥 + ℎ) +

ℎ2

2!
𝑓′′(𝑥 + ℎ) +

ℎ3

3!
𝑓′′′(𝑥 + ℎ) + ⋯ … . (2) 

Expanding about 𝑥 = 𝑥 

𝑓(𝑥 + 2ℎ) = 𝑓(𝑥) +
2ℎ

1!
𝑓′(𝑥 + ℎ) +

4ℎ2

2!
𝑓′′(𝑥 + ℎ) +

8ℎ3

3!
𝑓′′′(𝑥 + ℎ) + ⋯ … . (3) 

From (2) and (3) 

𝑓(𝑥 + ℎ) +
ℎ

1!
𝑓′(𝑥 + ℎ) +

ℎ2

2!
𝑓′′(𝑥 + ℎ) +

ℎ3

3!
𝑓′′′(𝑥 + ℎ) + ⋯ … .

= 𝑓(𝑥) +
2ℎ

1!
𝑓′(𝑥) +

4ℎ2

2!
𝑓′′(𝑥) +

8ℎ3

3!
𝑓′′′(𝑥) + ⋯ …. 

𝑓(𝑥 + ℎ) − 𝑓(𝑥) + ℎ[𝑓′(𝑥 + ℎ) − 2𝑓′(𝑥)] +
1

2!
ℎ2[𝑓′′(𝑥 + ℎ) − 4𝑓′′(𝑥)]

+
1

3!
ℎ3[𝑓′′′(𝑥 + ℎ) − 8𝑓′′′(𝑥)] + ⋯ . . = 0 (4) 

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

1

ℎ
+

[𝑓′(𝑥 + ℎ) − 2𝑓′(𝑥)]

ℎ
+

1

2!
[𝑓′′(𝑥 + ℎ) − 4𝑓′′(𝑥)] +

1

3!
ℎ[𝑓′′′(𝑥 + ℎ) − 8𝑓′′′(𝑥)]

+ ⋯ . . = 0 

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

1

ℎ
+

[𝑓′(𝑥 + ℎ) − 𝑓′(𝑥)]

ℎ
−

𝑓′(𝑥)

ℎ
+

1

2!
[𝑓′′(𝑥 + ℎ) − 4𝑓′′(𝑥)]

+
1

3!
ℎ[𝑓′′′(𝑥 + ℎ) − 8𝑓′′′(𝑥)] + ℎ[… . . ] = 0 
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With ℎ → 0 

𝑙𝑖𝑚ℎ→0𝑓′(𝑥)
1

ℎ
+ 𝑓′′(𝑥) − 𝑙𝑖𝑚ℎ→0𝑓′(𝑥)

1

ℎ
−

3

2!
[𝑓′′(𝑥)] − + ⋯ . . = 0 (5) 

𝑓′′(𝑥) −
3

2!
𝑓′′(𝑥) = 0 ⇒ 𝑓′′(𝑥) = 0 (6) 

Applying Integration by Parts 

Next we consider for very large ’n’[n tending to infinity] 𝑙𝑖𝑚𝑛→∞ ∫ 𝑓(𝑥)𝐺𝑛(𝑥)
+∞

−∞
𝑑𝑥 

∫ 𝑓(𝑥)𝐺𝑛(𝑥)
+∞

−∞

𝑑𝑥 = ∫ 𝑓(𝑥)𝐺𝑛(𝑥)𝑑𝑥 +
−𝜖1(𝑛))

−∞

∫ 𝑓(𝑥)𝐺𝑛(𝑥)𝑑𝑥 + ∫ 𝑓(𝑥)𝐺𝑛(𝑥)𝑑𝑥
+∞

𝜖2(𝑛)

+𝜖2(𝑛)

−𝜖1(𝑛)
 

Since ∫ 𝑓(𝑥)𝐺𝑛(𝑥)𝑑𝑥
−𝜖1(𝑛)

−∞
= 0and ∫ 𝑓(𝑥)𝐺𝑛(𝑥)𝑑𝑥

+∞

𝜖2(𝑛) = 0 we have 

∫ 𝑓(𝑥)𝐺𝑛(𝑥)
+∞

−∞

𝑑𝑥 = ∫ 𝑓(𝑥)𝐺𝑛(𝑥)
+𝜖2(𝑛)

−𝜖1(𝑛)
𝑑𝑥  (19) 

If 𝑓(𝑥) changes much slowly with respect to 𝐺𝑛(𝑥) on the interval −𝜖1(𝑛) < 𝑥 < 𝜖2(𝑛) 

 

𝑙𝑖𝑚𝑛→∞ ∫ 𝑓(𝑥)𝐺𝑛(𝑥)
+∞

−∞

𝑑𝑥 = 𝑓(0) (20) 

Equation (16) relates to the defining criterion for the delta function 

For the nth function 

∫ 𝑓(𝑥)𝐺𝑛′(𝑥)
+∞

−∞

𝑑𝑥 = ∫ 𝑓(𝑥)𝐺𝑛 ′(𝑥)
+𝜖(𝑛)

−𝜖(𝑛)
𝑑𝑥 = [𝑓(𝑥)𝐺𝑛(𝑥)]−𝜖(𝑛)

+𝜖(𝑛)
− ∫ 𝑓′(𝑥)𝐺𝑛(𝑥)

+𝜖(𝑛)

−𝜖(𝑛)
𝑑𝑥  (21) 

∫ 𝑓(𝑥)𝐺𝑛′(𝑥)
+∞

−∞

𝑑𝑥 = ∫ 𝑓(𝑥)𝐺𝑛′(𝑥)
+𝜖(𝑛)

−𝜖(𝑛)
𝑑𝑥 = [𝑓(𝑥)𝐺𝑛(𝑥)]−𝜖(𝑛)

+𝜖(𝑛)
− 𝑓′(0)  (22) 

 

Case1 

 

We assume  
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𝑙𝑖𝑚𝑛→∞[𝑓(𝑥)𝐺𝑛(𝑥)]−𝜖(𝑛)
+𝜖(𝑛)

= 0 

together with (17),we have the fundamental laws given by (1) 

We have from (18)  

∫ 𝑓(𝑥)𝐺𝑛′(𝑥)
+∞

−∞

𝑑𝑥 = − ∫ 𝑓′(𝑥)𝐺𝑛(𝑥)
+𝜖(𝑛)

−𝜖(𝑛)
𝑑𝑥 = −𝑓′(0) = 𝑓𝑖𝑛𝑖𝑡𝑒 

for sufficiently large ‘n’ 

⟹ 𝑙𝑖𝑚𝑛→∞ ∫ 𝑓(𝑥)𝐺𝑛′(𝑥)
+𝑥;|𝑥|𝜖

−∞

𝑑𝑥 = 𝑙𝑖𝑚𝑛→∞𝑎𝑛(𝑥)𝑏𝑜𝑢𝑛𝑑𝑒𝑑, 𝑓𝑖𝑛𝑖𝑡𝑒 

Next we consider the following theorem: 

If the integral  

∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎

  

is convergent  with  𝑓(𝑥) continuous everywhere on (𝑎, 𝑐) and then 𝑓(𝑥) > 0[𝑜𝑟𝑓(𝑥) < 0 ] cannot 

tend to infinity as x tends to 𝑐 

Proof[for f(x)>0]:If possible let 𝑓(𝑥) → ∞for 𝑥 = 𝑐; 𝑎 < 𝑐 

We consider the improper integral  

∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎

 

= 𝑙𝑖𝑚max {∆𝑥𝑖}→0 ∑ 𝑓(𝑥𝑖)

𝑛−1

𝑖=0

∆𝑥𝑖; 𝑥0 = 𝑎, 𝑥𝑛 = 𝑐 

In general∆𝑥𝑖  are unequal intervals 

But we know from our knowledge of integral calculus that the integral expressed by the above limit does 

not change if we replace the unequal intervals by the equal intervals. That is 

∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎

 

= 𝑙𝑖𝑚ℎ→0 ∑ 𝑓(𝑥𝑖)

𝑛−1

𝑖=0

ℎ; 𝑥0 = 𝑎, 𝑥𝑛 = 𝑐; ∆𝑥 = ℎ (23) 



11 
 

Now if we look at the infinite sequence expressed by ∑ 𝑓(𝑥𝑖)𝑛−1
𝑖=0 ℎ we have successively increasing 

terms in the vicinity of ‘c’ and therefore the sum of the corresponding series will be of divergent nature. 

Physically or even mathematically , we cannot think of an infinite number of terms. But we can think of 

an arbitrarily large number of terms with equal intervals ∆𝑥𝑖 = ℎ so that each successive 𝑓(𝑥𝑖)ℎ is 

greater than the previous one in the neighborhood of the singularity. In this manner we may think of 

∑ 𝑓(𝑥𝑖)𝑛−1
𝑖=0 ℎ exceeding any large speculated quantity by consider a suitably large but finite ‘n’. 

The larger the number of intervals we consider the greater the number of high values of the function that 

we take into account on the higher side of the interval towards the singularity[but x<c] 

For a large speculated[preassigned ] quantity A>0 we aspire, 

∑ 𝑓(𝑥𝑖)

𝑛−1

𝑖=0

ℎ > 𝐴 

∑ 𝑓(𝑥𝑖)

𝑛−1

𝑖=0

𝑐 − 𝑎

𝑛
> 𝐴 

∑ 𝑓(𝑥𝑖)

𝑛−1

𝑖=0

(𝑐 − 𝑎) > 𝑛𝐴 

(𝑐 − 𝑎) ∑ 𝑓(𝑥𝑖)

𝑛−1

𝑖=0

> 𝑛𝐴  (24) 

We start from a suitable a=a’ sufficiently close to c so that 𝑓(𝑥) is monotonically increasing on (𝑎′, 𝑐) 

We try for 

(𝑐 − 𝑎′)𝑓(𝑥𝑘) > 𝐴; 𝑎′ < 𝑥𝑘 < 𝑐(25.1) 

Though c-a’ may be small equation (21.1)is achievable bcause of closeness to the infinite singularity 

At the next step the interval is repartitioned to two equal  subintervals with  

(𝑐 − 𝑎′)[𝑓(𝑥𝑘1
) + 𝑓(𝑥𝑘2

)] > 3𝐴  (25.2) 

Equation (25.2) is achievable. We always do have the larger values on the second interval to combat an 

emergency. 

Then we again repartition (a’,c) into three equal subintervals such that we have,  

(𝑐 − 𝑎′)[𝑓(𝑥𝑘1
) + 𝑓(𝑥𝑘2

) + 𝑓(𝑥𝑘3
)] > 4𝐴   (25.3)  
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Equation (25.3) is achievable. We always do have sufficiently large values on the third interval to combat 

an emergency. 

 

Finally we have an equation of the type (24) 

(𝑐 − 𝑎′) ∑ 𝑓(𝑥𝑖)

𝑛−1

𝑖=0

> 𝑛𝐴  (25.4) 

The last interval is convenient for achieving (25.4) 

∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎′
 is divergent ⇒ ∫ 𝑓(𝑥)𝑑𝑥 =

𝑐

𝑎 ∫ 𝑓(𝑥)𝑑𝑥 +
𝑎′

𝑎 ∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎′
 is divergent  

  

Now 

 

(𝑐 − 𝑎′)𝑓(𝑥𝑘) 

is a finite quantity. 

We are not allowed to consider the approximation 

(𝑐 − 𝑎′)𝑓(𝑥𝑘) ≈ ∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎′

 

since the right side is infinitely large while the left side is finite: 𝑓(𝑥𝑘) is not a representative value of the 

function on (a’,c) 

[If f(x) < 0 on (a, c) then we consider ∑ f(xi)
n−1
i=0 h < −𝐴; 𝐴 > 0where A is an arbitrarily large but a 

finite quantity. We are excluding such cases where the  

∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎

 

covers infinitely large positive and negative areas on (a,c)but is convergent as a whole due to 

cancelation of infinities resulting in a finite contribution. ] 

Let us do this in a formal manner . Assume ∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎
= 𝐼 is convergent but 𝑓(𝑥) blows up at x=c 

For any 𝜖 > 0 we have 𝑁 > 0 such that 

|𝐼 − ∑ 𝑓(𝑥𝑖)∆𝑥𝑖

𝑛−1

𝑖=0

| < 𝜖  (25) 
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for𝑖 > 𝑁 

On the last interval that is for i=n-1 we can make the value of f(x) arbitrarily large if there is a singulsrity 

at x=c. The stated inequality will break down 

 

Thus we conclude that for a function continuous on (𝑎, 𝑐) the integral  

∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎

 

can converge only if f(x) does not diverge at x=c We call this our special theorem 

Examples: 

1.  

∫ 𝑡𝑎𝑛−1𝑥𝑑𝑥 = ∞[𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑡 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙]

𝜋
2

0

 

2.  

∫ 𝑡𝑎𝑛−1𝑥𝑑𝑥 = ∫ 𝑡𝑎𝑛−1
𝜋/2

0

𝑑𝑥 + ∫ 𝑡𝑎𝑛−1
𝜋

𝜋/2

= 0[𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡  𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙]
𝜋

0

 

The infinities on either side of 𝑥 = 𝜋/2 cancel out since we have contributions of opposite sign 

from either side. 

By our special theorem we claim that 𝑓(𝑥)𝐺𝑛′(𝑥) is finite 

That does not match with 

𝑥𝛿′(𝑥) = −𝛿(𝑥) 

For x=0 

0 × 𝛿′(0) = −∞ 

𝛿′(0) should be an infinity. This contradicts 𝑙𝑖𝑚𝑛→∞𝐺𝑛
′ (𝑥) =finite 

Nevertheless 

𝐺𝑛 = 𝑎𝑛𝑥 + 𝑏𝑛 (26) 

As 𝑛 → ∞, 𝑎𝑛 is bounded. Therefore 𝑏𝑛 → ∞ as 𝑛 → ∞,. 

 𝐺𝑛 becomes discontinuous at +𝜖 with an undefined derivative[right hand and left hand derivatives are 

unequal: right handed derivative is infinitely larger. The product  𝑓(𝑥)𝐺𝑛′(𝑥) has an infinitely large 

discontinuity and is not integrable. The fundamental law given by (1)will not work. 
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Case 2 

We assume for sufficiently large ‘n’ 

[𝑓(𝑥)𝐺𝑛(𝑥)]−𝜖(𝑛)
+𝜖(𝑛)

= 𝑎𝑛 = 𝑓𝑖𝑛𝑖𝑡𝑒 𝑎𝑛𝑑 𝑛𝑜𝑛 𝑧𝑒𝑟𝑜  

𝑓(𝑥) and 𝐺𝑛(𝑥) are continuous on (– 𝜖, 𝜖)  

|
𝑓(휀2)𝐺𝑛(휀2) − 𝑓(−휀1)𝐺𝑛(−휀1)

휀2 − (−휀1)
| (휀2 − (−휀1)) = 𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑜𝑛 𝑧𝑒𝑟𝑜 

|
𝑓(휀2(𝑛))𝐺𝑛(휀2(𝑛)) − 𝑓(−휀1(𝑛))𝐺𝑛(−휀1(𝑛))

휀2 − (−휀1)
| (휀2(𝑛) − (−휀1(𝑛))) = 𝑎𝑛 

|
𝑓(휀2)[𝐺𝑛(휀2) − 𝐺𝑛(−휀1)] + [𝑓(휀2) − 𝑓(−휀1)]𝐺𝑛(−휀1)

휀2 − (−휀1)
| (휀2 + 휀1) = 𝑎𝑛 

[𝑓(휀2)
[𝐺𝑛(휀2) − 𝐺𝑛(−휀1)]

휀2 − (−휀1)
+ 𝐺𝑛(−휀1)

[𝑓(휀2) − 𝑓(−휀1)]𝐺𝑛(−휀1)

휀2 − (−휀1)
] (휀2 + 휀1) = 𝑎𝑛 

𝑙𝑖𝑚𝑛→∞ [𝑓(휀2)
[𝐺𝑛(𝜀2)−𝐺𝑛(−𝜀1)]

𝜀2−(−𝜀1)
+ 𝐺𝑛(−휀1)

[𝑓(𝜀2)−𝑓(−𝜀1)]𝐺𝑛(−𝜀1)

𝜀2−(−𝜀1)
] (휀2 + 휀1) = 𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑜𝑛 𝑧𝑒𝑟𝑜 =

𝑎′[bounded] 

 

|𝑓(0)𝐺𝑛
′ (0) + 𝐺𝑛(0)𝑓′(0)|(휀2 + 휀1) = 𝑎′ 

𝑙𝑖𝑚𝑛→∞ |∫ 𝑓(𝑥)𝐺𝑛
′ (𝑥)

+∞

−∞

𝑑𝑥 + ∫ 𝐺𝑛(𝑥)𝑓′(𝑥)𝑑𝑥
+∞

−∞

| = 𝑎′ 

𝑙𝑖𝑚𝑛→∞ |∫ 𝑓(𝑥)𝐺𝑛
′ (𝑥)

+∞

−∞

𝑑𝑥 + 𝑓′(0)| = 𝑎′ 

𝑙𝑖𝑚𝑛→∞ ∫ 𝑓(𝑥)𝐺𝑛
′ (𝑥)

+𝑥:|𝑥|<𝜖

−∞

𝑑𝑥 < 𝑎′′ = 𝑓𝑖𝑛𝑖𝑡𝑒 (27) 

By our special theorem we claim that 𝑓(𝑥)𝐺𝑛′(𝑥) is finite 

That does not match with 

𝑥𝛿′(𝑥) = −𝛿(𝑥) 

For x=0 

0 × 𝛿′(0) = −∞ 

𝛿′(0) should bean infinity 
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Nevertheless 

𝐺𝑛 = 𝑎𝑛𝑥 + 𝑏𝑛 

As 𝑛 → ∞, 𝑎𝑛 is bounded. Therefore 𝑏𝑛 → ∞ as 𝑛 → ∞,. 

 𝐺𝑛 becomes discontinuous at +𝜖 with an undefined derivative[right hand and left hand derivatives are 

unequal: right handed derivative is infinitely larger. The product  𝑓(𝑥)𝐺𝑛′(𝑥) has an infinitely large 

discontinuity and is not integrable. The fundamental law given by (1)will not work. 

Case 3 

We assume  

 

[𝑓(𝑥)𝐺𝑛(𝑥)]−𝜖(𝑛)
+𝜖(𝑛)

= ∞ 

and also that both 𝑓(𝑥) and 𝐺𝑛(𝑥) are continuous on (– 𝜖, 𝜖)  

From (22) 

∫ 𝑓(𝑥)𝐺𝑛
′ (𝑥)

+∞

−∞

𝑑𝑥 

becomes divergent 

|∫ 𝑓(𝑥)𝐺𝑛
′ (𝑥)

+∞

−∞

𝑑𝑥 + ∫ 𝐺𝑛(𝑥)𝑓′(𝑥)𝑑𝑥
+∞

−∞

| = ∞ 

|∫ 𝑓(𝑥)𝐺𝑛
′ (𝑥)

+∞

−∞

𝑑𝑥 + 𝑓′(0)| = ∞ 

|∫ 𝑓(𝑥)𝐺𝑛
′ (𝑥)

+∞

−∞

𝑑𝑥| = ∞ 

|∫ 𝑓(𝑥)𝐺𝑛
′ (𝑥)

+𝜖

−𝜖

𝑑𝑥| = ∞ 

|∫ 𝑓(𝑥)𝐺𝑛
′ (𝑥)

+∞

−∞

𝑑𝑥| = ∞ 

The above integral is of divergent nature. 
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The derivative law in relation to the as given by (10) is at stake  in that and we do not have the 

fundamental theorem for the first order derivative of the delta function. The delta function  itself is at 

stake. 

To that end let us consider [for sufficiently large ‘n’, 

∫ 𝐺𝑛(𝑥)𝑑𝑥 ≈ 1
+∞

−∞

 

∫ 𝐺𝑛(𝑥)𝑑𝑥 = 𝑎(𝑥) = 𝑓𝑖𝑛𝑖𝑡𝑒 < 1
+𝑥:−𝜀𝑥<+𝜖

−∞

 

𝑙𝑖𝑚𝑛→∞ ∫ 𝐺𝑛(𝑥)𝑑𝑥 = 𝑏𝑜𝑢𝑛𝑑𝑒𝑑(𝑓𝑖𝑛𝑖𝑡𝑒) < 1
+𝑥

−∞

 

By our special theorem we claim that 𝑓(𝑥)𝐺𝑛′(𝑥) is finite 

 [We may consider ∫ 𝐺𝑛(𝑥) = 1
+∞

−∞
for all  𝑛 in place of and 𝑙𝑖𝑚𝑛→∞ ∫ 𝐺𝑛(𝑥) = 1

+∞

−∞
. The conclusions we 

have arrived at in this article remain unaffected]. 

Nested Interval Theorem for Open Intervals 

 

First we consider Cantor’ s Intersection[6] theorem[a.k.a the nested interval theorem] which applies to a 

sequence of non empty closed intervals each interval [except the first] being a subset of the previous 

one. According to the theorem there exists exactly  one element at the intersection of the closed nested 

intervals. 

Let this common element be = 𝑐 . From each subset we exclude this common element  𝑐 and create an 

open subset against every closed subset. If the subsets remained  closed after the exclusion then by 

applying Cantor’s intersection theorem again we will have another element ℎ at their intersection. 

Therefore the earlier nesting of closed subsets would have two distinct elements at their intersection 

which is not true according to the theorem: we can have only one element at the intersection for the 

nesting of closed subsets. 

Logically there are two possibilities 

1. The null set is not included in the nesting in so far as Cantor’s intersection theorem[1] is 

concerned. 

2. We have one or more element at the intersection. 

Case 1: The null set standing at the intersection means that there is no common element at the 

intersection. But any subset[excepting the first one that is the outermost one] that contains  an element 

has a superset. Every non empty subset has a corresponding superset. The nesting of non empty open 

subsets cannot be without an intersection. So this alternative[case 1] gets ruled out  
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Case 2. There is one or more element standing at the intersection of the open subsets. If we consider 

the earlier  

More on Taylor Expansion 

Next we consider the following 

𝑓(𝑥 + 2ℎ) = 𝑓((𝑥 + ℎ) + ℎ)  (28) 

Expanding about (𝑥 + ℎ) 

𝑓(𝑥 + 2ℎ) = 𝑓(𝑥 + ℎ) +
ℎ

1!
𝑓′(𝑥 + ℎ) +

ℎ2

2!
𝑓′′(𝑥 + ℎ) +

ℎ3

3!
𝑓′′′(𝑥 + ℎ) + ⋯ … . (29) 

Expanding about 𝑥 = 𝑥 

𝑓(𝑥 + 2ℎ) = 𝑓(𝑥) +
2ℎ

1!
𝑓′(𝑥 + ℎ) +

4ℎ2

2!
𝑓′′(𝑥 + ℎ) +

8ℎ3

3!
𝑓′′′(𝑥 + ℎ) + ⋯ … . (30) 

From (29) and (30) 

𝑓(𝑥 + ℎ) +
ℎ

1!
𝑓′(𝑥 + ℎ) +

ℎ2

2!
𝑓′′(𝑥 + ℎ) +

ℎ3

3!
𝑓′′′(𝑥 + ℎ) + ⋯ … .

= 𝑓(𝑥) +
2ℎ

1!
𝑓′(𝑥) +

4ℎ2

2!
𝑓′′(𝑥) +

8ℎ3

3!
𝑓′′′(𝑥) + ⋯ …. 

𝑓(𝑥 + ℎ) − 𝑓(𝑥) + ℎ[𝑓′(𝑥 + ℎ) − 2𝑓′(𝑥)] +
1

2!
ℎ2[𝑓′′(𝑥 + ℎ) − 4𝑓′′(𝑥)]

+
1

3!
ℎ3[𝑓′′′(𝑥 + ℎ) − 8𝑓′′′(𝑥)] + ⋯ . . = 0 (4) 

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

1

ℎ
+

[𝑓′(𝑥 + ℎ) − 2𝑓′(𝑥)]

ℎ
+

1

2!
[𝑓′′(𝑥 + ℎ) − 4𝑓′′(𝑥)] +

1

3!
ℎ[𝑓′′′(𝑥 + ℎ) − 8𝑓′′′(𝑥)]

+ ⋯ . . = 0 

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

1

ℎ
+

[𝑓′(𝑥 + ℎ) − 𝑓′(𝑥)]

ℎ
−

𝑓′(𝑥)

ℎ
+

1

2!
[𝑓′′(𝑥 + ℎ) − 4𝑓′′(𝑥)]

+
1

3!
ℎ[𝑓′′′(𝑥 + ℎ) − 8𝑓′′′(𝑥)] + ℎ[… . . ] = 0 

 

With ℎ → 0 

𝑙𝑖𝑚ℎ→0𝑓′(𝑥)
1

ℎ
+ 𝑓′′(𝑥) − 𝑙𝑖𝑚ℎ→0𝑓′(𝑥)

1

ℎ
−

3

2!
[𝑓′′(𝑥)] − + ⋯ . . = 0 (31) 

𝑓′′(𝑥) −
3

2!
𝑓′′(𝑥) = 0 ⇒ 𝑓′′(𝑥) = 0 (32) 
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Conclusions 

As claimed the analysis of the Delta function brings out unacceptable features in relation to the 

conventional law in regarding its derivatives.  
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