Jupiter Effect On The Inner Planets

The Author

Mr. Gerges Francis Twadrous
$2^{\text {nd }}$ Course Student-Physics Department Physics \& Math Faculty -
Peoples' Friendship University of Russia
Moscow - Russia -2010-2013
Contacts TEL +201022532292
mrwaheid@gmail.com
The Assumption Of S. Virgin Mary -Written in Cairo - Egypt - 28 ${ }^{\text {th }}$ February 2020

Abstract

Jupiter Effect On The Inner Planets Proves The Following:

- There's a light beam velocity $=1.16 \mathrm{mkm} / \mathrm{sec}$ in the solar system
- The Space is created of Energy (DISTANCE = ENERGY)
- Mercury Day Period is Created by Jupiter effect.
- The three inner planets follow Jupiter effect perfectly
- Mars is exceptional because Saturn and Jupiter effect on it.
- Jupiter Energy = The Inner Planets Energies Total

References

The Solar System Is Created Based On Light Motions
https://vixra.org/abs/2002.0535

Gerges Francis Tawdrous +201022532292

Curriculum Vitae
E-mail
Linkedln
Facebook
twitter
Quora
Academia
All my papers
http://vixra.org/abs/1902.0044 mrwaheid@gmail.com https://eg.linkedin.com/in/gerges-francis-86a351a1 https://www.facebook.com https://twitter.com/tawdrous_f https://www.quora.com/profile/Gerges-F-Tawdrous https://rudn.academia.edu/GergesTawadrous http://vixra.org/author/gerges francis_tawdrous

1- Introduction

In this paper we try to understand Jupiter \& The Inner Planets Data to discover how this data is created...

Example No. 1

Jupiter Orbital Circumference=The Inner Planets Orbital Circumferences Total (Note, Mars Orbital Circumference is used 2 times in the previous equation) Why?

Example No. 2

- Mercury moves during its day period (4222.6 hours) a distance $=720.7 \mathrm{mkm}=$ Mercury Jupiter Distance
- Venus moves during its orbital period (224.7 days) a distance $=670.4 \mathrm{mkm}=$ Venus Jupiter Distance (error 1.4 \%)
- Earth moves during its orbital period (365.25 days) a distance $=930 \mathrm{mkm}=$ Earth Jupiter Distance (error 1\%)

Why?
Example No. 3

- A light beam travels with a velocity $1.16 \mathrm{mkm} / \mathrm{sec}$ (hypothetical) will pass a distance $=4900 \mathrm{mkm}=$ Jupiter orbital circumference during 4224 seconds

But

- Mercury Day Period $=4222.6$ hours (very near to 4224 hours!)

The previous examples shows (near) data but not corresponding!
In Venus Case - for example - Venus Jupiter Distance $=670.4 \mathrm{mkm}$ but Venus orbital Circumference $=680 \mathrm{mkm}$-The difference around 1.4%
When we have difference $=1.4 \%$, does that mean the distances are equal? Because error in distance measurement for 1.4% isn't impossible -

I want to say that- we try to explain theoretically the measured data - and that means

- the theoretical explanation may have some small error with the empirical evidence as we see in any experimental method- should we consider the distances equal or not? but why it's important to know if the distances are equal or not?

This paper tries to prove a clear idea - which is -

Paper Basic Idea

Jupiter causes To create The Inner Planets Data

But this idea can be proved only if there's a light beam its velocity $1.16 \mathrm{mkm} / \mathrm{sec}$ behind this creation process.

2- Jupiter effect on the inner planets

2-1 Jupiter Orbital Circumference
2-2 Mercury Day Period
2-3 More Distances Analysis

2-1 Jupiter Orbital Circumference

We discuss here the Example No. 1

Example No. 1

Jupiter Orbital Circumference=The Inner Planets Orbital Circumferences Total In real values

Jupiter Orbital Circumference $\quad=4900 \mathrm{mkm}$
Mercury Orbital Circumference $\quad=360 \mathrm{mkm}$
Venus Orbital Circumference $\quad=680 \mathrm{mkm}$
Earth Orbital Circumference $=940 \mathrm{mkm}$
Mars Orbital Circumference $\quad=1433 \mathrm{mkm}$
So
$4900=360+680+940+1433+1433 \quad$ (error 1\%)
We simply have 2 questions
$\left(1^{\text {st }}\right)$ Why There's An Error $=1 \%$?
$\left(2^{\text {nd }}\right)$ Why Mars orbital circumference is used 2 times in the equation?
Discussion
$1^{\text {st }}$ Question answer
The error 1%, we can't discuss here, that because, in the solar system we always have found that any value is used in 2 forms (100% and 99%) - till now the geometrical reason behind we didn't catch - but many data is seen in both forms - for example
17.4 degrees (the inner planet orbital inclinations total) $\mathbf{x} \mathbf{0 . 9 9}=\mathbf{1 7 . 2}$ degrees (Pluto orbital inclination)
23.6 degrees (the outer planet orbital inclinations total) $\mathbf{x} \mathbf{0 . 9 9}=23.45$ degrees (Earth Axial Tilt)
28.66 degrees (180 degrees $/ 2 \pi$) x $\mathbf{0 . 9 9}=28.3$ degrees (Neptune Axial Tilt)

The previous data is a small part of the full list - we have to conclude that -there's some geometrical necessity to use the rate 99% of any value - which we still need to discover.
$2^{\text {nd }}$ Course student - physics Faculty - People's Friendship University - Moscow -Russia..
mrwaheid1@yahoo.com mrwaheid@gmail.com +201022532292

Why Mars orbital circumference is used 2 times in the equation?
Let's review data of example No. 2 to see better the idea...
More Data (1)

- Mercury moves during its day period (4222.6 hours) a distance $=720.7 \mathrm{mkm}=$ Mercury Jupiter Distance
- Venus moves during its orbital period (224.7 days) a distance $=670.4 \mathrm{mkm}=$ Mercury Jupiter Distance (error 1.4 \%)
- Earth moves during its orbital period (365.25 days) a distance $=930 \mathrm{mkm}=$ Mercury Jupiter Distance (error 1\%)

Regardless the errors - what about Mars?!

- Mars moves during its orbital period (687 days) a distance $=1433 \mathrm{mkm}=$ Saturn Jupiter Distance (no error)

Comment

The easy question isWhy?

- 3 inner planets define their orbital distances to be equal with their distances to Jupiter! but
- Mars defines its orbital circumference based on Saturn orbital distance! How to understand that...?

Again more Data may help

More Data (2)

- Suppose there's a light velocity $=1.16 \mathrm{mkm} / \mathrm{sec}$ and also suppose Mercury position is defined based on 50 seconds...so
- Light with velocity $1.16 \mathrm{mkm} / \mathrm{sec}$ travels a distance $=58 \mathrm{mkm}=$ Mercury orbital distance
- Mercury orbital circumference $=360 \mathrm{mkm}$ - this will be used as 360 seconds because we deal with high velocity motions - so
- 360 seconds x $0.3 \mathrm{mkm} / \mathrm{sec}$ (light known velocity) $=108 \mathrm{mkm}$ (Venus Orbital Distance)
- Light known velocity ($0.3 \mathrm{mkm} / \mathrm{sec}$) needs 720 seconds to pass $108 \mathrm{mkm} \times 2$ (Venus Orbital Diameter)
- The value $108 \mathrm{mkm} \times 2 \times 2=432 \mathrm{mkm}$ is required to produce 720 seconds $\times 2$
- ($720 \mathrm{mkm}=$ Mercury Jupiter distance) and the double value 720×2 is required for Mercury Jupiter Diameter
- The value 432 mkm will be used as a time period
- Light with velocity $1.16 \mathrm{mkm} / \mathrm{sec}$ during 432 seconds will pass 500 mkm
- Light known velocity ($0.3 \mathrm{mkm} / \mathrm{sec}$) needs 500 seconds to pass through Earth orbital distance (149.6 mkm)

But

- Jupiter Saturn Distance $=655 \mathrm{mkm}$ - this value will be used as time
- Light with velocity $1.16 \mathrm{mkm} / \mathrm{sc}$ during 655 seconds will be 760 mkm
- Light known velocity ($0.3 \mathrm{mkm} / \mathrm{sec}$) during 760 seconds will pass a distance $=227.9 \mathrm{mkm}=$ Mars orbital distance

NOTE PLEASE

- 778.6 seconds x Light known velocity $(0.3 \mathrm{mkm} / \mathrm{sec})=233 \mathrm{mkm}$ (error 2.5% with 227.9 Mars orbital distance)

Where

- 778.6 mkm = Jupiter orbital distance

DISCUSSION

- The previous data provides us interesting argument... let's try to explain it:
- Mars orbital circumference is exceptional in both cases
- ($\left.1^{\text {st }}\right)$ Mars orbital circumference doesn't equal Mars Jupiter Distance - as the other three inner planets (noting that Mercury perform the distance in its day period and not in its orbital period)
- $\quad\left(2^{\text {nd }}\right)$ Mars orbital circumference is used 2 times in the equation which shows that Jupiter orbital circumference $=$ the inner planets orbital circumferences total -
- We conclude that - there's some exceptional case with Mars- we search for the reason behind! And then we have found one -let's write it in following...
- The three inner planets orbital circumferences are defined based on distances between these planets and Jupiter (only) - so Venus is defined based on Mercury, and Earth is defined based on Venus -

But

- In Mars Case Jupiter couldn't define Mars orbital circumference - because of The Error 2.5% which we see in the notice - so this direction of distance definition was impossible to be used - so Mars Orbital Circumference is defined based on the distance between Jupiter \& Saturn - now a new player became a partner in the process
Gerges Francis Tawadrous/
$2^{\text {nd }}$ Course student - physics Faculty - People's Friendship University - Moscow -Russia..
mrwaheid1@yahoo.com mrwaheid@gmail.com +201022532292
- That necessities to use Saturn orbital distance with Mars orbital circumference in the same equation - and by that we can reach to the following:

Jupiter Orbital Circumference
Mercury Orbital Circumference
Venus Orbital Circumference
Earth Orbital Circumference
Mars Orbital Circumference
Saturn Orbital Distance

$$
\begin{aligned}
& =4900 \mathrm{mkm} \\
& =360 \mathrm{mkm} \\
& =680 \mathrm{mkm} \\
& =940 \mathrm{mkm} \\
& =1433 \mathrm{mkm} \\
& =1433 \mathrm{mkm}
\end{aligned}
$$

$$
4900=360+680+940+1433+1433
$$

Question

Why The Inner Planets Orbital Circumferences Total = Jupiter Orbital Circumference?

Because
($1^{\text {st) }}$) Jupiter is the inner planets source of energy
$\left(2^{\text {nd }}\right)$ Distance $=$ Energy

Please review

The Solar System Is Created Based On Light Motions
https://vixra.org/abs/2002.0535

A Light Beam with Velocity (1.16 Mkm Per Sec), Creates the Solar System https://vixra.org/abs/2002.0504

2-2 Mercury Day Period

Why Mercury Day $=4222.6$ hours?
A light beam with velocity $1.16 \mathrm{mkm} / \mathrm{sec}$ travels during 4224 seconds a distance $=4900 \mathrm{mkm}=$ Jupiter orbital circumference.. .
How this can effect??
This light beam is sent from Jupiter to Mercury and that makes Mercury uses the light $1.16 \mathrm{mkm} / \mathrm{sec}$ as we have seen when Mercury defined its orbital distance - where during 50 seconds the light $1.16 \mathrm{mkm} / \mathrm{sec}$ passes a distance $=58 \mathrm{mkm}=$ Mercury orbital distance...
So the light beam ($1.16 \mathrm{mkm} / \mathrm{sec}$) which pass through Jupiter orbital circumference (4900 mkm) - this same light beam is sent from Jupiter to Mercury with the value 4224 seconds - and Mercury receives this value which is seen by Mercury as 4224 hours - where the change of the rate of the time is found because of the high velocity motions
This is almost mystery!
The light beam passes Jupiter orbital circumference (4900 mkm) and how this light beam reach to Mercury?!
Mercury Jupiter distance $=720.7 \mathrm{mkm}$
$720.7 \mathrm{mkm} \times 2 \pi=4530 \mathrm{mkm}$
But

$$
4900 \mathrm{mkm}=1.0725 \times 4530 \mathrm{mkm}
$$

1.0725 is a rate produced by lorentz length contraction effect, and this rate is created by a velocity $\mathrm{v}=0.99 \mathrm{c}$ (where $\mathrm{c}=$ light known velocity $0.3 \mathrm{mkm} / \mathrm{sec}$)
The rate 1.0725 we have seen frequently in the solar system and we may remember of its data in the next page

Shortly

The light beam $(1.16 \mathrm{mkm} / \mathrm{sec})$ travels through the distance 4900 mkm sending from Jupiter to Mercury- and transferring the value 4224 seconds to Mercury which we will see as 4224 hours - but the trajectory 4900 mkm is contracted by lorentz length contraction effect (1.0725) and be seen for us as $4530 \mathrm{mkm}(=2 \pi \times 720.7 \mathrm{mkm}$ Mercury Jupiter Distance)
Why Mercury day period = $\mathbf{4 2 2} .6$ hours and not 4224 hours? please see
Mercury Motion During Its Day = Mercury Jupiter Distance. (Why?)
https://vixra.org/abs/2002.0387
Why Mercury Day Period = 4222.6 Hours? https://vixra.org/abs/2002.0347
$2^{\text {nd }}$ Course student - physics Faculty - People's Friendship University - Moscow -Russia..
mrwaheid1@yahoo.com mrwaheid@gmail.com +201022532292

The Rate 1.0725

Earth Daily Motion 2.58 mkm

$$
=1.0725
$$

1. Moon Orbital Circumference 2.41 mkm

Apogee orbital radius (406000 km)
2. \quad Apogeeorn $=1.0725$
2. Total Solar Eclipse radius (378500 km)
3. $\frac{778.6 \mathrm{mkm} \text { Juppiter Orbital Distance }}{720.3 \mathrm{mkm} \text { Jupiter Mercury distance }}=1.0725$
4. $\frac{720.3 \mathrm{mkm} \text { Jupiter Mercury distance }}{670 \mathrm{mkm} \text { Jupiter Venus Distance }}=1.0725$
5. $\frac{670 \mathrm{mkm} \text { Jupiter Venus Distance }}{629 \mathrm{mkm} \text { Jupiter Earth Distance }}=1.0725$
6. $\frac{\text { Saturn Orbital Distance }(1433.5 \mathrm{mkm})}{\text { Sarurn Venus Distance }(1325.3 \mathrm{mkm})}=1.0725$
7. $\frac{\text { Saturn Earth Distance }(1284 \mathrm{mkm})}{\text { Sarurn Mars Distance }(1205.6 \mathrm{mkm})}=1.0725$
8. $\frac{\text { Uranus Orbital Distance }(2872.5 \mathrm{mkm})}{\text { Uranus Mars Distance }(2644 \mathrm{mkm})}=1.0725$
$\frac{\text { Jupiter Orbital Circumference }(4894 \mathrm{mkm})}{\text { Neptune Orbital Distance }(4495.1 \mathrm{mkm})}=1.0725$
(10) The Planets Axial Tilts Also Use This Same Rate!
$\frac{28.3 \text { Neptune Axail Tilt }}{26.7 \text { Satrun Axail Tilt }}=\frac{26.7 \text { Satrun Axail T. }}{25.2 \text { Mars Axail T. }}=\frac{25.2 \text { Mars AxailT. }}{23.4 \text { Earth Axail T. }}=1.0725$
$2^{\text {nd }}$ Course student - physics Faculty - People's Friendship University - Moscow -Russia..
mrwaheid1@yahoo.com mrwaheid@gmail.com +201022532292

2-3 More Distances Analysis

1. Mercury is created by a period of time $=50$ seconds
2. Light beam with velocity $=1.16 \mathrm{mkm} / \mathrm{sec}$ travels for 50 seconds and perform a distance $=58 \mathrm{mkm}=$ Mercury Orbital Distance
3. Mercury orbital circumference ($58 \times 2 \pi=360 \mathrm{mkm}$)

- 360 mkm because of high velocity motion - is used as 360 seconds

4. Light beam with velocity $(0.3 \mathrm{mkm} / \mathrm{sec})$ during 360 seconds travels a distance $=$ $=108$ mkm = Venus Orbital Distance
5. 216.4 mkm (Venus orbital diameter) is a distance passed by light beam its velocity $0.3 \mathrm{mkm} / \mathrm{sec}$ during a period $=720$ seconds
6. 720 seconds (because of high velocity motion) is used as a distance $=720 \mathrm{mkm}=$ Mercury Jupiter distance -
7. Mercury Jupiter diameter ($720 \mathrm{mkm} \times 2$) needs a period $=720$ seconds x 2 which needs a distance $=216.4 \times 2 \mathrm{mkm}$
8. (the distance $216.4 \mathrm{mkm} \times 2$) will be used as a time period in the following equation $216.4 \times 2 \times 1.16=500 \mathrm{mkm}$
9. 500 mkm is used as a time period $=500$ seconds
10.Light beam ($0.3 \mathrm{mkm} / \mathrm{sec}$) needs 500 seconds to pass Earth orbital distance (149.6 mkm)
11.Still the distance 720 mkm is produced by a light beam ($1.16 \mathrm{mkm} / \mathrm{sec}$) during a period $=627$ seconds
12.Light its velocity ($0.3 \mathrm{mkm} / \mathrm{sec}$) needs 2090 seconds to pass 627 mkm where 2090 seconds is used as distance 2090 mkm = Jupiter Uranus Distance
13.But 6939.75 seconds $\times 0.3 \mathrm{mkm} / \mathrm{sec}=2090 \mathrm{mkm}-$ means light with c velocity travels during (6939.75 seconds) a distance $=$ Jupiter Uranus Distance (6939.75 days $=$ Metonic Cycle).
14.108 mkm $=$ Venus Orbital Distance - So Venus Orbital Circumference $=680$ mkm but Venus Jupiter distance $\mathbf{=} \mathbf{6 7 0 . 4} \mathrm{mkm}$ (Venus \& Jupiter positions are defined before by their distances to Mercury and Earth - that means - the distance 670.4 mkm we didn't bring it from the planets data sheet but we define it relative to Earth \& Mercury positions to Jupiter - i.e. 670.4 mkm is not a new data but a concluded data)
15.light beam with velocity 1.16 mkm passes during 670.4 seconds a distance $=778.6$ mkm (Jupiter orbital distance)
16.Also $670.4 \mathrm{mkm} \times 2 \pi=\mathbf{4 2 2 4} \mathbf{~ m k m}$ (high velocity motion uses this value as time)
$2^{\text {nd }}$ Course student - physics Faculty - People's Friendship University - Moscow -Russia..
mrwaheid1@yahoo.com mrwaheid@gmail.com +201022532292
17.Light beam with velocity 1.16 mkm travels during 4224 seconds a distance $=4900$ $\mathrm{mkm}=$ Jupiter orbital distance
18.Note Please (Mercury Day $=4224$ hours approximately- means the light motion period is transferred to Mercury motion but the rate of time is changed from 1 second to 1 hour- that's similar to Metonic Cycle 6939.75 days which we have seen before where the 6939.75 seconds in transferred into the moon motion in form 6939.75 days)
19.Light beam with velocity 1.16 mkm travels during 4900 seconds a distance $=\mathbf{5 6 7 8 . 1} \mathrm{mkm}=$ Mars Pluto Distance $(6585.39 \mathrm{mkm}=1.16 \mathrm{x} 5678.1 \mathrm{mkm})($ where 6585.39 days $=$ Saros Cycle)
20.670.4 mkm (Venus Jupiter Distance) $=1.0725 \times 627 \mathrm{mkm}$ (Earth Jupiter distance)
10. Earth orbital circumference $=940 \mathrm{mkm}$ - which is used as 940 seconds
22.A Light beam ($0.3 \mathrm{mkm} / \mathrm{sec}$) during 940 seconds passes a distance 282 mkm
23.A light beam ($1.16 \mathrm{mkm} / \mathrm{sec}$) during 282 seconds passes 327.6 mkm (which we see as lunar sidereal year 327.6 days)
24.Light beam (0.3 mkm) during 327.6 seconds pass distance $=98.7 \mathrm{mkm}$ (Uranus axial tilt $=97.8$ degrees)
25.Light beam (1.16 mkm) during 97.8 seconds pass distance $=113.45 \mathrm{mkm}$ (where $1 \mathrm{mkm}=1 \mathrm{deg}$ means $113.45 \mathrm{mkm}=113.45 \mathrm{deg}=90+23.45 \mathrm{deg}$. Earth axial tilt)
$26.149 .6 \mathrm{mkm} \times 2$ (Earth orbital diameter) is used as time value - so light with velocity ($1.16 \mathrm{mkm} / \mathrm{sec}$) during this period $149.6 \mathrm{sec} \times 2$ a distance $=346.6 \mathrm{mkm}$ where 346.6 days - the nodal year.
27.3717 mkm (Jupiter Neptune Distance) us used as time so -light with velocity $0.3 \mathrm{mkm} / \mathrm{sec}$ travels during 3717 seconds a distance $=$ Jupiter Mars distance (1.2%)
28.5127 mkm (Pluto Jupiter distance) is used as 5127 seconds where a light with velocity $1.16 \mathrm{mkm} / \mathrm{sec}$ travels during 5127 s a distance $=$ Pluto orbital distance.
But why Mars is exceptional always?!
29.655 mkm (Jupiter Saturn distance) (655 mkm will be used as 655 sec) x 1.16 $\mathrm{mkm} / \mathrm{sec}=760 \mathrm{mkm}$ (will be used as 760 seconds)

- Light beam ($0.3 \mathrm{mkm} / \mathrm{sec}$) travels during 760 seconds a distance $=227.9 \mathrm{mkm}=$ Mars orbital distance
$2^{\text {nd }}$ Course student - physics Faculty - People's Friendship University - Moscow -Russia..
mrwaheid1@yahoo.com mrwaheid@gmail.com +201022532292

