The Seiberg-Witten equations for spin 3/2

A.Balan

February 24, 2020

Abstract

We define the Seiberg-Witten equations for spin $3 / 2$ with help of the Rarita-Schwinger operator.

1 The Seiberg-Witten equations

For a four-manifold with riemannian metric (M, g), we may define the Seiberg-Witten equations which are written for spin $1 / 2$ particules [F]:

$$
\begin{gathered}
\mathcal{D}_{A} \psi=0 \\
F(A)_{+}=\omega(\psi)
\end{gathered}
$$

with (ψ, A), a spinor and a connection for the line bundle of the spin-c structure.

$$
\omega(\psi)=<(X Y-Y X) \cdot \psi, \psi>
$$

2 The Seiberg-Witten equations for spin 3/2

For a particule of spin $3 / 2$, we may define the Seiberg-Witten equations with help of the Rarita-Schwinger operator $\mathcal{D}_{A}^{R S}$ ([BT] p.296), with the connection:

$$
\tilde{\nabla}^{A}=\nabla^{A} \otimes 1+1 \otimes \nabla
$$

over the fiber bundle $\Sigma \otimes T M$:

$$
\begin{gathered}
\tilde{\psi}=\sum_{a} \psi^{a} \otimes e^{a} \\
\sum_{a} e^{a} \cdot \psi^{a}=0
\end{gathered}
$$

with $\left(e^{a}\right)$, an orthonormal basis of the tangent fiber bundle and $\psi^{a}, 1 / 2$ spinors.

$$
\omega(\tilde{\psi})=\sum_{a}<(X Y-Y X) \cdot \psi^{a}, \psi^{a}>
$$

this definition doesn't depend on the choice of the basis $\left(e^{a}\right)$. The spin $3 / 2$ Seiberg-Witten equations are:

$$
\begin{gathered}
\mathcal{D}_{A}^{R S} \tilde{\psi}=0 \\
F(A)_{+}=\omega(\tilde{\psi})
\end{gathered}
$$

References

[BT] I.M.Benn \& R.W.Tucker, "An Introduction to Spinors and Geometry with Applications in Physics", Adam Hilger, London, 1987.
[F] T.Friedrich, "Dirac Operators in Riemannian Geometry", GSM vol.25, AMS, Rhode Island, 2000.

