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     Abstract 

   Author develop ideas of Global Optimization offered in article “Methods of the Global Optimization by 

Deformation of Functions” [9]: A new method of optimization by means of a redefinition of the function over a wider 

set and a deformation of the function on the initial and additional sets is proposed. 

    The method (a) reduces the initial complex problem of optimization to series of simplified problems, (b) finds the 

subsets containing the point of global minimum and finds the subsets containing better solutions that the given one, 

and (c) obtains a lower estimation of the global minimum.  

----------------------------------  
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§1. α – functions over arbitrary set. 

A). The special case of β-function is α-function [9] . It is defined over set Z=X×Y and has the following properties: 
      1) There exist subset K Z with projection K on Xi  pr1K = X*. 

       2) 0),(~ =yx  on K. 

  Theorem 1.1. Assume ),(~ yx  is  ~ -function and exist the point of global minimum ** Xx  . 

Then the element x  is point of the global minimum of object function I(x) over set X* if and only if there exist 

),(~ yx  such that: 

1) KyxZyxyxxIyxJ += ,)2;,)],()([inf),(  . 

Proof: As Kyx , , then 0),( =yx  and 

)(inf)],()([inf)],(~)([inf),(
*
xIyxxIyxxIyxJ

XKZ
=+=+=  . 

Q.E.D. 

  One may made vice versa. Define set },,0),(~:,{1 YyXxyxyxK ==  . Find 
111 KprX = . Then x  is 

the point of minimum I(x) over X1, if   1, Kyx   . 

   The special case of ~ -function is α-function defined over Z and such that α(x,y) = 0 over X* for all .Yy  

  The following theorem is important: 

  Theorem 1.2. Let us assume α(x,y) = 0 over X* for all  Yy and there exist  ** Xx  . 

 The element x  will be the point of global minimum of objective function I(x) over X* if there exist function α (x,y) 

such that 

1)  *)2;,)],()([inf),( XxZyxyxxIyxJ +=    .      (1.1) 

Proof: As *Xx , then 0),( =yx  and 

)(inf)],()([inf)],()([inf),(
*
xIyxxIyxxIyxJ

XXZ
=+=+=  .   Q.E.D. 

 If y is not constant, one can use it (the function ),( yx from y) for getting *Xx . 

  Theorem 1.3. ~  and α – functions exist and their number is infinite. 
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  Theorem 1.4. (Estimate). If in (1,1) *Xx , we have a lower estimation of the objective function I(x) on X*: 

                               YyallforxIyyxJ  )()),(( . 

 Proof is same [9]. 

 One can get this estimation from 0),( =yx  on set X* for all Yy and Principle of Extension1 [16], because 

XX * . 

------------------------ 

The Principle of extension state: any extension of set, which you find on a minimum of functional, can only decrease 

on a minimum of an objective function (can only decrease value of a minimum). 

  The dependence J(x,y) from y one may use for improving of estimation. In particular, one can take α = α(x). Then 

from theorems 1.2, 1.3 one can get the following consequences: 

  Consequence 1. Assume α(x) = 0 on X* and exist ** Xx  . Element x  is point of a minimum of the objective 

function I(x) on X* if and only if the exist α(x) such, that 

1)  *)2;)],()([inf)( XxXxyxxIxJ +=    .      (1.1’) 

Consequence 2. If  IJthenXx
XYX *

infinf,* =


 . 

  As far as α-function is the particular case β-function consequently the theorem 1.1 of [9] is right in this case. 

  Theorem 1.5. Assume x  is point of global minimum of Problem 2:  

                                    XxxxIxJ += )],()(inf[)(  . 

   Then: 1) The points of global minimum of Problem 1 are in the set   

                          }:{,**  == xMwhereXMM  ;   

             2)  Set  IJIJxNwhereXNN ++== :,** , contain same or better solution 

that is in N  the object function )()( xIxI   ; 

    3)  Set   = :,** xPwhereXPP  contains same or worse solutions  

         (that is )()( xIxI     in P ). 

The same way for this case we can be formulated the Theorem 1.1  

Since the set 
*X is selected by equal 0)( =x  we get from Theorem 1.5 the consequences: 

        .,0)(:3 * PXthenxIfeConsequenc    

.,0)(:4 * MXthenxIfeConsequenc   

.,0)(:5 *XxthenxIfeConsequenc =  

From Theorems 1.2 – 1.4 and Consequence 1 we get:   

  Algorithm 4. We take the bounded of below functional (objective function) defined  on X*Y, find minimal  

)(yxx =  of Problem 2: XxI + ,)(inf    or minimal in implicit form 0),( =yx . We solve together the system 

equations (combining equations of α- function): XxI + ,)inf(  . Then value x  - root pf this system is the 

absolute minimal of Problem1: XxI + ,)inf(  . 

Algorithm  4’ (solution by choice of αfunction). 



  We take the bounded of below functional α defined on X (or X*Y), Solve the Problem 2: XxI + ,)(inf  . If 

*Xx , we get minimal  of Problem 1, if *Xx , we get the estimation below )()( *xIxJ   of value of the 

objective function I(x) on set *X and we get the sets M, N, P. 

Comments:  1. If the admissible set *X allocates by functional ( ) 0=xFi  , you can find the  α  functional in form 

( ) ( )xFx ii =  (here i means sum), where ( )xi  are some function of x. 

2. If the admissible set allocate by functional ( ) 0 xj , you can find α – functional in form  

                                                ( ) ( ) ( )  ,xxx lll +=  

where ( )xl  are some function of x, or in form 

                                                         ( ) ( ) ,xx ll =  

where ( ) 0x  and it is fulfilled the condition ( ) ( ) 0 xx ll  on *X . 

3. Assume there is some α –functional and element *Xx such XxxxIxJ += )],()(inf[)(  . Then any 

element *

1 Xx  and is satisfying the condition 

                                                 ( ) ( ) ( )  .,inf1 XxxxIxJ +=      (1.1”) 

is point of the absolute minimum the functional I(x)  on *X and any point of  the absolute minimum the functional 

I(x)  on *X  satisfy the condition (1.1”). 

   This direct statement follows immediately from condition 1. 

We proof the converse. Since the global minimal *

1 Xx  , it means ( ) 01 =x  , then  

                            ( ) ( ) ( ) )]()([inf)(inf 11 *
xxIxJxJxIxI

XX
+==== .  

Q.E.D. 

  Thus, if it is existing one element which satisfy (1.1) then all rest minimal elements of Problem 1 must satisfy it. 

  I illustrate the idea of α-functional the next sample. 

Let us take some function f(x) definite on interval [a, b]. Digital values ],[ ban  are admissible for it. We want 

find the minimum of this function. The addition member (α –functional) do not change f(n) in points n, but 

deforms f(x) in gaps between n (see fig. 2.1). 

                                                 

                                                                         Fig. 2.1. 

If α – functional is “good”, then .)(inf)]()([inf
],[],[
xfxxf

baxbax 
+  If in addition nx = , then we get the minimum 

of Problem 1. 

  Remark: There are different ways to solve problems by the α-functional: 



a) You can take the known function as α-functional. 

b) You can take α-functional as unknown function and find it together with the point of minimum. 

c) You can take α-functional as function α = α(x,y) where α is known function but y = y(x) is unknown function of x. 

You must find it together with the point of minimum. 

 Let us consider the example. We take as example the non-good the functional which is difficult to solve by 

conventional method. 

 

  Example 1.1. Find the minimum of function 

)2.1(...},2,1,0:5.0{
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It is difficult to apply the known methods here because the functional is defined on digital set. The current methods 

offer only the calculation of all *Xx . But number of *X equals infinity and calculation may be meaningless. 

  Let us to solve this example by the offered method. Take α(x) in form 

      .
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 You can see that α(x) = 0 in *X because for x = 0.5πn  .0sin2sin,...,2,1,0 === nxn   

Let us to create the general functional 

.
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   Here the variable x is uninterrupted and - ∞ < x < ∞ (set X) 

   The additive α(x) allows to change the functional (1.2) to simple form 

.sin1
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  This general functional is simple. His minimum may be found the conventional method of theory the function one 

variable.  Here x  = - π/2 , *Xx  for 025.1,1 −== In . Consequently, that is absolute minimum (and sole) of 

initial functional (1.2). 

  We can apply an analogical method for finding of minimum on x the next function: 

,...}.2,1,0:5.0{,1.05.0)cos(coscos22cos2cos5.0cos *2 2

===−++−+= − nnxXexxxI x          

Here φ is given, x is digital. Let us take  2sin2sin5.0 x−= . After this we can change our functional J = I +  α  to 

simple form:  xeJ x 2sin1.0
2

+−= − . The point of absolute minimum this task (Problem 2) is x = 0. This point is in 

allowable set *X  for 0=n . That means 0=n  is point of the absolute minimum od the initial Problem 1. 

  The reader can think: if the allowable numerical set is limited we can use the conventional Lagrange’s method [12]. 

Let us show: that is not correct. 

   Example 1.2. Find minimum of functional: 

                               }3,0{3 *23 ===+−= xxXonxxxI .    (1.3) 

 Let us to write the Lagrange’s function  

                                   )3(23 21

23 −+++−= xxxxxF  ,  

where 
21 ,   are LaGrange’s factors. Find the first derivative   



                                           
21

2 263  +++−= xxF  . 

Substitute to here x = 0 , x = 3 and write the  equations .0)3(,0)0( == FF  We find from these equations 

21 ,  . Find the second deviation .66 −= xF  When x = 0 the function .06)0( −=F  

When x = 3 the function .012)3( =F  Consequently x = 0 is the point of maximum, x = 3 is the point of minimum. 

Let us check up. Substitute x = 0 and x = 3 in (1.3). We find I(0) = 0, I(3) = 6 . 

We see the LaGrange’s method gives the opposed result: it declare the point of minimum as the point of maximum, 

but the point of maximum as the point of minimum. In here it is violating one condition of LaGrange’s method: The 

number of additional equations is more of number of variables. This example is shows: this violation for LaGrange’s 

method is unacceptable. 

   Let us to solve this example by the offered method. Take the α(x) in form 

                                                   α = x(x-3)(2/3-x) . 

Then 

    03/4,0,03/4),3/2)(3(23 *23 ====−−++−=+= JXxxJxxxxxxIJ  . 

From Consequence 1 the point 0=x is absolute minimum of functional (1.3). That shows the method of  α – 

functional has more application then the LaGrange’s method. 

 

  Example 1.3. Find minimum of integral 

             }400,...,2,1:10{)10tg(ln
310

3*3 ===−= 
−−

−− nnaXondttI

a

       (1.4) 

Here the interval of integration is discrete. The direct search is difficult because integral (1.4) cannot be presented by 

simple function and it not have of tabulations.   

  Let us to find α-functional in form:  a36 10sin10−−=  . You see on *X  the function α(x) = 0. Further 

          

.10sin
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  (1.5) 

As 4.010 3 − x , then J  > 0 into this interval. That means the root is single and 250=n  is point of the 

absolute minimum. 

  Analogically we find the minimum of other integral which cannot be presented in simple functions 

               }105.1...,,1,0:10{]10)[sin( 33*

0

53 === +−= −− nnaXondttI
a

 . (1.6) 

Here is .1000;10sin10sin10 383 == −− na  

Example 1.4 . Find the minimum of integral 

      }...,2,1,0:10{20
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+= − nnaXondta
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.   (1.7) 

 Here the under integral function is discrete. The integral from this function cannot be presented as elementary 

functions. 



  Let us take  +== − IJa,10sin10 323 . Then  
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      (1.8) 

  This derivative not exist for *0 Xa = .                         

)00(;0,0;0,0  aforJorJaforJaFor  . 

Consequently 0=n  is point of absolute minimum. 

B) Consider the case when the point of optimum ** Xx  not exist, but exist the sequence such that 
→

=
n
n mxI )(lim . 

This sequence is named the minimizing sequence (see [9] of Ch.1). 

Similarly point A we can show that consequence 1 can be generalized in this case. 

Consequence 1’. Let us α(x) = 0 only on X*, For minimizing sequence  Xxn}{ is necessary and sufficient the 

existing of function α(x) such that 

                                  .)],()(inf[)]()([lim XxxxIxI nn
n

+=+
→

   (1.9) 

The sufficiency of this consequence is same the lemma in [2] and J(x) = L in [2]. 

   We can generalize remark 3 of item 1 in this case: If exist α function and one sequence  Xxn}{ which satisfy 

(1.9), then the any sequence  Xxn}{  which satisfy (1.9) is the minimizing sequence. And on the contrary any the 

minimizing sequence satisfy the condition (1.9).                                              

                            2.  α – function in Banach space. 

Let us to apply Theorem 1.2 to optimal problem is described in Banach space by equation 

                                ,)(,)(,,),( 221121 xtxxtxtttuxf
dt

dx
===    (1.10) 

where x, f(x,u) – element complete  linear normed space X1 and X2 respectively and  

TtttXX == ],[, 2112
 is segment of real axis. 

  Let us name the permissible control the measurable limited function (in term [1], p.85)with value Uu , where U 

is set in arbitrary topological space. In particular the set U may be metric, closed and limited. Let us assume that for 
any control u(t)the equation (1.10) has single solution x(t) with 

1)( Xtx   for almost all ],[ 21 ttt , where x(t) is 

continuous almost everywhere differentiable on function on ],[ 21 ttt . 

  Operator f(x,u) is defined on the direct product X×U . One is continuous and bounded.  Boundary conditions are 
given t1, t2, x(t1) = x1, x(t2) = x2. 

  State the problem: Find the admissible control which transfers the system from given initial state in given final 
state with function  

                                                                  
=

2

1

),(0

t

t
dtyxfI

     (1.11) 

has a minimum. 

    Let us the set of the measurable functions u (t) is denoted V: set of the continuous, almost everywhere 

differentiable on (t1,t2) the functions x (t) is denoted D. Set of couple x(t), u(t) having named over properties and 



almost all satisfied the equation (1.10), we name admissible and denote Q. It is obvious  .VDQ   

    Assume ),( xt = is the some unequivocal continuous differential function defined on X×T . We name it the 

characteristic function. We will find the α – function in form 

                                        
dxuxfx

t

t
x )],([

2

1

−=  
      (1.12) 

Here x
x




=




is particular deviation of Freshen. One is linear function. The * is  sign of composition. Obvious that 

request of α-function is performed.  

  Compose the generalized function I = J + α and produce the function txx  += 
 we get 

                  
 +−=−−+−= BdtdtfftxttxtJ xt

t

t
1201122 )()](,[)](,[

2

1

 
   ,   (1.13) 

where ffB xt  −−= 0
. Because the set Q is different from the set D×V only that couple x(t), u(t) satisfy almost 

every where (1.10). For α-function in form (1.12) with according of Theorem 1.2 we can the initial Problem 1 (find 

the minimum (1.11) on Q) replace the Problem 2 – find minimum (1.13) on the broader set D×V. In this set the x(t), 

u(t) not bind  the equation (1.10). So, we have 

                                         
dtuxtBJ

t

tVtuDtx




+−=
2

1

),,(inf
)(,)(

12 
.    (1.14) 

  Theorem 1.6. If function )(tu getting from solution of problem 
dtB

t

tVtuDtx




2

1

inf
)(,)(   is Vtu )( ,   

that it is same almost everywhere the function getting from solution the problem  

dtB
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Vtu
Dtx





2

1
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,)(
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1

infinfinf
)()(,)(          (1.15)  

Proof. Assume the contrary: 
)(inf)( *
uBuB

Uu


 on subset of interval [t1, t2] with measure not equal zero. In this 

case   
dtuBdtuBuBuB

t

t

t

t
)()(i.e.)()(

2

1

2

1

**

 
on the subset. This contradict: the function )(* tu made the 

minimum for integral 
,

2

1

dtB
t

t  . 

From requirement (1.14) and Theorem 1.6 we have 

                                       
dtuxtBJ

t

t VuDtx




+−=
2

1

),,(infinf
)(

12 
     (1.16) 

If function )](),([ tutx  is such that absolute minimum of Problem (1.16): Qtutx )(),(


, then ααaccording to 

Theorem 1.1 functions �̄�(𝑡), �̄�(𝑡) are absolute minimum of the initial Problem. 

   So, we proofed  

  Theorem 1.7. To couple function were the absolute minimum the function I ,  it is sufficient the existing the 

characteristic function  ),( xt  such that  

QtutxdtuxtBdtuxtBuxtBuxtB
t

tDtx

t

tUu

== 


)(),()3;),,(inf),,()2;),,(inf),,()1
2

1

2

1 )(



   (1.17). 



In particular, if take htp )(= , where p(t) is linear function 1Xh , then from item 1 and stationary condition 

item 2 [1.17] we get 

                                       
x

H
xpuxtHuxtH

Uu 


−==



)(,),,(supsup),,( 

,   (1.18) 

where 
).,(),()( 0 uxfuxftpH −= 

 

Assumed xH  /  is Fréchet derivative, which is continuous. As we see the necessary condition of Problem 2 

following from (1.17) is same the necessary condition of Pontriagin principal of maximum generalized in Banach 

spaces. 

3. Design of α-function for allowable subset of two function connected by logical conditions 

  Assume two functions F1(x) and F2(x) are refinished on the set X. Allowable are only points xX and functions F1 

and F2 which are connected the logical conditions. Assume F1(x) = 0 is “true” and F2(x) ≠ 0 is “false’. The five main 

logical connections (↔, y, v, ʌ, ~)   ( ,,,,  y ~) are presented in next tables: 

 F1 F2 F1↔F2 

  t   t      t 

  t   f      f 

  f   t      f 

  f   f      t 

Double implication 

F1 F2 F1 y F2 

  t   t      f 

  t   f      t 

  f   t      t 

  f   f      f 

          disjunction in the exclusive sense 

                                              

F1 F2 F1 ѵ F2 

  t   t      t 

  t   f      t 

  f   t      t 

  f   f      f 

disjunction in the sense of a non-exclusive 

 



F1 F2 F1 ʌ F2 

  t   t      t 

  t   f      f 

  f   t      f 

  f   f      t 

Conjunction 
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=
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In this case the α-function we can search in form: 

                           

|],sign|1[()},(~)(:{)5

,)},()(:{)4

,)},()(:{)3

|],)(sign|1[)},()(:{)2

|],)(sign|1)[()},()(:{)1

21

221121

2121

2

2

2

1221121

21221121

FpxFxFxX

FpFpxFxFxX

FpFxFxFxX

FFpFFpxFyxFxX

FFFpFpxFxFxX

−==

+==

==

+−+==

−+==





















 

Here p, p1, p2 are some function x. 

It is using these five connections we can create all other complex logic statements. 

        §2. The general principle of reciprocity the optimization problems 

  Let us suppose we want to solve the optimal problem Ch.1 §4 [9]: 

                                            mixfxfI i ,...,2,1,0)(,)(0 === ,    (2.1) 

Design general function in form 

                                                   
=

=
=

ni

i ii xfyxJ
0 ,

)(),(  ,     (2.2) 

where λi (x,y) arbitrary functions of x, y. 

  Assume )(yx  is absolute minimum (2.2) on X. 

                            The general principle of reciprocity the optimization problems. 

 1. For any Yy the point of an absolute minimum of the function J (2.2) is the point of the absolute minimum 

any function 



                               )forsumno(,...,1.0,)().( jmjxfyx jj =   ,  (2.3) 

for limits in form 

               )forsumno(,,,...,1,0,))(()),((),( ijimiyxfyyxyx iii ==  .  (2.4) 

Any numbers of equality (2.4) you can change by non-equalities   

                                        ))(()),((),( yxfyyxyx iii   .    (2.5) 

  2. For any Yy the point of the absolute minimum of the function J (2.2) is point of the absolute minimum any 

sum the functions 

                                                   )(),( xfyx
j

jj       (2.3)’ 

for restrictions absent in sum (2.3) 

               )forsumno(,,,...,1,0,)(()),((),( ijimiyxfyyxyx iii ==  .  (2.4)’ 

Any numbers of equality (2.4)’ you can change by non-equalities  (2.5). 

  Proof.  

  1) For any function (2.3) for conditions (2.4) the Theorem 1.2 is made. The point )(yx  is point of its absolute 

minimum. As every function reaches the global minimum, obvious, the change equality (2.4) by restrictions (2.5) not 

influence to minimum. The point 2 is proofed similarly. Principle is proved. 

Consequence 1.   

Magnitude )),(( yyxJ  is the lower estimation of any function from (2.3), (2.3)’ if part or all equalities (2.4), (2.4)’ 

change equalities in form 

                                                     0)(),( =xfyx ii      (2.6) 

Consequence 2.  In case corresponded (2.6) the absolute minimum of any functions (2.3) are located in set 

                   ))(()),((()(),(:{)( 11 yxfyyxxfyxxyM i

m

ji
i ii

m

ji
i ij 


=


= =    (2.7) 

Consequence 3. If possible the solution of Problem (2.1) by Algorithm 4, there are y such that 

                                                  )forsumno(0)(()),((( iyxfyyx ii    (2.8) 

  From the existence of solutions (2.1) follows that 0)( =xfi . So ii f  is minimum, than (2.8) is obvious. 

       §3. Applications α-function to well-known Problems of optimization 

1. Problem the searching of conditional extreme the function of the limited number variables. 

 It is given 

                                     nmixfxfI i === ,...,2,1,0)(,)(0    (3.1) 

Here x is n-dimensional vector given in some numerical open region of n-dimensional space X*.  

Let us take the α-function in form 



                                           mixfxp ii ,...,2,1,)()( ==     (3.2) 

(repeated indexes mean summarization). Here pi(x) are functions x, given on X:  

                                      .},0|)(|:{ *

1

* XXxfxX
m

i i ===  =
   

Let us to design generalized functional )()()( 0 xxfxJ += take some pi(x) and sole the problem  

.,)(inf XxxJ  From this solution the Problem 2, according Theorems §1, we can get the following information 

about Problem 1: 

1) If  xXx than,  is absolute minimum of Problem 1 (consequence 1, §1).   

2) If  Xx , then:  

    a) )(xJ  is the lower estimation of function fo(x) on X* (Theorem 1.4). 

    b) For  xx 0)(  is located in set )}()(:{ xxxP  = (consequence 3, §1). 

    c) For  xx 0)(  is located in set )}()(:{ xxxM  = (consequence 4, §1). 

   d) Set  = XNN where }22:{ 00  ++= ffxN  contains the equal or worse solutions  

       (Theorem 1.5). 

   As we see even, if Xx our computation is useful. We received the lower estimation and narrow the region for 

searching of the optimal solution. Take row of αi we can get the solution one of the Problems a, b, c, d or facilitate 

the solution of Problem a (see Ch, 1, §1 [9]). 

   Look your attention: the offered method does not require continuity and differentiability of the functions f0(x), fi(x) 

in contrast to the classical method of Lagrange multipliers. The method can be applied to non-analytical function, for 

example, to the functions definite on the discrete set and extremal problems of the combinatorics (see Ch. 10).  

2. Application the Theorems §1 to optimal problems described the conventional differential 
equations. 

 
Assume the moving of object is described by system of the differential equations 

                                     ,],[,,...,2,1,),,( 21 ttTtniuxtfx ii ===    (3.3) 

where x(t) –n-dimensional continuous piecewise differentiable function, x ϵ G(t) ; u(t) – r-dimensional functions 

continuous everywhere on T, except limited number of points  where one can have discontinuity of the first kind  u 

ϵ U(t). Boundary values t1, t2 are given, x(t1), x(t2) ϵ R.     

  Optimal function is 
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  Functions F(x1,x2), fi(x,u,t), i = 0,1,…,n are continuous, F(x1,x2)>- ∞.  Set of the continuous almost everywhere 

differentiable functions x(t)  with x ϵ G(t) we designate D. Set of the piecewise continuous (they can have the 

discontinuity of the first kind) functions u(t) such that u ϵ U(t) we designate V. Couple x(t), u(t) have named over 

properties and almost everywhere satisfy the equations (3.3) we name allowable and designate Q, VDQ  .    

  Enter in our research n single-valued functions λi(t.x)  i = 1,2,…,n. which are continuous and have continuous 

derivatives  on TG. Let us to take the α-function in form 
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 It is obvious α = 0 on Q. Let us design the general function J = I + α , integer the term 
iix by part and exclude 

ix by 

(3.3). We get 
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Designate  
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Apply to (3.6) Consequence 1 §1. Here the Q is X* and D x V is X (see Consequence 1 §1). Since now the couple of 

functions x(t), u(t) from DxV (having ends in R for condition )(),(,)(,)( 2211 txxtxxVtuDtx == ) are not 

connected by the equations (3.3) we can write  
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and final 

                                                       
 

+=
2

121 ,,
infinf

t

t UuGxRxx
BdtAJ

    (3.7) 

So we proofed the Theorem 3.1: 

The couple vector-function )(),( tutx  will be point of absolute minimum of function (3.4) if it is exist n 

differentiable λi(t,x) such that: 
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 Note: That is sufficient condition only. That cannot be a necessary condition because we don’t know advance 

about an existence of λ(t,x).  

  From (3.8) it is follow: if we find at least one solution of an equation in particular derivations having n-unknown 

functions λi(t,x) : 
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for boundary condition A = const, then points 1, 2 of the Theorem 3.1 will be executed. Any unsuccessful λi(t,x) (if 

Qtutx )(),( ) with according Theorem 1.4 gives the lower estimation of the global minimum.   

   Assume, for example, 0nx *. Substitute them in (3.7), we get the result published in work [9]**,  (condition 

Bellman-Piconet): 
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--------------------------------- 

* This limitation is not important because any 0ix  in [t1,t2]. 



** Note: in given method (in difference from [2]) not request a priory assumption about existing the  

     single potential function φ(t,x) such that φxi = λi. 

  Sometimes it is more comfortable take function φ(t,x)   

or in other terms (see [4]) ψ(t,x). Then A, B are written: 
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    And Theorem 3.1 is same with [9], (see also [4]). 

   Function α for given task we can define also the next way. Take some function ψ(t,x). Then                      
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Integrate but parts the first member we get 
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Note: 1. Theorem 3.1 is corrected and in notations (3.8): 
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This form is offered in [4]. Difference between these forms is important in consideration the second variation, 

conditions in angle points and in some other cases. Let us take the last corrected form of V. Krotov optimization [8] 

(problem of speed): 

   Example 3.1. Find minimum t2 in task: 

.0)(,1)0(,1||,, 2
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=====  txxuuxdtI
t

t
  

 

Fig.2.2. 

If we take φ = 0, we get R = -1. Consequently
ux

R
,

sup  is reached in ANY curve, for example, u = - 0.01 (I = 100). 

In case when min forward integral for ψ = 0 we have 
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Since the set all serves with bounded derivative 1|| x  for x(0) = 1 located between lines x = t – 1, x  = - t+1 (Fig. 

2.2), we get .11,1 min,1 ==−=−= tIandutx  



Notes: 1. As set B we can take a set {x(t)} with bounded derivative }:),,({ UuuxtfXx iii = . This narrowing 

can help in finding of optimal solution. 

2. Note 3 §1 in given case has the following view: If exist the function ψ(t,x) and  at list one allowable couple 

)(),( tutx , satisfying (3.8). That any other couple satisfying (3.8) is minimum of problem 1 and any allowable 

minimum the problem 1 satisfy p.1, 2 (3.8). 

3. If t1, t2 are not fixed, we can show that point 1, 2 (3.8) are: 
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We can satisfy the condition inf B = 0, if we take ψ = φ(t,x) + yn+1  and 

                                         
tixn ffy

i
 −−=+ 01

 . 

4) Theorem 3.1 is particular case of more common theorem 2.1 considered in  Chapter Ш. 

  Assume we take some λi(t,x) (or ψ(t,x)). 

 

Theorem 3.2. Assume F = 0 and solved the problem B
ux ,

inf . Then: 

1) Set },:,,{ 00 TtfBfBuxtN ++=  contains same and better solutions of Problem 1; 

2) Set  },:,,{ 00 TtfBfBuxtP −−=  contains same and worse solutions of Problem 1. 

Proof: 1) Deduct BB  from inequality  
00 fBfB ++ . We get                    

dtfdtfTff
TT   0000 i.e.,on  . 

2) Deduct BB  from inequality  
00 fBfB −− . We get                    

dtfdtfTff
TT  −− 0000 i.e.,on .  Theorem is proved (QED). 

Let us take instead function (3.4) simpler function dtuxtB
T

),,(1
 (here B1 is given function). Than 

Theorem 3.3. Assume F = 0 and solved the problem QdtuxtBJ
T

on),,(inf 11 = . Than: 

3) Set },:,,{ 0101 TtfBfBuxtN ++=  contains the same and better solutions of Problem 1; 

4) Set  },:,,{ 0101 TtfBfBuxtP −−=  contains the same and worse solutions of Problem 1. 

Proof: 1) From N we have the inequality dtfBdtBf
TT

)()( 0110 ++ 
. Deduct from this inequality the inequality 

dtBdtB
TT   11

. We get  dtfdtf
TT   00

 . 

2) From P  we have the inequality   
dtfBdtfB

T
)()( 0!01  −−

. Deduct 
  dtBdtB

T
11

 from this inequality. 

We get dtfdtf
TT   00

. Theorem is proofed (QED). 

Consequence. If set P cover the set UGT  (or reachability set) and uxQux ,then,,  are absolute minimum 

of Problem 1. 



 Note. Delete part equation (3.1) or (3.2) [in case (3.2) xi corresponded deleted equations became the control in the 

rest equations]. Then gotten solution is the low estimation of initial Problem as it is following from principle of 

expansion [16]: )(),(where),,(),(and)()( tutxuxIuxIxIxI  are absolute minimum “truncated” task. 

  When right parts of equations (3.3), (3.4) do not depend clearly from x(t), we can stand out not only set N,P but the 

set M. It is correct the following theorem 

  Theorem 3.4. Assume 0F , ends  x(t) is free, the right parts of equations (3.3), (3.4) depent only from t, u , i.e.: fi 

= fi(t,u)  i = 0,1,…,n. and solved task ),(inf 1
,

utB
ux

. Than: 

1) Set },:,{ 0101 TtfBfButM −−=  contains the absolute minimum of Problem 1; 

2) Set  },:,{ 0101 TtfBfButN −−=  contains the same and better solutions of Problem 1; 

3) Set  },:,,{ 0101 TtfBfBuxtP −−=  contains the same and worse solutions of Problem1. 

  Proof for sets N, P full equally with the proof of Theorem 3.2. Proof for M follows from discontinuity u(t) and 

depends the right parts of equation only from u. 

                  3. Task the dynamic programming of Bellman  

     Assume there is physical system S. The control of this system separated in m steps. On every i step we have the 

control Ui. Using this control we transfer our system from allowable stand Si-1 getter in (I - 1) step  in new allowable 

stand  Si = Si(Si-1, Ui). This transfer is bounded by some conditions. The purpose is minimum function 
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Let us to biuld the common function 
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In this case we can change the task of the conditional minimum inf Wi in the task of direct minimum  
i

V
Jinf . If the 

limitations are absent or they allow the select Uk in every step to make with associated conditions, then from α = 0 in 

the admisseble elements we get the Bellman equation [11]. 
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3. Application α-function for solution the problems with distributed    
                                            parameters 

Let us consider about absolute minimum the Problem with distributed parameters 

                                           ))((),,(),( 0 xFdtuxtfuxI
P

+= 
,     (3.12) 

where ),...,,(),,...,,(),,...,,( 212121 rnm uuuuxxxxtttt ===  are elements of vector space T, X, U * 

respectively. P is closed area in space T, bounded continuous piecewise smooth, fixed hypersurface S. On S the t = τ. 

P* is internal part this area, functions xi(t) on P are absolute-continuous, uα(t) are measurable on P and have values 

from area U, which can be closed and bounded. 

  Functions x(t), u(t) satisfy almost everywhere the system n.m in depended differential equations with particular 

deviations  
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  Funsions 
0, ff ij

are continuously together with its particular derivatives the first order. The function x(t), u(t) we 

name allowable if they satisfy the named above conditions (set Q). 

 Statement of Problem: Find couple function u(t), x(t), which give the function I (3.12) the minimal value. 

  Add to system (3.13) the integrability condition: 
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Not difficult to calculate, that number of difficult equation (3.14) may be 

mnmeimnm )1(5.0,...,2,1..,)1(5.0 −=−   (number of combinations )2nCm . For simplicity we will assume: all 

functions φγ in (3.14) contain u and these u may be find from (3.14) Assume the number of in depended equations 

(3.14) are less r. 

  Let us lead to consider m-dimensional function ψ(t,x) = {ψ1,ψ2,…,ψm}. The components of this function ψj(t,x)   j = 

1,2,…,m  are continuous and have the continuous partial derivatives almost everywhere in T. 

Name this function – characterlike function. Let us lead also the integrable vector-function  

)(),...,(),( 21 ttt p . 

  Let us take α- function in form 
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Where n is outer normal to surface S, dτ is element surface S. We present the function J = I + α in form    
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Theorem 3.5. Assume .)( Vtu   In order to couple u(t), x(t) will be the absolute minimum the purpose function (3.12) 

it is sufficiently* exicting of α-function (3.15) such that  

  QtutxBAuxtBB
xUux
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)(),()3,inf)2),,,(inf)1
)(, 

.    (3.17) 

 The proof is identical [2] №7, but in difference from [2] the theorem 3.5 contain the integrability condition. 

  If JQtutx than,)(),(  is the lower estimation the function (3.12). 

  If exist the functions ψ, λ and  at least one pair )(),( tutx satisfying (3.17), then any other pair satisfying (3.17) is 

minimum of the function (3.12) and any allowable minimum the function  (3,12) is satisfying the points 1, 2 (3.17) 

(consicvently remark 3 §1). The set contains the same or better solution, then )(),( tutx is  

                               UPonfBuxtfuxtBuxtN ++= }),,(),,(:,,{ 00
, 

 Assume, functions ),,(),,,( uxtuxtf ij
  are continuous and differentiable. Let us take ψj in form ψj = pij(t)xi. Let us 

denote: 
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+−= . 



 Then p.1 (3.17) of theorem 3.4 we can rewrite: HuH
Uu

= sup)(  and necessary condition of minimum (stationarity 

condition) following  from p.2 (3.17) gives: 
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                                    §4. Inverse substitution method 
 

    A. From previous paragraph we have: if we know the minimum any function on acceptable set, we can get 

information about solution the Problem 1 and solve one from Problem a, b, c, g the §1. 

  It is known , that the most direct Problems inf f0(x)  on X* or 


2

1
0inf

t

t
dtf

   

on Q  (i.e. finding  the minimum  of main Problem) are difficult or do not have the satisfaction solution. However, if 

purpose function is not in advance definitized, the solution for this non-diminished purpose is finding easy. This is 

not surprising. In mathematics it has long been known that many inverse problems are solved more easily than direct 

problems. An example, let us consider the problem of finding the roots of an algebraic equation.  In the general case 

for n> 5 it is solved with difficulty and her decision (roots) not to be expressed in terms radicals.  If the roots are 

given, then the corresponding algebraic equation may be found easy.  On the basis of this idea below it is given  

method to build function for which an admissible element would be the point of absolute minimum on an admissible 

set.  Since we thus have to solve a problem back to the original problem (not find the minimum given function, but 

find the function for given the minimum or for given field). This method is called the method of reverse lookup. 

The method is presented for two cases: problems of the theory of extrema of functions of a finite numbers of 

variables ( p.B) and optimization problems described by ordinary differential equations (p.C). 

A. Let us consider usual Problem of minimum the function of finite variables 
   nmixfxfI i === ,...,2,1,0)(),(0

.     (4.1) 

 Let us convert this Problem. Select m components x and name them main (base). Suppose for definiteness that this 

is the first components m of the vector x. The rest of components n - m = r denote uj  (j = 1,2,…,r).  

Granted Problem (4.1) we can re-write 

nmiuxfuxfI i === ,...,2,1,0),(),,(0
.    (4.2) 

where x – m - dimensional vector, Xx , u – r - dimensional vector, Uu . 

  Let us take more simple purpose function J1(x,u) and find it’s the absolute minimum  on UX  . This solution may 

be used for building of sets M, N, P:                           
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 Disadvantage this method is next: the some of these sets cannot have the admissible elements (i.e. x, u 

satisfaction fi = 0).    

  Assume, the limitations 0),( =uxf i  in (4.2) may be solved about x: 

                    miiuxx ii ,...,2,1),( ===  (4.6) 



and Xx for any Uu .  

  Assume we take simple function J1(x,u). Substitute in it’s the (4.6) and find uuuxJ
U

),),((inf 1
, and (4.6) x . This 

solution is analog (4.3)-(4.5). One may be used for finding sets M, N, P. The intersection of these sets with admissible 

set is not empty. You can take  J1(x,y,u), than  )(yuu = . You can use the dependence of M, N, P from y for 

changing the “size” of these sets. It is clear assessment  

                                      ])),(()),(([supinf 1 uuxIuuxJ
uy

−=  . 

C.  In point 2 §3 we considered the optimization Problem described by conventional differentials equations   
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We was shown: if we take some function ψ(t,x)  and find  minimum of B
ux ,

inf  in (t1, t2) and A
xx 21 ,

inf , we get the  

minimum of Problem 1 or the its lower estimation. 

   Statement of the Problem. Let us to state the Problem 1 the other way: the find the function which matches the  

function ψ(t.x) and minimum of this function of the admissible set.   

   Note. Let us note: the offered statement very different from the back problem of variation calculation. In variation 

calculation, the back-problem states next: we have a curve. Find the function, which gives the minimum in this curve. 

In common case this problem is more difficult than a direct problem.  

 In our case the minimum curve not given. We find it by given function ψ(t,x). 

  Theorem 4.1.  The minimum function corresponding function ψ(t,x) is 
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   .   (4.8) 

And correcponding to it the minimum curve is given by equations 

                                ,,...,2,1)],,.(,,[ nixtuxtfx txii i
==      (4.9) 

where ),,,( txi
xtuu =  we find from (4.8). 

Proof. Write the expression B (see (3.11)) for problem (4.7) and checkup condition (3.8) of theorem 3.1: 

                         ]),,(),([infinf)( 2
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2 tix
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 −−= .    (4.10) 

Obviosly, the (4.10) identically equals zero for ψ = ψ(t,x) from (4.8) and ux, satisfaction (4.7). If we take as x(t2) the 

value x(t), received from (4.9) for t2, then the point 2 (3.8) disappear and all condition (3.8) of theorem is executed. 

Theorem is proofed. 

  Consequence. If ),(01 xtfB = , then x(t) getting from (4.10) give the set of the minimal curves for boundary 

condition ψ2 = ψ. In particularly, if the end of curve x(t) from (4.9) match with given boundary conditions, that this 

curve is minimum curve of Problem 1. 

  Note. Boundary conditions in the left end can always be performed. For it we must start the integration from the 

given conditions (4.9). We can perform the boundary condition in the right end the next method. Take in form 

ψ(t,x,c) where c – n – dimensional constant. Substitute ψ(t,x,c) in (4.9) and select c such that to perform the given 

end condition in the right end. 

  Getting numerical function may be used for receiving the set N, P of Theorem 3.3 : 
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If we find  
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We get also the lower estimation. 

  Memo, the assignment ψ(t,x) gives us not single no metical function and its point of minimum. One gives a set of 

minimums satisfaction the boundary conditions ψ2 – ψ1 = c.  

  Note: We can take ψ(t,x,y). Then B1(t,x,y). If we can select such )(ty  that ),(),,( 01 xtfyxtB = and boundary 

conditions is performed, then ),,( yxtu  is the optimal synthesis of Problem 1. 

D.  We also show: how you can find the numerical function for given the syntes of control u = u(t,x). 

Equate the given u = u(t,x) to the control fended from (4.8). We get the equation in particular derivities 

                                                 ),,,(),( txi
xtuxtu = .    (4.11) 

Substitute its solution ψ(t,x) and given u(t,x) in (4.8), we find the numerical corresponding function. If B1 = f0(t,x) that 

is synthesis the Problem 1 for the bounded condition ψ2 = ψ. 

  Possible the other method . We take u = u(t,x,y). Substitute it in (4.8). Then B1 = B1(t,x,c,y). We can try using y to 

reach the identify 
10 Bf   and using c to minimize the numerical function I. 

  Example 4.1. Let us consider the task of design the regulator 
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where f0 = bijxixj is the positive definite form. 

  Take u  = cixi, where ci are constants. Let us to search ψ as the quadratic form ψ = Aijxixj  with unknown coefficients. 

Equate :0 f      

                                        ).( jjjijiijjiij xcxaxAxxb +=  

  Let us equate coefficient in same xi, xj in left and right of this equation. We get the set n(n+1)/2 the linear 

inhomogenius equations having the same number of unknown Aij. If the determinant of this system 0 , we find  

Aij. We substitute 0f  in (4.12), integrate and find ),0(),( ccI  −= or using (4.14)  I = - ψ(xio,c). When we 

find minimum of this expression for c, we get the optimal systems. If ),( cx− is the positive definite form then this 

function is the Lyapunov function (because 0−  and the regulator is asymptotic stable. 

                 §5.  Method of combining extrema in problems of constrained minimum. 

   We will show in this paragraph that method combining extrema, considered in §2 the Chapter 1 [9], it is apply in 

tasks of theory the functions of a finite number of variables (point A) and tasks described  the conventional 

difference equations. 

A) Let us again consider the Problem of the theory the functions of a finite number of variables 
                             .,...,2,1,0)(),(0 mixfxfI i ===    (5.1) 



Write the numerical function 

                                     )(),()(),( 10 xcxxfcxJ  ++= ,    (5.2) 

Here α1(x) is α – function, c is n – dimensional constant. 

  From condition 

                                                       ),(inf
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cxJ
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  we find .0),( )1(

1 =cx  

  From condition  
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,    (5.4) 

we find .0),( )2(

2 =cx  Solve equations φ1, φ2 together with (5.1) (combining equations): 

                          0),( )1(

1 =cx ,  0),( )2(

2 =cx ,  x(1) = x(2) ,    (5.5) 

we receive the absolute minimum the Problem 1. The additive β(x,c) selects so that tasks (5.3), (5.4) are solved 

easier. 

   For example ., 21 iiii ff  == Functions fi(x),  i = 0,1, …,n are  continuous and difference , the functions 

J(x,c), Φ(x,c) have single minimum and maximum for any c.  That we have system (3n + 2m) equations with same 

numbers of unknown magnitudes α(1), α(2), c, λ, ν. 

Example is not including. 

B)  Let us to consider the task, described the conventional different equations: 
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  Take ψ in form )1()1()1( )( ii tp  = and create the function  

          )1()1()1()1()1()1()1()1()1(

01 ),,,( iiiiii xpHxpfpzuxtfB  −−=−−+=  . 

Here z(t) is r – dimensional function. One can have the limited gaps the first type. 

  From 
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,
inf B
ux

and (5.9) we find 
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  Take )2()2()2(

ii xp= and create the function 
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 From 
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,
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and (5.9) we find 
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Using the combining equation: )2()1()2()1( , uuxx == we get final: 



     ),,,(),,,(,,),,,( )2()2()1()1()2()2()1()1()1( zpxtuzpxtuHpHpuxtfx xx =−=−==  ,  (5.12) 

That is system 3n + r equations with 3n + r unknown x, p(1), p(2), z . Last equation in (5.12) is the combining equation. 

The additive function β selecting so that the solution task of finding inf and sup were simpler. 

      §6. Generalizing the Theorem 3.1 in case the bracken ψ(t,x). 

Theorem 6.1. Assume there is numerical function ψ(t,x) defined on set GT   , bounded below, piecewise 

differentiable and piecewise continuous. The function ψ(t,x) and its derivatives can have the breaks the first types 

on the limited set 1,...,2,1),,( −= ksxtss
 zero measure. This function is such that there is: 
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 Then ux, (are got from points 1 -3) is the absolute minimum the Problem 1.  

  Here +−

ss  ,  are value ψ in left and right side (along )(tx ) of the breaks the function ψ and its derivatives. 

Proof: From points 1 – 3 we have 
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 On feasible curves (from Q) the J convert in function 
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2

1
0

t

t
dtfFI

. In this case if we apply the consequence 4 

, §1, point 4 of the theorem statement is obviously. Theorem is proofed. 

 Note. The conditions 3 of Theorem 6.1 is sometimes difficult to check up. In this case the requirements 2 - 3 of 

theorem 6.1 we can change the damage 

                                      
]infinf)(inf[inf
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One must be checked up in every point ts,  s = 1,2,…,k-1.     

§7. Optimization the problems described the conventional differential equations having 

the limitations. 

  We find minimum A, B in Theorem 3.1, chapter II on the corresponding sets  R and GU  . The most widely 

method of separating the feasible sets is the separation of them from more widely set by equalities and 

inequalities. In this case, we can solve our problem by the methods the α- and β-functions.  

  Let us shortly consider the most common cases. 

                                1. Limitations are the equalities 

a) Assume the admissible set R is separated by equalities: 

                                      nlixxgi 2,...,2,1,0),( 21 == .    (7.1) 

Then the task inf A we can change the task  



                                   )],(),,([inf 2121
, 21

xxgzxxA iii
xx

+  .    (7.2) 

Here µi is known functions, z is l-dimensional unknown vector. In particularly, we can take µi = zi. 

  b) Assume the admissible set GU   is separated by equalities  

                                      rliuxti == ,...,2,1,0),,( .    (7.3) 

Assume, we can find from (7.3) the l component the vector u. Than the problem  B
UG

inf  we can change the 

problem 

                                 )],,(),,([inf
,

uxtwxtB ii
ux

+ ,     (7.4) 

Where λi are known function, wi is l - dimensional unknown vector function. In particular, we can take  λi = wi . 

c) Assume the admisseble set G is separated by the equalities 

                                       rlixti == ,...,2,1,0),( .    (7.5) 

Differentiate (7.5) full case for t and find 
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.  (7.6) 

 If in system (7.6) there is equations do not contain u, we differentiate them next time and so on whole we get the  

system where all l equation contains u. Assume, we can find all l components from this system (l < r). 

  Than the problem (7.5) is reduced to the tasks the point a, b in which (7.6) is (7.3), but (7.5) and all equations 

(7.6) not contain u, are (7.1). 

                        2. Limitations are inequalities. (excerpt) 

a) Feasible set R is allocated by inequalities: 

                                                 .,...,2,1,0),( 21 lixxgi =  

Then acording the Teorem 1.4 Chapter 1 we change the problem A
R

inf  by problem (7.2) with the additional 

conditions: 

                               )sumnotishere(0,0 ig iii =     (7.7) 

b) Feasible set GU   is allocated by inequalities: 

                                              .,...,2,1,0),,( liuxti =     (7.8) 

All inequalities contain u. Then the task B
GU

inf we change the task (7.4) with conditions 

                               )sumnotishere(0,0 iiii =     (7.9) 

Example 7.1. Assume in task  



,,...,2,1),,,(,),,(
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Control u is scalar, the feasible set U limited inequality )(, babua  . Compose (7.4): 

                                         .)]()([inf 21 aubuB
U

+−+−+   

According (7.9) on feasible u: .0)(,0)( 21 =+−=− aubu   That way we have 

                              .inf)]()([inf
21 ,

21 BaubuB
Uuuu 

=+−+−+   

In right side we have one condition the Pontryagin method. 

 (Part of the text are missing) 

            §10.  Note on the equivalence of different forms of variational problems 

A) In §3 the next problem of minimization was considered   

                                      +=
2

1

),,(),( 021

t

t
dtuxtfxxFI ,                                            (10.1) 

on solution of equations 

                                           .,...,2,1),,,( niuxtfx ii ==                                           (10.2) 

  In the theoretical analysis for the sake of simplicity, we often assume that in (10.1) .00 0  forF  

 We show that it does not restrict the generality of our reasoning.  

Take                                         
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And differentiate it for the variable upper limited t and designate .01 fxn =+
 We get the task 

                                  .,),( 0111 fxfxtxI niin === ++
     (10.3) 

B) Assume ).,( 21 xxFI =  Differentiate it by t and integrate, we get numerical function  

             
dtfFI i

t

t
xi

)(
2

1
=

      (10.4) 

We can same way to convert (10.1) in (10.4) and in (10.3). 

C) Let us to assume the (10.1) and (10.2) depend from constants ck which must be optimal. Designate ck = xi+k and 

add to (3.3) equation 0=+knx . We reduced the task having the optimizing constants to conventional task. 

  In practice it is comfortable to solve the problem (10.1), (10.2) with constant parameters. Than to change them 

(for example the gradient method) so, the function (10.1) decreases. 

D)  The problem with fi (t,x,u) which obviously depend from t , we can reduce to problem fi (x,u) do not depend 

obviously from t , if to designate t = xn+1 and add to (10.1) the equation 11 =+nx . 

C) Let us to show how the task with the moving ends t1 and t2 we can reduce the task with fix interval of integrate. 
Take the new variable t = cτ. Than task (10.1),(10.2) having variables t1 or t2 was reduced in task with fix interval 
(τ1,τ2): 
                                        

,),,(,),,(
2

1
0 uxccfxduxcfFI i

t

t
 =+= 

 

where the touch means the derivative for τ. The constant c > 0 is selected from minimum I. 



                                                                  Application. 

1. Theorem 3.1 and known methods of solution the problem described the ordinary 
differential equations. 

 

From Theorem 3.1 we can to get the conditions which are same with known algorithms of optimal control, for 

example: Pontriagin principle [10], Bellman equation [11], classical calculus of variation [12], 

  Let us to request additional that function f, ψ have the need continuous derivatives. 

a) Pontriagin principle. According [10] take ψ(t,x) in form ψ = pi(t)Δxi , where pi(t) are some differenciable 

functions t, .iii xxx −= Create the Hamiltonian 

),,(),,( 0 uxtfuxtfpH ii −= .    (1) 

Then B = - H - pixi . Necessary condition of the minimum B for x, which follows from p.1 (3.8) of Theorem 3.1 

(stationarity condition) is 

.,...,2,1,0 niHpB
ii xix ==−−     (2) 

Moreover of claim 1 (3.8) we have 

HHuxtBuxtB
UuUuUu 

−=−= sup)(infor),,(inf),,(    (3) 

Terms and conditions (2), (3) together with (3.3) coincide with the corresponding terms and conditions of the 

Maximum principle* [1]. 

b) Belman equation. Assume  0nx . Take all λi = 0  i = 1,2,…,n-1 with exception  
nn xxt /),( = . Substitute them 

in (3.9) §3, we get the known Bellman equation [11] 

0)(inf 0 =−−


tix
Uu

ff
i

      (4) 

Boundary condition for them is A = const. Solution of this equation is the field of all optimal trajectories. 

c) Classical calculus of variation. From claims 1, 2 Theorem 3.1 easy to get the conditions of a relative minimum 

coinciding with the relevant terms of the calculus of variations [12]. 

  Let us assume U is the open area, )(),( tutx are continuously, fi (t,xu) have continuous partial derivatives up the 

third order. Take ψ = pi(t)Δxi . From (3) that at minimum 

                                      ,,..,2,1,0),,(),,( riuxtHuxtB
ii uu ==−=     (5) 

Equations (2),(4) equal the conventional Euler-Lagrange equations [12] §2. From [12] also follow 

                                       .,...,2,1,,0 rjiuuH jiuu ji
=−       (6) 

That matches with Krebs condition. 
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