The Math Underlying the Schrodinger Equation

by Doug Jensen

Table of Contents

Page	Section	Key Formula
2	Properties of Light	$\omega = ck$
3	The energy of light	$E = \hbar \omega$
4	Modeling the behavior of light	$\Psi = e^{i(kx - \omega t)}$
5	Deriving a complex energy equation	$E\Psi = i\hbar \frac{d\Psi}{dt}$
6	Schrodinger's kinetic energy formula	$KE\Psi = -\frac{\hbar^2}{2m}\frac{d^2\Psi}{dx^2}$
7	The Schrodinger equation	$E\Psi = KE\Psi + PE\Psi$

1 Properties of light

The observed speed of light (c) is 300,000km/second.

$$c = 300,000 km/second \tag{1}$$

If we think of light as coming in waves, then the frequency is the number of waves that pass by each second.

$$f = waves/second \tag{2}$$

The wavelength (λ) can be calculated by taking the distance light travels in one second (300,000km), and dividing that by the number of waves.

$$\lambda = 300,000 km/waves \tag{3}$$

How they relate is, the frequency times the wavelength is equal to the speed of light.

$$f \times \lambda = c \tag{4}$$

$$\frac{waves}{second} \times \frac{300,000km}{waves} = \frac{300,000km}{second} \tag{5}$$

If we work in units of radians (multiply the left side of the equation by $2\pi/2\pi$ which is 1), then

$$\frac{radians}{second} \times \frac{300,000km}{radians} = \frac{300,000km}{second} \tag{6}$$

And if we multiply both sides by radians/300,000km (the inverse of the radian-length) then we get an interesting equation.

$$\frac{radians}{second} = \frac{300,000km}{second} \times \frac{radians}{300,000km} \tag{7}$$

This equation tells us that the change in time is equal to the speed of light times the change in space.

$$\Delta time = c \times \Delta space \tag{8}$$

The variables ω and k are used to represent the Δ time and Δ space respectively.

$$\omega = ck \tag{9}$$

2 The energy of light

Early in the 20th century, Albert Einstein learned through experiments, that the number of radians/second (ω) is directly proportional to the energy. More specifically, the energy (E) is equal to the constant \hbar (pronounced h-bar) times ω .

$$E = \hbar\omega \tag{10}$$

And similarly, the momentum (p) is equal to \hbar times k.

$$p = \hbar k \tag{11}$$

3 Modeling the behavior of light

Below is a fundamental representation of the behavior of light.

$$\Psi = e^{i(kx - \omega t)} \tag{12}$$

[Note the " ωt " term above is subtracted to stay consistent with accepted math, and since technically this term can be added or subtracted as long as the measurement direction is assigned appropriately.]

This is a somewhat mysterious equation, but we know some things about it. We can see that it uses the change in time and space $(k \text{ and } \omega)$ information. And since $E = \hbar \omega$ (formula 10), then

$$\omega = E/\hbar \tag{13}$$

And since $p = \hbar k$ (formula 11)

$$k = p/\hbar \tag{14}$$

So our fundamental equation can be rewritten in a form that is easier to work with.

$$\Psi = e^{i(\frac{p}{\hbar}x - \frac{E}{\hbar}t)} \tag{15}$$

4 Deriving a complex energy equation

We also know something about the derivative of Ψ (with respect to time). The first derivative of Ψ ($d\Psi/dt$) is defined to be how Ψ changes in time - which we know is measured in radians/second.

$$\frac{d\Psi}{dt} = \frac{\Delta\Psi}{\Delta t} = radians/second \tag{16}$$

So we can take the first derivative of Ψ

$$\frac{d\Psi}{dt} = -i\frac{E}{\hbar}\Psi\tag{17}$$

And then multiply both sides by $i\hbar$ to get an energy formula for Ψ ($E\Psi$) based on the number of radians/second.

$$i\hbar\frac{d\Psi}{dt} = E\Psi \tag{18}$$

$$E\Psi = i\hbar \frac{d\Psi}{dt} \tag{19}$$

$$E\Psi = i\hbar \times \text{radians/second}$$
 (20)

The energy equation by Einstein $(E = \hbar \omega)$ also says that the amount of energy can be calculated by multiplying \hbar times the number of radians/second. Only the $E\Psi$ formula carries polarity information (i).

5 Schrodinger's kinetic energy formula

Schrodinger knew the formulas for the energy $(E\Psi)$ and momentum $(p\Psi)$. He also knew that the momentum (mv) was the derivative of the kinetic energy $\left(\frac{1}{2}mv^2\right)$.

$$\frac{d}{dv} \left[\frac{1}{2} m v^2 \right] = m v \tag{21}$$

So Schrodinger may have reasoned, since the first derivative of Ψ yielded the momentum formula, one more derivative $(d^2\Psi/dx^2)$ should yield the kinetic energy of Ψ (KE Ψ).

It almost worked, however the second derivative of Ψ yields.

$$\frac{d^2\Psi}{dx^2} = \frac{c^2 m^2 v^2 \Psi}{\hbar^2} = \frac{-m^2 v^2 \Psi}{\hbar^2}$$
(22)

and it is close, but not equal to the kinetic energy.

$$\frac{-m^2 v^2 \Psi}{\hbar^2} \neq \frac{1}{2} m v^2 \Psi \tag{23}$$

The problem was, the momentum is the derivative of the kinetic energy with respect to the velocity (v). The derivative of Ψ is with respect to imv/\hbar - and the two are not equal.

$$\frac{imv}{\hbar} \neq v \tag{24}$$

So if you use Ψ to find the kinetic energy, then you need a "patch" backing out two unneeded factors of i and \hbar , one too many factors of m, and 1/2.

$$\text{patch} = \frac{\hbar^2}{i^2 m 2} = -\frac{\hbar^2}{2m} \tag{25}$$

But if you multiply the second derivative of Ψ $(d^2\Psi/dx^2)$ by the patch, you get the kinetic energy.

$$\frac{d^2\Psi}{dx^2} \times \text{patch} = KE\Psi \tag{26}$$

$$\frac{-m^2 v^2}{\hbar^2} \Psi \times -\frac{\hbar^2}{2m} = \frac{1}{2} m v^2 \Psi \tag{27}$$

$$\frac{d^2\Psi}{dx^2} \times -\frac{\hbar^2}{2m} = KE\Psi \tag{28}$$

$$KE\Psi = -\frac{\hbar^2}{2m}\frac{d^2\Psi}{dx^2} \tag{29}$$

6 The Schrodinger equation

The kinetic energy of Ψ can be added to any potential energy of Ψ ($PE\Psi$) to get the total energy.

Total energy of
$$\Psi = KE\Psi + PE\Psi$$
 (30)

The Schrödinger equation sets $E\Psi$ (the energy equation based on the radians/second) equal to his kinetic energy formula plus any potential energy (written as $v\Psi$).

$$E\Psi = KE\Psi + PE\Psi \tag{31}$$

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2}\Psi + \upsilon\Psi$$
(32)