The Math Underlying the Schrodinger Equation

by Doug Jensen

Table of Contents

Page Section

2 Properties of Light
3 The energy of light
$E=\hbar \omega$
4 Modeling the behavior of light
5 Deriving a complex energy equation $\quad E \Psi=i \hbar \frac{d \Psi}{d t}$
6 Schrodinger's kinetic energy formula $K E \Psi=-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi}{d x^{2}}$
7 The Schrodinger equation

1 Properties of light

The observed speed of light (c) is $300,000 \mathrm{~km} /$ second.

$$
\begin{equation*}
c=300,000 \mathrm{~km} / \text { second } \tag{1}
\end{equation*}
$$

If we think of light as coming in waves, then the frequency is the number of waves that pass by each second.

$$
\begin{equation*}
f=\text { waves } / \text { second } \tag{2}
\end{equation*}
$$

The wavelength (λ) can be calculated by taking the distance light travels in one second $(300,000 \mathrm{~km})$, and dividing that by the number of waves.

$$
\begin{equation*}
\lambda=300,000 \mathrm{~km} / \text { waves } \tag{3}
\end{equation*}
$$

How they relate is, the frequency times the wavelength is equal to the speed of light.

$$
\begin{align*}
f \times \lambda & =c \tag{4}\\
\frac{\text { waves }}{\text { second }} \times \frac{300,000 \mathrm{~km}}{\text { waves }} & =\frac{300,000 \mathrm{~km}}{\text { second }} \tag{5}
\end{align*}
$$

If we work in units of radians (multiply the left side of the equation by $2 \pi / 2 \pi$ which is 1), then

$$
\begin{equation*}
\frac{\text { radians }}{\text { second }} \times \frac{300,000 \mathrm{~km}}{\text { radians }}=\frac{300,000 \mathrm{~km}}{\text { second }} \tag{6}
\end{equation*}
$$

And if we multiply both sides by radians $/ 300,000 \mathrm{~km}$ (the inverse of the radianlength) then we get an interesting equation.

$$
\begin{equation*}
\frac{\text { radians }}{\text { second }}=\frac{300,000 \mathrm{~km}}{\text { second }} \times \frac{\text { radians }}{300,000 \mathrm{~km}} \tag{7}
\end{equation*}
$$

This equation tells us that the change in time is equal to the speed of light times the change in space.

$$
\begin{equation*}
\Delta \text { time }=c \times \Delta \text { space } \tag{8}
\end{equation*}
$$

The variables ω and k are used to represent the Δ time and Δ space respectively.

$$
\begin{equation*}
\omega=c k \tag{9}
\end{equation*}
$$

2 The energy of light

Early in the 20th century, Albert Einstein learned through experiments, that the number of radians/second (ω) is directly proportional to the energy. More specifically, the energy (E) is equal to the constant \hbar (pronounced h-bar) times ω.

$$
\begin{equation*}
E=\hbar \omega \tag{10}
\end{equation*}
$$

And similarly, the momentum (p) is equal to \hbar times k.

$$
\begin{equation*}
p=\hbar k \tag{11}
\end{equation*}
$$

3 Modeling the behavior of light

Below is a fundamental representation of the behavior of light.

$$
\begin{equation*}
\Psi=e^{i(k x-\omega t)} \tag{12}
\end{equation*}
$$

[Note the " ωt " term above is subtracted to stay consistent with accepted math, and since technically this term can be added or subtracted as long as the measurement direction is assigned appropriately.]

This is a somewhat mysterious equation, but we know some things about it. We can see that it uses the change in time and space (k and ω) information. And since $E=\hbar \omega$ (formula 10), then

$$
\begin{equation*}
\omega=E / \hbar \tag{13}
\end{equation*}
$$

And since $p=\hbar k$ (formula 11)

$$
\begin{equation*}
k=p / \hbar \tag{14}
\end{equation*}
$$

So our fundamental equation can be rewritten in a form that is easier to work with.

$$
\begin{equation*}
\Psi=e^{i\left(\frac{p}{\hbar} x-\frac{E}{\hbar} t\right)} \tag{15}
\end{equation*}
$$

4 Deriving a complex energy equation

We also know something about the derivative of Ψ (with respect to time). The first derivative of $\Psi(d \Psi / d t)$ is defined to be how Ψ changes in time - which we know is measured in radians/second.

$$
\begin{equation*}
\frac{d \Psi}{d t}=\frac{\Delta \Psi}{\Delta t}=\text { radians } / \text { second } \tag{16}
\end{equation*}
$$

So we can take the first derivative of Ψ

$$
\begin{equation*}
\frac{d \Psi}{d t}=-i \frac{E}{\hbar} \Psi \tag{17}
\end{equation*}
$$

And then multiply both sides by $i \hbar$ to get an energy formula for $\Psi(E \Psi)$ based on the number of radians/second.

$$
\begin{align*}
i \hbar \frac{d \Psi}{d t} & =E \Psi \tag{18}\\
E \Psi & =i \hbar \frac{d \Psi}{d t} \tag{19}\\
E \Psi & =i \hbar \times \text { radians } / \text { second } \tag{20}
\end{align*}
$$

The energy equation by Einstein $(E=\hbar \omega)$ also says that the amount of energy can be calculated by multiplying \hbar times the number of radians/second. Only the $E \Psi$ formula carries polarity information (i).

5 Schrodinger's kinetic energy formula

Schrodinger knew the formulas for the energy $(E \Psi)$ and momentum $(p \Psi)$. He also knew that the momentum (mv) was the derivative of the kinetic energy $\left(\frac{1}{2} m v^{2}\right)$.

$$
\begin{equation*}
\frac{d}{d v}\left[\frac{1}{2} m v^{2}\right]=m v \tag{21}
\end{equation*}
$$

So Schrodinger may have reasoned, since the first derivative of Ψ yielded the momentum formula, one more derivative $\left(d^{2} \Psi / d x^{2}\right)$ should yield the kinetic energy of $\Psi(\mathrm{KE} \Psi)$.

It almost worked, however the second derivative of Ψ yields.

$$
\begin{equation*}
\frac{d^{2} \Psi}{d x^{2}}=\frac{c^{2} m^{2} v^{2} \Psi}{\hbar^{2}}=\frac{-m^{2} v^{2} \Psi}{\hbar^{2}} \tag{22}
\end{equation*}
$$

and it is close, but not equal to the kinetic energy.

$$
\begin{equation*}
\frac{-m^{2} v^{2} \Psi}{\hbar^{2}} \neq \frac{1}{2} m v^{2} \Psi \tag{23}
\end{equation*}
$$

The problem was, the momentum is the derivative of the kinetic energy with respect to the velocity (v). The derivative of Ψ is with respect to $i m v / \hbar$ - and the two are not equal.

$$
\begin{equation*}
\frac{i m v}{\hbar} \neq v \tag{24}
\end{equation*}
$$

So if you use Ψ to find the kinetic energy, then you need a "patch" backing out two unneeded factors of i and \hbar, one too many factors of m, and $1 / 2$.

$$
\begin{equation*}
\text { patch }=\frac{\hbar^{2}}{i^{2} m 2}=-\frac{\hbar^{2}}{2 m} \tag{25}
\end{equation*}
$$

But if you multiply the second derivative of $\Psi\left(d^{2} \Psi / d x^{2}\right)$ by the patch, you get the kinetic energy.

$$
\begin{array}{r}
\frac{d^{2} \Psi}{d x^{2}} \times \text { patch }=K E \Psi \\
\frac{-m^{2} v^{2}}{\hbar^{2}} \Psi \times-\frac{\hbar^{2}}{2 m}=\frac{1}{2} m v^{2} \Psi \\
\frac{d^{2} \Psi}{d x^{2}} \times-\frac{\hbar^{2}}{2 m}=K E \Psi \\
K E \Psi=-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi}{d x^{2}} \tag{29}
\end{array}
$$

6 The Schrodinger equation

The kinetic energy of Ψ can be added to any potential energy of $\Psi(P E \Psi)$ to get the total energy.

$$
\begin{equation*}
\text { Total energy of } \Psi=K E \Psi+P E \Psi \tag{30}
\end{equation*}
$$

The Schrodinger equation sets $E \Psi$ (the energy equation based on the radians/second) equal to his kinetic energy formula plus any potential energy (written as $v \Psi$).

$$
\begin{align*}
E \Psi & =K E \Psi+P E \Psi \tag{31}\\
i \hbar \frac{\partial \Psi}{\partial t} & =-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}} \Psi+v \Psi \tag{32}
\end{align*}
$$

