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Abstract

Author develop ideas of Global Optimization offered in article “Methods of the Global Optimization by
Deformation of Functions” [9]: A new method of optimization by means of a redefinition of the function over a wider
set and a deformation of the function on the initial and additional sets is proposed.

The method (a) reduces the initial complex problem of optimization to series of simplified problems, (b) finds the
subsets containing the point of global minimum and finds the subsets containing better solutions that the given one,
and (c) obtains a lower estimation of the global minimum.

Key words: Global optimization, universal optimization, method of function deformation.

§1. a — functions over arbitrary set.

A). The special case of 8-function is a-function [9] . It is defined over set Z=XxY and has the following properties:
1) There exist subset K< Z with projection K on X; priK = X*.

2) a(x,y)=0 onk.

Theorem 1.1. Assume G/(x, y) is d -function and exist the point of global minimum x™ € X .

Then the element X is point of the global minimum of object function I(x) over set X* if and only if there exist
a(x,y) such that:

V) J&,y)=inf[I{(x)+alx,y)] xyeZ; 2)x,yekK.

Proof: As X,y € K, then a(x,y) =0 and

J(X,y) =f[1(x) +a(x, y)] = nf[L(x) + a(x, y)] = inf I(x).
X

Q.E.D.

One may made vice versa. Define set K, ={x,y:a(x,y)=0, xeX, yeY}.Find X, =pr K, .Then X is
the point of minimum /(x) over X, if X,y e K, .

The special case of & -function is a-function defined over Z and such that a(x,y) = 0 over X* forall y €Y.
The following theorem is important:

Theorem 1.2. Let us assume a(x,y) = 0 over X for all y € Y and there exist xeX.

The element x will be the point of global minimum of objective function I(x) over X* if there exist function o (x,y)
such that

1) J(x,y)=inf[I(x)+a(x,y)] x,yeZ; 2)xeX . (1.2)
Proof: As X € X, then a(x,y) =0 and

J(E,3) = inf[1(x) + a(x, )] = inf[/(x) + &(¥, »)] = inf I(x) . QED.

If y is not constant, one can use it (the function a(x, y) from y) for getting x € X"

Theorem 1.3. & and a — functions exist and their number is infinite.
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Theorem 1.4. (Estimate). Ifin (1,1) X ¢ X", we have a lower estimation of the objective function I(x) on X':
J(x(»),y)<I(x) for all yeY.

Proof is same [9].

One can get this estimation from a(x, y) =0 on set X" for all y € Y and Principle of Extension® [16], because

X cX.

The Principle of extension state: any extension of set, which you find on a minimum of functional, can only decrease

on a minimum of an objective function (can only decrease value of a minimum).

The dependence J(x,y) from y one may use for improving of estimation. In particular, one can take a = a(x). Then

from theorems 1.2, 1.3 one can get the following consequences:

Consequence 1. Assume a(x) =0 on X" and exist x' € X . Element X is point of a minimum of the objective
function /(x) on X* if and only if the exist a(x) such, that
1) JX)=inf[I(x)+a(x,y)] xeX; 2)xeX . (1.7)
Consequence 2. If xe X, pP=a then gﬁy’J =inf /.

x X
As far as a-function is the particular case 8-function consequently the theorem 1.1 of [9] is right in this case.

Theorem 1.5. Assume X is point of global minimum of Problem 2:
J(x)=inf[I(x)+a(x)], xeX.
Then: 1) The points of global minimum of Problem 1 are in the set

M =MNX', where M={x:a>a};
2) Set N =NﬁX*, where N = {x:J+1 Sj+l_}, contain same or better solution

thatisin N the object function /(x) < /(X) ;
3) Set PPNX, where P= {x a< 5} contains same or worse solutions

(thatis I(x)=1(x) inP).

The same way for this case we can be formulated the Theorem 1.1

Since the set X is selected by equal a(x)=0 we get from Theorem 1.5 the consequences:

Consequence3: If a(x)>0, then X CP.
Consequence 4: If a(x)<0, then X <M.

Consequence 5: If a(x)=0, then Xe X .

From Theorems 1.2 — 1.4 and Consequence 1 we get:
Algorithm 4. We take the bounded of below functional (objective function) defined on X*Y, find minimal

X =X(y) of Problem 2: inf (/ + &), x € X or minimal in implicit form &(x,y)=0. We solve together the system

equations (combining equations of a- function): inf(/ + &), x € X .Then value X - root pf this system is the

absolute minimal of Problem1: inf(/+ @), x € X .

Algorithm 4’ (solution by choice of a-function).



We take the bounded of below functional a defined on X (or X*Y), Solve the Problem 2: inf (/ + ), x € X . If
¥ € X', we get minimal of Problem 1, if X ¢ X, we get the estimation below J(x) < I(x") of value of the

objective function /(x) on set X" and we get the sets M, N, P.

Comments: 1. If the admissible set X" allocates by functional E(x) =0, you can find the a -functional in form
a =4 (x)E(x) (here i means sum), where li(x) are some function of x.

2. If the admissible set allocate by functional (Dj(x) <0, you can find a — functional in form

a=o, (x)[CD,(x)"‘ |ch(x)],

where @, (x) are some function of x, or in form

o =)0, (x),
where a)(x)z 0 and it is fulfilled the condition a),(x)CD,(x)EO on X"

3. Assume there is some a —functional and element x € X such J(X) =inf[/(x) + a(x)], x X .Thenany
element x, € X" and is satisfying the condition
J(xl)=inf[](x)+a(x)], xeX. (1.17)
is point of the absolute minimum the functional /(x) on X and any point of the absolute minimum the functional

I(x) on X satisfy the condition (1.1”).
This direct statement follows immediately from condition 1.

We proof the converse. Since the global minimal x, € X*, it means a(x1)= 0, then

I(x,)= inf 1(x)=J(x)=J(¥) =inf[1(x) + a()] .

Q.E.D.

Thus, if it is existing one element which satisfy (1.1) then all rest minimal elements of Problem 1 must satisfy it.

| illustrate the idea of a-functional the next sample.

Let us take some function f(x) definite on interval [a, b]. Digital values n €[a, b] are admissible for it. We want
find the minimum of this function. The addition member (a —functional) do not change f(n) in points n, but
deforms f(x) in gaps between n (see fig. 2.1).
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Fig. 2.1.

If a — functional is “good”, then xi{}fb][f(x) +a(x)]> xiﬁ’fb]f(x). If in addition X =, then we get the minimum

of Problem 1.

Remark: There are different ways to solve problems by the a-functional:



a) You can take the known function as a-functional.

b) You can take a-functional as unknown function and find it together with the point of minimum.

c) You can take a-functional as function a = a(x,y) where a is known function but y = y(x) is unknown function of x.
You must find it together with the point of minimum.

Let us consider the example. We take as example the non-good the functional which is difficult to solve by
conventional method.

Example 1.1. Find the minimum of function

2 2 88 o D oo 82 3
_4x +4m+4.1+4 77 sin”x—sin” X-COSX +5sin” X-COS” X inX = {x=05mm:n=041+2,.}(12)

B AX +mx+ )+’ (sin x — cosx)(sin’ x + cos’ x)

It is difficult to apply the known methods here because the functional is defined on digital set. The current methods

offer only the calculation of all x € X". But number of X equals infinity and calculation may be meaningless.
Let us to solve this example by the offered method. Take a(x) in form

A At 4l 0.5sin 2x - cosx
4(x* +7x+1)+7°  (sinx —cosx)(sin’® x + cos’ x)

You can see that a(x) =0in X because forx=0.5mtn n=0,+1,+2,.... sin2x=sinzn=0.
Let us to create the general functional

I 4x* +4mc+4.1+ 7% sin’ x—sin® x-cosx +sin’ x-cos’ x — 0.5sin 2x - cos x

A4X* +rx+)+ 7 (sin x — cos x)(sin’ x + cos’ x)
Here the variable x is uninterrupted and - oo < x < o= (set X)

The additive a(x) allows to change the functional (1.2) to simple form

A +Am+ 4+’ (sin® x — cos” x)(1 —sin x - cosx)sin x 0.1
4+ 2x+7)’

This general functional is simple. His minimum may be found the conventional method of theory the function one

- 2 2 . o > ) ; 3 = +1|sinx.
4(x"+7x+1)+7" (sin”x—cos” x)(sin” x —sin x - cOSx + cOS” X)

variable. Here X =-n/2, x e X for nn =1, I =-1.025. Consequently, that is absolute minimum (and sole) of

initial functional (1.2).

We can apply an analogical method for finding of minimum on x the next function:
I =cos” @ +0.5c082xc0s2¢ —2c0s xcos @ cos(x + @) + 0.5 — 0.1 , X ={x=057zn:n=0,+1,%2,..}.
Here ¢ is given, x is digital. Let us take & =—0.5sin 2xsin 2¢ . After this we can change our functional J=/+ a to

simple form: J =-0. le™ +sin’x. The point of absolute minimum this task (Problem 2) is x = 0. This point is in

allowable set X~ for 7 =0. That means 77 =0 is point of the absolute minimum od the initial Problem 1.

The reader can think: if the allowable numerical set is limited we can use the conventional Lagrange’s method [12].
Let us show: that is not correct.

Example 1.2. Find minimum of functional:
I=x-3x"+x on X ={x=0,x=3}. (1.3)
Let us to write the Lagrange’s function
F=x"=3x"+2x+Ax+ A (x-3),

where 4, , A, are LaGrange’s factors. Find the first derivative



F'=3x"—6x+2+ 4 +4, .
Substitute to here x =0, x = 3 and write the equations F'(0)=0, F"(3)=0. We find from these equations
A, A, . Find the second deviation F" =6x —6. When x = 0 the function F"(0)=—-6<0.
When x = 3 the function F"(3) =12 > 0. Consequently x = 0 is the point of maximum, x = 3 is the point of minimum.

Let us check up. Substitute x=0and x=3in (1.3). We find /(0) =0, /(3) = 6.
We see the LaGrange’s method gives the opposed result: it declare the point of minimum as the point of maximum,
but the point of maximum as the point of minimum. In here it is violating one condition of LaGrange’s method: The
number of additional equations is more of number of variables. This example is shows: this violation for LaGrange’s
method is unacceptable.

Let us to solve this example by the offered method. Take the a(x) in form

a =x(x-3)(2/3-x) .
Then
J=T+a=x"=3x>+2x+x(x-3)2/3-x), J =4/3x=0, ¥x=0eX ,J"=4/3>0.

From Consequence 1 the point x = Ois absolute minimum of functional (1.3). That shows the method of a -
functional has more application then the LaGrange’s method.

Example 1.3. Find minimum of integral
I= [(ntgt=10")dt on X" ={a=10"7n:n=1,2,.,400} (1.4)
-1073

Here the interval of integration is discrete. The direct search is difficult because integral (1.4) cannot be presented by
simple function and it not have of tabulations.

Let us to find a-functional in form: & =—10"°sin10°a . Yousee on X the function a(x) = 0. Further

J=I+a= [(Intgt-10")dr—10"sin10%a

1073
J =Intga—10"-10"cosl0’a=0, x=x/deX for =250, (1.5)
J'=———+sin10’a
sin 2a

As 107 < x < 0.4, then J" >0 into this interval. That means the root is single and 7 = 250 is point of the
absolute minimum.
Analogically we find the minimum of other integral which cannot be presented in simple functions

[=—[[sin()+10°Vzldt on X ={a=10"Vzn:n=0,1,...1.5-10°}.  (16)
0

Hereis o =107sin10*sin10°vza; 7 =1000 .

Example 1.4 . Find the minimum of integral

I ’If (cosat

/2

+20a3jdt on X' ={a=10"n:n=0,%£1,+2,..}. (1.7)

Here the under integral function is discrete. The integral from this function cannot be presented as elementary
functions.



Let ustake @ =107 sin’10° za, J =1+ .Then

J,=I+a,=[" (-sinat +40a)dt +2-10"*zsin 210’ 7a =
(1.8)
= —gsingﬂa-sin%a +20ma+10"* 7sin2-10° za

a

This derivative not exist for a =0 e X .
For a>0, J'>0; for a<0, J <0; (or J">0 for Va=0).

Consequently 7 =0 is point of absolute minimum.

B) Consider the case when the point of optimum x € X not exist, but exist the sequence such that lim I(x,)=m.

n—>0

This sequence is named the minimizing sequence (see [9] of Ch.1).

Similarly point A we can show that consequence 1 can be generalized in this case.

Consequence 1’. Let us a(x) = 0 only on X*, For minimizing sequence {x,} — X "is necessary and sufficient the

existing of function a(x) such that

lingo[[(an) +a(x)]=mnfl/(x)+a(x)], xeX. (1.9)

The sufficiency of this consequence is same the lemma in [2] and J(x) = L in [2].

We can generalize remark 3 of item 1 in this case: If exist a function and one sequence {x,} — X" which satisfy
(1.9), then the any sequence {x,} — X" which satisfy (1.9) is the minimizing sequence. And on the contrary any the

minimizing sequence satisfy the condition (1.9).
2. a - function in Banach space.
Let us to apply Theorem 1.2 to optimal problem is described in Banach space by equation

dx
E:f(x,u), tL<t<t,, x(t)=x, x(t,)=x,, (1.10)
where x, f(x,u) — element complete linear normed space X; and X, respectively and
X,cX,, te=[t,t,]=T is segment of real axis.
Let us name the permissible control the measurable limited function (in term [1], p.85)with value ,, < {7, where U
is set in arbitrary topological space. In particular the set U may be metric, closed and limited. Let us assume that for
any control u(t)the equation (1.10) has single solution x(t) with x(¢) € X, for almostall 7 [¢,,z,] , where x(t) is

continuous almost everywhere differentiable on function on ¢ ¢ [4,,8,] -

Operator f(x,u) is defined on the direct product XxU . One is continuous and bounded. Boundary conditions are
given ty, t;, X(t1) = x1, X(t2) = Xa.

State the problem: Find the admissible control which transfers the system from given initial state in given final
state with function

1=[" fyCe e (1.11)

has a minimum.
Let us the set of the measurable functions u (t) is denoted V: set of the continuous, almost everywhere
differentiable on (t,t>) the functions x (t) is denoted D. Set of couple x(t), u(t) having named over properties and



almost all satisfied the equation (1.10), we name admissible and denote Q. It is obvious Q < DxV'.
Assume = /(t,x) is the some unequivocal continuous differential function defined on XxT . We name it the

characteristic function. We will find the a — function in form

a=["y, - f(xu)ld
g (1.12)

oy
l//x ==
Here Ox s particular deviation of Freshen. One is linear function. The * is sign of composition. Obvious that
request of a-function is performed.

Compose the generalized function / =J + a and produce the function y=yx+y, we get

J= V/[tzax(tz)]_W[t1:x(t1)]+I: (fo—w,—w, o Ndt=y, -y, +J. Bdt (1.13)

where B= f, —y, —y_o f .Because the set Qs different from the set DxV only that couple x(t), u(t) satisfy almost

every where (1.10). For a-function in form (1.12) with according of Theorem 1.2 we can the initial Problem 1 (find
the minimum (1.11) on Q) replace the Problem 2 — find minimum (1.13) on the broader set DxV. In this set the x(t),
u(t) not bind the equation (1.10). So, we have

- 1
TJ=y,—y,+ inf [ Btxu)dt

x(1)eD,u(t)eV ot (1.14)
_ inf " Bdt -
Theorem 1.6. If function u(?) getting from solution of problem x®eD.uern is u(r) e V,
inf [ Bar
x(t)eD, vt
that it is same almost everywhere the function getting from solution the problem #®<¥ and
t . t
inf J.ZBdt = inf | infBdt

x(1)eD,u(t)eV ot X(eD I yey (1.15)

Bu") # inf B(u) ] _ )
Proof. Assume the contrary: weu ~ on subset of interval [t, t;] with measure not equal zero. In this

B’ > B(ir) ie. J.:ZB(u*)dt> sz(ﬁ)dt

%k
case on the subset. This contradict: the function ®) made the

15

minimum for integral -['1

From requirement (1.14) and Theorem 1.6 we have

t
J = W, =¥, + inf infB(t,x,u)dt
x(t)eDYt ueV (116)

If function afx(®),u(?)] is such that absolute minimum of Problem (1.16): X(1), u(r) e Q, then aaaccording to
Theorem 1.1 functions x(t), @(t) are absolute minimum of the initial Problem.

So, we proofed

Theorem 1.7. To couple function were the absolute minimum the function /, it is sufficient the existing the
characteristic function y(t,x) such that
t, _ t, _ — —
1) B(t,x,@) =inf Bt,x,u); 2) [*Bt,x,i)dt= inf [ B(t,x,@)dt; 3)%(t), u(t)eQ
uelU 4 1

x(t)eD vt

(1.27).



In particular, if take ¥ = p()oh , Where p(t) is linear function he X,

item 2 [1.17] we get

, then from item 1 and stationary condition

H(t,x,u) =supsup H(t,x,u), p(x)= _OH
uel ax

, (1.18)

where H = p(t)o f(x,u) — f,(x,u).

Assumed OH /Ox is Fréchet derivative, which is continuous. As we see the necessary condition of Problem 2
following from (1.17) is same the necessary condition of Pontriagin principal of maximum generalized in Banach
spaces.

3. Design of a-function for allowable subset of two function connected by logical conditions

Assume two functions Fi(x) and F(x) are refinished on the set X. Allowable are only points x& X and functions F;
and F> which are connected the logical conditions. Assume Fi(x) = 0 is “true” and F(x) # 0 is “false’. The five main
logical connections (¢, vy, v, A, ~) (<>,),V, A,~) are presented in next tables:

F1 F F16>F2
t t t
t f f
f t f
f f t

Double implication

F1 F Fiy F2
t t f

t f t

f t t

f f f

disjunction in the exclusive sense

F1 F Fiv F;
t t t

t f t

f t t

f f f

disjunction in the sense of a non-exclusive



F1 Fa FinF;
t t t

t f f

f t f

f f t

Conjunction

F p
t f
f t
Denial

We will use the symbol:
sign F=1 if F>0,

sign F=0 if F=0,
sign F=-1 if F <O,

In this case the a-function we can search in form:
D) X" ={x:F(x) & F(x)}, a=(pF +p,F)[l-|sign(FF,)|l,
2) X" ={x:F(x) y [,(x)}, a=pFF,+p,[l-|sign(F’ +F)]],
)X ={x:F(x)v F(x)}, a=pEF,,
4) X' ={x: () AF (%)}, a=pF+p,F,,
5) X ={x:F(x)~ F(x)}, a=(p[l-|sign F[],

Here p, p1, p2 are some function x.

It is using these five connections we can create all other complex logic statements.
§2. The general principle of reciprocity the optimization problems

Let us suppose we want to solve the optimal problem Ch.1 §4 [9]:
I=f,(x), f(x)=0, i=12,..,m, (2.1)

Design general function in form

=2 " a0, (2.2)
where A;(x,y) arbitrary functions of x, y.
Assume X() is absolute minimum (2.2) on X.

The general principle of reciprocity the optimization problems.

1. For any y € Y the point of an absolute minimum of the function J (2.2) is the point of the absolute minimum

any function



A,(x»)f,(x), j=0.1.,m (nosumfor ;) , (2.3)
for limits in form
A (x,y)=A4(x(»),») f,(x(¥), i=0L...m, i#j, (nosumfori). (2.4)
Any numbers of equality (2.4) you can change by non-equalities
(%, 3) < AEWD, L)) - (2.5)

2. For any y €Y the point of the absolute minimum of the function J (2.2) is point of the absolute minimum any

sum the functions

>4, (60, () 2.3y

for restrictions absent in sum (2.3)
26,0 = AFX(), 0 (X)), i=0l...m, i#j, (nosumfori). (2.4)
Any numbers of equality (2.4)’ you can change by non-equalities (2.5).

Proof.
1) For any function (2.3) for conditions (2.4) the Theorem 1.2 is made. The point x()) is point of its.absolute

minimum. As every function reaches the global minimum, obvious, the change equality (2.4) by restrictions (2.5) not
influence to minimum. The point 2 is proofed similarly. Principle is proved.

Consequence 1.

Magnitude J(x(y),y) is the lower estimation of any function from (2.3), (2.3)’ if part or all equalities (2.4), (2.4)’

change equalities in form

A4(x,)/;(x)=0 (2.6)

Consequence 2. In case corresponded (2.6) the absolute minimum of any functions (2.3) are located in set
M ()= {x: 3 A, ) @) 2 D 202 (5() (2.7)
Consequence 3. If possible the solution of Problem (2.1) by Algorithm 4, there are y such that
A((X(¥),»)£,(X(y)<0 (no sum for i) (2.8)

From the existence of solutions (2.1) follows that f;(x)=0. So /Tl/; is minimum, than (2.8) is obvious.

1

§3. Applications a-function to well-known Problems of optimization

1. Problem the searching of conditional extreme the function of the limited number variables.
It is given

I=f(x), f(x)=0, i=12,..m<n (3.1)

Here x is n-dimensional vector given in some numerical open region of n-dimensional space X".

Let us take the a-function in form



a=px)f(x), i=12,..m (3.2)

(repeated indexes mean summarization). Here pi(x) are functions x, given on X:

X ={x:) " | ()0}, X =X,

Let us to design generalized functional J(x) = f,(x)+ a(x) take some pj(x) and sole the problem

inf J(x), xe€ X.From thissolution the Problem 2, according Theorems §1, we can get the following information

about Problem 1:

1)If xe X", than X isabsolute minimum of Problem 1 (consequence 1, §1).

2)If X¢ X7, then:

a) J(X) is the lower estimation of function f,(x) on X* (Theorem 1.4).

b) For a(xX) >0 x" islocated in set P={x:a(x)<a(X)} (consequence 3, §1).

c) For a(x)<0 x"islocated in set M = {x:a(x) > a(X)} (consequence 4, §1).

d)Set N* = NN X" where N ={x:2f, +a <2f, +@} contains the equal or worse solutions

(Theorem 1.5).

As we see even, if X ¢ X" our computation is useful. We received the lower estimation and narrow the region for
searching of the optimal solution. Take row of a; we can get the solution one of the Problems a, b, ¢, d or facilitate
the solution of Problem a (see Ch, 1, §1 [9]).

Look your attention: the offered method does not require continuity and differentiability of the functions fo(x), fi(x)
in contrast to the classical method of Lagrange multipliers. The method can be applied to non-analytical function, for

example, to the functions definite on the discrete set and extremal problems of the combinatorics (see Ch. 10).

2. Application the Theorems §1 to optimal problems described the conventional differential
equations.

Assume the moving of object is described by system of the differential equations

X, = fi(t,x,u), i=12,...n, teT=[t,1,], (3.3)

where x(t) —n-dimensional continuous piecewise differentiable function, x € G(t) ; u(t) — r-dimensional functions
continuous everywhere on T, except limited number of points where one can have discontinuity of the first kind u
€ U(t). Boundary values ty, t; are given, x(t1), x(t2) € R.

Optimal function is
f 3.4
I:F(xnxz)"'jtl fo(t,x,u)dt, X :x(tl)a X, :x(t2)~ (3.4)

Functions F(xy,x,), fi(x,u,t), i =0,1,...,n are continuous, F(x3,x,)>- . Set of the continuous almost everywhere
differentiable functions x(t) with x € G(t) we designate D. Set of the piecewise continuous (they can have the
discontinuity of the first kind) functions u(t) such that u € U(t) we designate V. Couple x(t), u(t) have named over

properties and almost everywhere satisfy the equations (3.3) we name allowable and designate Q, Q< Dx V.

Enter in our research n single-valued functions A;(t.x) i =1,2,...,n. which are continuous and have continuous
derivatives on TXG. Let us to take the a-function in form



a =f2 A, x)[x — f.(t,x,u)ldt (3.5)

It is obvious a = 0 on Q. Let us design the general function J =1+ a, integer the term 4 x by part and exclude x, by

(3.3). We get

f) oA oA (3.6)
J=F+A1x|*+ —(x,—L+ ) f —x, —L\dt
il U g A ]

Designate

t o4, o,
a=F+Aix |}, B=/f—(x —+/1)f— _t

Apply to (3.6) Consequence 1 §1. Here the Qis X* and D x V is X (see Consequence 1 §1). Since now the couple of
functions x(t), u(t) from DxV (having ends in R for condition x(¢) e D, u(t) €V, x, = x(t,), x, = x(t,) ) are not

connected by the equations (3.3) we can write

inf (A + j Bdf)= inf A+ (" inf Bt

DxV X1,Xy ER t, xeG,uelU
and final

- oo
J=inf A+[" inf Bdr 8.7)
X1,X, €R t, xeG,ueU

So we proofed the Theorem 3.1:
The couple vector-function x(¢), u(¢) will be point of absolute minimum of function (3.4) if it is exist n

differentiable A,(t,x) such that:
)B=infB, 2)A= inf A>-ow, 3)X,ucQ (3.8)

xeG,uelU X,X ER
Note: That is sufficient condition only. That cannot be a necessary condition because we don’t know advance
about an existence of A(t,x).

From (3.8) it is follow: if we find at least one solution of an equation in particular derivations having n-unknown
functions A,(t,x) :

(3.9)
inf[f, - (x +ﬂ) x—’] 0,

l

for boundary condition A = const, then points 1, 2 of the Theorem 3.1 will be executed. Any unsuccessful A;(t,x) (if
x(2), u(t) ¢ Q) with according Theorem 1.4 gives the lower estimation of the global minimum.

Assume, for example, X, # 0 *. Substitute them in (3.7), we get the result published in work [9]**, (condition

Bellman-Piconet):

J= infd —sz sup R(¢,x,u)dt,

x,€Gy, x,€G, I xeG,uelU

(3.10)

Here & = F+ ¢/, R=¢,+¢, f,~ f, =-B

* This limitation is not important because any x, #0 in [ty,t2].



** Note: in given method (in difference from [2]) not request a priory assumption about existing the
single potential function ¢(t,x) such that ¢, = A;.

Sometimes it is more comfortable take function ¢(t,x)
or in other terms (see [4]) Y(t,x). Then A, B are written:

A=F+y,-y,, B=fi-y fi-v, (3.11)

And Theorem 3.1 is same with [9], (see also [4]).

Function a for given task we can define also the next way. Take some function (t,x). Then
t
a= I “wo (% - fo(t x,u)]dt
f i
Integrate but parts the first member we get

5]
a=yl [ W, fi+v)d

Note: 1. Theorem 3.1 is corrected and in notations (3.8):

“ Bdt= inf [*inf Bd.

1 x(t)eB vt uelU

This form is offered in [4]. Difference between these forms is important in consideration the second variation,
conditions in angle points and in some other cases. Let us take the last corrected form of V. Krotov optimization [8]
(problem of speed):

Example 3.1. Find minimum t; in task:

I=["dt, s=u, |ulz1, x(0)=1, x(t,)=0.

Fig.2.2.

If we take ¢ =0, we get R =-1. Consequently SupR is reached in ANY curve, for example, u =-0.01 (/ = 100).

X,U
In case when min forward integral for ¢ = 0 we have

inf j lz dr= inf 1,[x(1)].

x(t)eD

Since the set all serves with bounded derivative | x |[<1 for x(0) = 1 located between lines x =t -1, x =- t+1 (Fig.

22),weget x=1-t, u=-1 and 1=t _. =1.

1,min



Notes: 1. As set B we can take a set {x(t)} with bounded derivative X, eX, = {fl (t,x,u):uecU}- This narrowing

can help in finding of optimal solution.

2. Note 3 §1 in given case has the following view: If exist the function {(t,x) and at list one allowable couple
x(2), u(t), satisfying (3.8). That any other couple satisfying (3.8) is minimum of problem 1 and any allowable
minimum the problem 1 satisfy p.1, 2 (3.8).

3. If t1, t2 are not fixed, we can show that point 1, 2 (3.8) are:

)B= inf B=0, 2)A= inf A>-w

xeG,uel £y .ty X1, %2 €R
We can satisfy the condition inf B = 0, if we take ¢ = ¢(t,x) + yn+1 and
Vo =Sfo—0. fi—,
4) Theorem 3.1 is particular case of more common theorem 2.1 considered in Chapter LL.

Assume we take some A;(t,x) (or Y(t,x)).

Theorem 3.2. Assume F = 0 and solved the problem inf B . Then:

1) Set N ={t,x,u:B + f, < §+f_0, t e T} contains same and better solutions of Problem 1;
2) Set p— {t,x,u:B—f, < E_fo’ t e T} contains same and worse solutions of Problem 1.

Proof: 1) Deduct B > B frominequality B+ fi < B+ ]70. We get

fo<fy on T, ie [ fdi<| fidt-

2) Deduct B > B from inequality B —fi < E_fo. We get

—fo<—f, on T, ie. J' fodtzf fodt' Theorem is proved (QED).
T T

Let us take instead function (3.4) simpler function J‘ B, (t,x,u)dt (here B1 is given function). Than
1\ Ay
T
Theorem 3.3. Assume F = 0 and solved the problem j1 —inf J’T B,(t,x,u)dt on Q- Than:

3)Set N = {t,x,u: B, + f, < El +f0, t € T} contains the same and better solutions of Problem 1;
4)Set p— {t,x,u:B, - f, < [_;1 _fo’ te T} contains the same and worse solutions of Problem 1.

Proof: 1) From N we have the inequality J’ (f, + B, )dt <J' (E +/; )dt - Deduct from this inequality the inequality
T 0 1 —Jr 1 0

[ B> | Bdi-Weeet [ fdi<| fde -

2) From P we have the inequality _[ (B, — f,)dt < J‘(E‘ —fo)dt' Deduct J‘TBldt > J’Eldt from this inequality.
r !

We get J‘Tfodt > J‘T ]_’Odt . Theorem is proofed (QED).

Consequence. If set P cover the set T'x G xU (or reachability set) and Xx,u € J, then X,u are absolute minimum

of Problem 1.



Note. Delete part equation (3.1) or (3.2) [in case (3.2) x;corresponded deleted equations became the control in the
rest equations]. Then gotten solution is the low estimation of initial Problem as it is following from principle of
expansion [16]: /(x)>1(x) and [I(x,u)=1(x,u), where x(¢), u(¢) are absolute minimum “truncated” task.

When right parts of equations (3.3), (3.4) do not depend clearly from x(t), we can stand out not only set N,P but the
set M. It is correct the following theorem

Theorem 3.4. Assume F' >0, ends x(t) is free, the right parts of equations (3.3), (3.4) depent only from t, u, i.e.: f;
=fi(t,u) i=0,1,..,n. and solved task inf B, (t,u)- Than:

1)Set M = {t,u: B, - f, > B, — f,,t € T} contains the absolute minimum of Problem 1;

2)Set N ={t,u: B —fy 2 El - ]70’ t € T} contains the same and better solutions of Problem 1;
3)Set p={t,xu: B -1, < El - an t € T} contains the same and worse solutions of Problem1.

Proof for sets N, P full equally with the proof of Theorem 3.2. Proof for M follows from discontinuity u(t) and
depends the right parts of equation only from u.

3. Task the dynamic programming of Bellman

Assume there is physical system S. The control of this system separated in m steps. On every i step we have the
control U;. Using this control we transfer our system from allowable stand S;.; getter in (/- 1) step in new allowable
stand S; = Si(Si.1, Ui). This transfer is bounded by some conditions. The purpose is minimum function

W= iwk
k=1

Let us to biuld the common function

J, =W +a, where W, :Zwk,i=1,2,...,m '

k=l
In this case we can change the task of the conditional minimum inf Wi in the task of direct minimum inf J,- If the
V

limitations are absent or they allow the select Uy in every step to make with associated conditions, then from a =0 in
the admisseble elements we get the Bellman equation [11].

W.(S,) =min{W, (S, .U}, i=12,...m.

3. Application a-function for solution the problems with distributed

parameters
Let us consider about absolute minimum the Problem with distributed parameters

I(x,u)= L fo(t,x,u)dt + F(x(7))’ (3.12)

*
where ¢ = (t,t)5st,), X = (X),X5,.000X, ), u=(u,u,,..,u.) are elements of vector space T, X, U

respectively. P is closed area in space T, bounded continuous piecewise smooth, fixed hypersurface S. On Sthe t=r1.
P* is internal part this area, functions xi(t) on P are absolute-continuous, u,(t) are measurable on P and have values
from area U, which can be closed and bounded.

Functions x(t), u(t) satisfy almost everywhere the system n'm in depended differential equations with particular
deviations



ox, i . .
a_/:fj (tax’u)’ l :1,2,...,”1; J :1,2,...,7’”

(3.13)

J

Funsions ff', fo are continuously together with its particular derivatives the first order. The function x(t), u(t) we
J

name allowable if they satisfy the named above conditions (set Q).

Statement of Problem: Find couple function u(t), x(t), which give the function /(3.12) the minimal value.

Add to system (3.13) the integrability condition:

of i (3.14)
7 :i_%:o, i=12,..n; jk=12,..m; k>j.
ot, ot,

J

Not difficult to calculate, that number of difficult equation (3.14) may be
0.5(m—Dmn, ie y=12,..,0.5(m—1)mn (number of combinations C?y). For simplicity we will assume: all

functions ¢"in (3.14) contain u and these u may be find from (3.14) Assume the number of in depended equations
(3.14) are less r.

Let us lead to consider m-dimensional function ¢ (t,x) = {2, /?,...,™}. The components of this function /(tx) j=
1,2,..,.m are continuous and have the continuous partial derivatives almost everywhere in T.

Name this function — characterlike function. Let us lead also the integrable vector-function

A1), Ay (0), 2, (1) -

Let us take a- function in form
a = [y’ (e, x)cos(n, )z~ [ (w] + f}+2,07)dt (3.15)

Where n is outer normal to surface S, dt is element surface S. We present the functionJ =1+ a in form

J = A+jPBdt, where A= Ly/f(r,x)cos(n,tf)dr, B=fy—yl+y! fi+ Ao (3.16)

Theorem 3.5. Assume u(t) € V. In order to couple u(t), x(t) will be the absolute minimum the purpose function (3.12)

it is sufficiently* exicting of a-function (3.15) such that

1)B = inf B(t,x,u), 2) A= ir(lt;B > -0, 3)X(t),u(t)eQ- (3.17)

The proof is identical [2] Ne7, but in difference from [2] the theorem 3.5 contain the integrability condition.

If X(¢), u(t) 2O, than _J is the lower estimation the function (3.12).

If exist the functions ¢, A and at least one pair X (), u(t) satisfying (3.17), then any other pair satisfying (3.17) is

minimum of the function (3.12) and any allowable minimum the function (3,12) is satisfying the points 1, 2 (3.17)
(consicvently remark 3 §1). The set contains the same or better solution, then x(z), u(¢) is

N ={t,x,u: B(t,x,u)+ f,(t,x,u)> B+ f,} on P xU.,

Assume, functions £7(¢, x, i), ¢’ (¢, x,u) are continuous and differentiable. Let us take lin form ¢/ = py(t)xi. Let us
J b b

denote:

H=p,(0)f,(t,x,u)= fo(t,x,u) + A,9" (t,x,u) -



Then p.1 (3.17) of theorem 3.4 we can rewrite: H(u)=supH and necessary condition of minimum (stationarity
uelU

condition) following from p.2 (3.17) gives:

. (3.18)
0B __ Py OH _ i1pn

ox, o1, ox,

84. Inverse substitution method

A. From previous paragraph we have: if we know the minimum any function on acceptable set, we can get
information about solution the Problem 1 and solve one from Problem a, b, c, g the §1.
It is known , that the most direct Problems inf fo(x) on X* or
inf [ fodt
|
on Q (i.e. finding the minimum of main Problem) are difficult or do not have the satisfaction solution. However, if
purpose function is not in advance definitized, the solution for this non-diminished purpose is finding easy. This is
not surprising. In mathematics it has long been known that many inverse problems are solved more easily than direct
problems. An example, let us consider the problem of finding the roots of an algebraic equation. In the general case
for n> 5 it is solved with difficulty and her decision (roots) not to be expressed in terms radicals. If the roots are
given, then the corresponding algebraic equation may be found easy. On the basis of this idea below it is given
method to build function for which an admissible element would be the point of absolute minimum on an admissible
set. Since we thus have to solve a problem back to the original problem (not find the minimum given function, but
find the function for given the minimum or for given field). This method is called the method of reverse lookup.
The method is presented for two cases: problems of the theory of extrema of functions of a finite numbers of
variables ( p.B) and optimization problems described by ordinary differential equations (p.C).

A. Let us consider usual Problem of minimum the function of finite variables

I=f(x), f,(x)=0, i=12,...m<n. (4.1)

Let us convert this Problem. Select m components x and name them main (base). Suppose for definiteness that this
is the first components m of the vector x. The rest of components n - m =r denote u; (j=1,2,...r).

Granted Problem (4.1) we can re-write
I=f,(xu), fi(xu)=0, i=12,..m<n. (4.2)
where x —m - dimensional vector, x € X, u—r - dimensional vector, u €U .

Let us take more simple purpose function Ji(x,u) and find it’s the absolute minimum on X xU . This solution may
be used for building of sets M, N, P:

M={xu:J,—f,2J = fo},  (43)
N={xu:J, +f,<J +f}, (44
P={xu:J,—f,<J,—f,}. (4.5)

Disadvantage this method is next: the some of these sets cannot have the admissible elements (i.e. x, u
satisfaction f; = 0).

Assume, the limitations fi(x,u)=0 in (4.2) may be solved about x:

x, =x,(u), i=i=12,..m (4.6)



and x€ X forany vueU.
Assume we take simple function J;(x,u). Substitute in it’s the (4.6) and find inf J,(x(u),u), u,and (4.6) X . This
U

solution is analog (4.3)-(4.5). One may be used for finding sets M, N, P. The intersection of these sets with admissible
set is not empty. You can take Ji(x,y,u), than u =u(y). You can use the dependence of M, N, P from y for

changing the “size” of these sets. It is clear assessment

A :in)f sup[J, (x(u),u) —1(x(u)),u] -

C. In point 2 §3 we considered the optimization Problem described by conventional differentials equations
2} . . .
1 :I folt,x,u)dt, x=f,(t,x,u), i=12,.,n, uecl. (4.7)
I
We was shown: if we take some function (t,x) and find minimum of inf B in (t1, t2) and inf 4, we get the

X,u X1,Xo

minimum of Problem 1 or the its lower estimation.

Statement of the Problem. Let us to state the Problem 1 the other way: the find the function which matches the
function ¢(t.x) and minimum of this function of the admissible set.

Note. Let us note: the offered statement very different from the back problem of variation calculation. In variation
calculation, the back-problem states next: we have a curve. Find the function, which gives the minimum in this curve.
In common case this problem is more difficult than a direct problem.

In our case the minimum curve not given. We find it by given function ¢(t,x).

Theorem 4.1. The minimum function corresponding function ¢(t,x) is

J, = [ By(t,x)de = [*~inf [y, f(t.x.u)—y, Jdi (4.8)
4 4 uelU !
And correcponding to it the minimum curve is given by equations
X, = filt,xu(txy w)l, i=12,..n, (4.9)

where 7; = u(t,x,y_,y,) we find from (4.8).

Proof. Write the expression B (see (3.11)) for problem (4.7) and checkup condition (3.8) of theorem 3.1:

B, (1) = inf inf [B, (6,) ~y/, f,(t.x.u) ~y,]. (4.10)

Obviosly, the (4.10) identically equals zero for ¢ = (t,x) from (4.8) and X, u satisfaction (4.7). If we take as x(t;) the
value x(t), received from (4.9) for t,, then the point 2 (3.8) disappear and all condition (3.8) of theorem is executed.
Theorem is proofed.

Consequence. If B, = f,(t,x), then x(t) getting from (4.10) give the set of the minimal curves for boundary

condition ¢, = ¢. In particularly, if the end of curve x(t) from (4.9) match with given boundary conditions, that this
curve is minimum curve of Problem 1.

Note. Boundary conditions in the left end can always be performed. For it we must start the integration from the
given conditions (4.9). We can perform the boundary condition in the right end the next method. Take in form
Y(t,x,c) where c — n — dimensional constant. Substitute (t,x,c) in (4.9) and select ¢ such that to perform the given
end condition in the right end.

Getting numerical function may be used for receiving the set N, P of Theorem 3.3 :
N-{t,x: fo+B, < fy+ B}, P={,x:B —f,<B —f},
where f, = fylt.x @(t 5y, w)l, w(tx) is given.



If we find

&
J:l//z_l//1+_'; Hlf(fo_Bl)dt '

We get also the lower estimation.

Memo, the assignment ((t,x) gives us not single no metical function and its point of minimum. One gives a set of
minimums satisfaction the boundary conditions ¢, — ¢; = c.

Note: We can take (t,x,y). Then Bi(t,x,y). If we can select such y(#) that B, (t,x,y) = f,(t,x) and boundary

conditions is performed, then #(#, x, y) is the optimal synthesis of Problem 1.
D. We also show: how you can find the numerical function for given the syntes of control u = u(tx).
Equate the given u = u(t,x) to the control fended from (4.8). We get the equation in particular derivities
u(t,x) =u(t,x,y v,)- (4.11)

Substitute its solution (t,x) and given u(t,x) in (4.8), we find the numerical corresponding function. If B; = fo(t,x) that
is synthesis the Problem 1 for the bounded condition ¢, = ¢.

Possible the other method . We take u = u(t,x,y). Substitute it in (4.8). Then B; = B;(t,x,c,y). We can try using y to
reach the identify f, =B, and using c to minimize the numerical function /.

Example 4.1. Let us consider the task of design the regulator

I= L 12 b,x,x dt, (4.12)
X, =a;x tu, 0<t<oo, (4.13)
x(0)=x,,, x,(0)=0, (4.14)

where fy = bjxix; is the positive definite form.

Take u = cix;, where c; are constants. Let us to search ¢ as the quadratic form = Ajxx; with unknown coefficients.
Equate fo=y:

bjx;x, = A;x,(a;x; +c,;x,).

Let us equate coefficient in same x, x; in left and right of this equation. We get the set n(n+1)/2 the linear
inhomogenius equations having the same number of unknown Aij. If the determinant of this system A =0, we find
Ajj. We substitute £, =y in (4.12), integrate and find 1 =w(o0,c) —w(0,c) or using (4.14) | =- ¢(xi,c). When we
find minimum of this expression for c, we get the optimal systems. If —y/(x,¢) is the positive definite form then this

function is the Lyapunov function (because —7 > 0 and the regulator is asymptotic stable.

§5. Method of combining extrema in problems of constrained minimum.

We will show in this paragraph that method combining extrema, considered in §2 the Chapter 1 [9], it is apply in
tasks of theory the functions of a finite number of variables (point A) and tasks described the conventional
difference equations.

A) Let us again consider the Problem of the theory the functions of a finite number of variables

I=f,(x), f,(x)=0, i=12,.,m. (5.1)



Write the numerical function

J(x,¢) = fo(x)+ B(x,c)+ o (x), (5.2)

Here a;(x) is a — function, c is n — dimensional constant.

From condition

inf J(x,c), (5.3)
xeX
we flnd (Dl (x(l),c) — O.
From condition
D(x,c) =sup[B(x,c)+a,(x)], (5.4)
xeX*

we find 0, (xm,c) = (). Solve equations 3, @, together with (5.1) (combining equations):

¢1(x(1)>c) =0, (Dz(x(Z),C):O' X =2, (5.5)

we receive the absolute minimum the Problem 1. The additive 8(x,c) selects so that tasks (5.3), (5.4) are solved
easier.

For example o, =Af, oa,=vf. Functions fi(x), i=0,1, ...,n are continuous and difference, the functions

J(x,c), ®(x,c) have single minimum and maximum for any c. That we have system (3n + 2m) equations with same
numbers of unknown magnitudes a(1), a(2), c, A, v.

Example is not including.

B) Let us to consider the task, described the conventional different equations:

153 . .

1 =J folt,x,u)dt, x, = f.(t,x,u), i=12,..,n, uelU, x(t)=x, x(,)=x,’ (5.9)
f

Take ¢ in form o, = M (¢) o and create the function

1 1 (1 1 11 1 ..
B fy 2= p £ = i = =B Ul

Here z(t) is r — dimensional function. One can have the limited gaps the first type.
From inf B and (5.9) we find
p(]) = _H;(cl)’ L_l(l) = L_l(l)(t:x(l)’p(l)az)a f(t .X @ (l)) (510)

Take l//(z) - p(z) (2) and create the function

BZZ ,B(t,x(z Z) p! 2)f(Z) (2) {2) H(Z) pl(2) 1(2)
From inf B, and (5.9) we find

p(2) — _HiZ)’ u? = L_t(z)(l‘,x(z),p(z),z), ):6(2) — f(t,x(Z)’u(Z))_ (5.11)

Using the combining equation: x® = x = 5 —;,® we get final:



)'C=f(t,x,u(l)), p(l) :_H)(cl)v p(Q) :_H)(cz)’ I’_l(l)(taxap(l)sz)=1’_l(2)(taxap(2)sz) ! (512)

That is system 3n + r equations with 3n + r unknown x, p¥, p©), z. Last equation in (5.12) is the combining equation
The additive function 68 selecting so that the solution task of finding inf and sup were simpler.

§6. Generalizing the Theorem 3.1 in case the bracken {(t,x).

Theorem 6.1. Assume there is numerical function (t,x) defined on set T x G , bounded below, piecewise
differentiable and piecewise continuous. The function Y(tx) and its derivatives can have the breaks the first types
on the limited set D (t,,x),s=12,..k—1 zero measure. This function is such that there is:

Dinf (F+y, -y,), 2) inf (g —wl), =t ., t,=t.,, s=12,..k-1,
R t,,xed,
3)inf B=0, 4)%(), (1) €Q.

Then X,u (are got from points 1 -3) is the absolute minimum the Problem 1.

Here v, (/,: are value ¢ in left and right side (along x(z) ) of the breaks the function ¢ and its derivatives.
Proof: From points 1 — 3 we have

_ k-l ) . S .
J :1r11zf(F+wk —y/0)+21tnt;(l//s -y, )+ZJ; inf Bdt

s=1 57 s=0 s B

. - . . N . .
On feasible curves (from Q) the J convert in function I=F +J‘ fodt In this case if we apply the consequence 4
4

, §1, point 4 of the theorem statement is obviously. Theorem is proofed.

Note. The conditions 3 of Theorem 6.1 is sometimes difficult to check up. In this case the requirements 2 - 3 of
theorem 6.1 we can change the damage

inf[inf (y, —y;)+ [ infBde+ " infBdr]

S GxU

One must be checked up in every point t,, s=1,2,...,k-1.
§7. Optimization the problems described the conventional differential equations having
the limitations.

We find minimum A, B in Theorem 3.1, chapter Il on the corresponding sets R and U x G . The most widely
method of separating the feasible sets is the separation of them from more widely set by equalities and
inequalities. In this case, we can solve our problem by the methods the a- and 8-functions.

Let us shortly consider the most common cases.
1. Limitations are the equalities
a) Assume the admissible set R is separated by equalities:

g, (x,x,)=0, i=12,.,/<2n. (7.1)

Then the task inf A we can change the task



inf [A+ p,(x),x,,2,)g:(x,x,)] - (7.2)

Xp,X,

Here u; is known functions, z is I-dimensional unknown vector. In particularly, we can take y; = z;.

b) Assume the admissible set U x G is separated by equalities

o,(t,x,u)=0, i=12,..I<r. (7.3)
Assume, we can find from (7.3) the / component the vector u. Than the problem i;n(f/B we can change the
problem
1115 [B+A.(t,x,w)p,(t,x,u)], (7.4)

Where A; are known function, w; is | - dimensional unknown vector function. In particular, we can take A;=w;.

c) Assume the admisseble set G is separated by the equalities
@, (t,x)=0, i=12,.,I<r. (7.5)
Differentiate (7.5) full case for t and find

) ) . 7.6
gp}”(t,x,u)s%fj(t,x,u)+%:O, i=12,..,1<n (7.6)
ox ot

J

If in system (7.6) there is equations do not contain u, we differentiate them next time and so on whole we get the
system where all / equation contains u. Assume, we can find all / components from this system (/< r).

Than the problem (7.5) is reduced to the tasks the point a, b in which (7.6) is (7.3), but (7.5) and all equations
(7.6) not contain u, are (7.1).

2. Limitations are inequalities. (excerpt)

a) Feasible set R is allocated by inequalities:
g, (x,,x,)<0, i=12,...,[L

Then acording the Teorem 1.4 Chapter 1 we change the problem inf 4 by problem (7.2) with the additional
R

conditions:
Z,»E,»:O, /ZZO (here i is not sum) (7.7)

b) Feasible set U x G is allocated by inequalities:

o, (t,x,u)<0, i=12,..,1 (7.8)
All inequalities contain u. Then the task inf B we change the task (7.4) with conditions
UxG
A9, =0, 2,>0 (here i is not sum) (7.9)

Example 7.1. Assume in task



1y . )
1 =I folt,x,u)dt, X, = f.(t,x,u), i=L12,.,n,
4
Control u is scalar, the feasible set U limited inequality a <u < b, (a <b) . Compose (7.4):

ilgf[B+/’L] (u—b)+A,(—u+al.
According (7.9) on feasible u: 4 (7 —b) =0, A,(—iu +a)=0. That way we have

inf[B+A,(u—b)+A,(—u+a)]= inf B.

uy,uy €U

In right side we have one condition the Pontryagin method.

(Part of the text are missing)

§10. Note on the equivalence of different forms of variational problems
A) In §3 the next problem of minimization was considered

I=F(x,x)+ [ fy(txuydt, (10.1)

on solution of equations
X, = f.(t,x,u), i=12,..,n. (10.2)
In the theoretical analysis for the sake of simplicity, we often assume that in (10.1) =0 or f,=0.
We show that it does not restrict the generality of our reasoning.

Take
= j Lt x,u)dt
41

And differentiate it for the variable upper limited t and designate X, =/ We get the task

] = ‘xn+1 (tl )’ xi = -fl 4 ).C}'H—l = ]FO : (103)

B) Assume [ = F(x,,x,). Differentiate it by t and integrate, we get numerical function
53
1=["(F, f)di (104
121 !

We can same way to convert (10.1) in (10.4) and in (10.3).

C) Let us to assume the (10.1) and (10.2) depend from constants cx which must be optimal. Designate ck = xi+k and
add to (3.3) equation %  =0.We reduced the task having the optimizing constants to conventional task.

In practice it is comfortable to solve the problem (10.1), (10.2) with constant parameters. Than to change them
(for example the gradient method) so, the function (10.1) decreases.

D) The problem with f; (t,x,u) which obviously depend from t, we can reduce to problem f;(x,u) do not depend
obviously from t, if to designate t = x.1 and add to (10.1) the equation X =1.

C) Let us to show how the task with the moving ends t; and t, we can reduce the task with fix interval of integrate.
Take the new variable t = ct. Than task (10.1),(10.2) having variables t1 or t2 was reduced in task with fix interval
(Tl,l'z):

I :F+J.:2 cfo(r,x,u)dzr, x'=cf(ct,x,u),

where the touch means the derivative for t. The constant ¢ > 0 is selected from minimum /.



Application.

1. Theorem 3.1 and known methods of solution the problem described the ordinary
differential equations.

From Theorem 3.1 we can to get the conditions which are same with known algorithms of optimal control, for
example: Pontriagin principle [10], Bellman equation [11], classical calculus of variation [12],

Let us to request additional that function f, ¢ have the need continuous derivatives.

a) Pontriagin principle. According [10] take (t,x) in form () = p;(t)Ax;, where pi(t) are some differenciable
functions t, Ax;, = x, _)?i,Create the Hamiltonian

H=p.ft,xu)—f,(t,x,u)- (1)

Then B =- H - pix; . Necessary condition of the minimum B for x, which follows from p.1 (3.8) of Theorem 3.1
(stationarity condition) is

B =-p,-H_=0,i=12,..,n. (2)
Moreover of claim 1 (3.8) we have

B(t,x,u)= ian/‘ B(t,x,u) or ing(—H) =—supH (3)

uelU

Terms and conditions (2), (3) together with (3.3) coincide with the corresponding terms and conditions of the
Maximum principle* [1].

b) Belman equation. Assume x, #0. Take allA;=0 i=1,2,...,n-1 with exception A, =w(t,x)/x,- Substitute them

in (3.9) §3, we get the known Bellman equation [11]
inf(fy~v, /; ~v,)=0 @

Boundary condition for them is A = const. Solution of this equation is the field of all optimal trajectories.

c) Classical calculus of variation. From claims 1, 2 Theorem 3.1 easy to get the conditions of a relative minimum
coinciding with the relevant terms of the calculus of variations [12].

Let us assume U is the open area, x(¢),u(¢) are continuously, f;(t,xu) have continuous partial derivatives up the
third order. Take = pi(t)Ax; . From (3) that at minimum

B, (t,x,u)=-H, (t,x,u)=0, i=12,.,r, (5)
Equations (2),(4) equal the conventional Euler-Lagrange equations [12] §2. From [12] also follow

~H,, Sudu, 20, i,j=12..,r. (6)

ujlt

That matches with Krebs condition.
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