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Abstract 

Currently, natural philosophy (Physics) lacks the most fundamental model and a 

complete set of self-consistent explanations. This article attempts to discuss several 

issues related to this lack. Starting from the most basic philosophical paradoxes, I 

deduce a physical model (the natural philosophical outlook) to describe the laws 

governing the operation of the universe. Based on this model, a mathematical model 

( ) is established to describe the generalized 

diffusion behavior of a moving particle swarm, and its simple verification is carried out. 

In this article, the gravitational force and relativistic effects are interpreted for the first 

time as a statistical effect of randomly moving particles. Thus, the gravitational force 

and special relativistic effects are integrated into a single equation (achieved by 

selecting an initial wave function with a specific norm when solving it), and the cause 

of stable particle formation is also revealed. The derived equation and the method of 

acquiring the initial wave function are fully self-consistent with the hypotheses stated 

in the physical model, thereby also proving the reliability of the physical model to some 

extent. Some of these ideas may have potential value as a basis for understanding the 

essence of quantum mechanics, relativity and superstring theory, as well as for gaining 

a further understanding of nature and the manufacture of quantum computers. 

1. Introduction 

"Birds flock and sing when the wind is warm, Flower-shadows climb when the 

sun is high"1; the Earth, our home, is overflowing with vigor! However, light years 

away, dead silence seems to prevail; from the human perspective, the Earth appears vast, 

but at the scale of the Solar System, it is merely a "little blue dot". By what forces are 

these mysterious phenomena, which are as far apart as Heaven and Earth in our eyes, 

arranged? How enormous is the universe? Why is it like this? Through what mechanism 

does it operate? Is there a beginning or an end? Where does the vast amount of energy 

in our universe come from? Will it ever run out? How do the concepts of time, space 

and speed come into being? Will the total entropy in the universe continue to increase? 

Etc. Throughout the history of human existence, these have been difficult questions to 

answer. "Know the enemy and know yourself, and you can fight a hundred battles with 

no danger of defeat"2; exporing the origin of the universe is the only way for human 

beings to conquer nature. 

i ∂M
∂t

= − !e
−M

2m
ΔM−T 2(M)⎡⎣ ⎤⎦



 3 

Since ancient times, human beings have gradually deepened their understanding of 

the laws of nature and the universe through a continuous process of development that 

can be roughly divided into the following three stages: 

In the initial period of Aristotle, Ptolemy, Copernicus, Kepler and others, people's 

explorations of nature were restricted not only by the level of technological 

development at that time but also by various political conditions3. The explorations of 

nature and the universe were slow, and the levels of understanding gained were also 

relatively shallow. By the time of Galileo and Newton, technology had greatly 

improved, and a framework of relatively strict logic and scientific thinking methods 

had also been developed. Under the guidance of Newtonian mechanics and calculus, 

the understanding of nature greatly improved. However, Newtonian mechanics held 

that gravitation was generated directly by mass and was not affected by motion or 

energy. The laws of gravitation, inertia and acceleration were all developed based on 

simple rules of experience from the perspective of philosophy (i.e., axioms; although 

the definition of universal gravitation was formulated by Newton, Galileo had already 

established empirical rules in accordance with observation, and the essential nature of 

inertia or acceleration was not clear), and the universe as a whole was considered to be 

relatively static. 

In modern times, Einstein's theory of general relativity emerged, and humans' 

ability to understand natural laws and predict natural phenomena improved 

tremendously. According to general relativity, a gravitation or space-time field is 

affected by matter, energy and motion, which leads to apparent "magical" changes in 

motion. On this basis, the existence of black holes and other celestial bodies was 

predicted3,4. With the subsequent rapid development of quantum mechanics, the human 

understanding of the universe at the microscale greatly improved, resulting in a new era 

of philosophy (the Copenhagen interpretation of quantum mechanics) as well as a large 

number of modern technological advances3. 

However, what are the physical principles behind quantum mechanics? How 

should quantum entanglement5 and Wheeler's delayed-choice experiment6 be perceived, 

and is the Dirac equation with special relativistic effects essentially correct or not? What 

is the more fundamental reason behind the curved nature space-time and the principles 

of special relativity? Furthermore, how can dark matter, dark energy and inexplicable 

repulsion, which often arise in discussions of modern cosmology, be explained? Etc. 
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In all this time, humans have made no effort to explore the answers to these 

substantive questions (by establishing a more fundamental physical model) but rather 

have remained at the superficial surface of quantum physics. Based on classical physics 

(such as Newtonian mechanics), formulas have been deduced from a mathematical 

point of view, and the conclusions of special relativity and the constraints of Lorentz 

covariance have been added to various equations, yielding results that seem to be very 

fragmented (such as the Dirac equation and quantum field theory). All these practices 

have led to the emergence of various theories but have not fundamentally solved the 

problem3,7. The whole edifice of physics seems to have improved by virtue of various 

explanations, such as the so-called Standard Model of Particle Physics and superstring 

theory, but none of them is completely satisfactory. The Standard Model and various 

models of a Grand Unified Theory that have been developed to date merely integrate 

the previous models from the perspectives of mathematics and the surface nature of 

physical phenomena; as a result, they cannot perfectly explain gravitational effects 

(irreducible normalization after the introduction of gravitation). Superstring theory 

seems to encompass all known successful theories because it includes additional 

degrees of freedom (higher dimensions). However, the invocation of higher dimensions 

is not meaningful for solving more practical problems. Instead, because many 

additional false possibilities arise that make the equations extremely difficult to solve, 

the requirements in terms of the mathematical skills needed to pursue such theory have 

reached an amazing level. Moreover, a "string" is not and should not be considered the 

most basic physical morphology. In addition, the theory of loop quantum gravity is not 

perfect, and it seems to raise more difficulties than can be solved. In view of the above 

problems, it is necessary to further understand the essential nature of physical 

phenomena or physical constraints and to establish a more fundamental physical model. 

Starting from the most basic philosophical paradoxes, this article probes into a 

series of even deeper and more essential problems in physics and attempts to establish 

a most fundamental physical model to describe the laws governing the operation of the 

universe. Based on this, a self-consistent mathematical equation is established in a 

concise form. The basic structure of the whole article is as follows: first, make sure that 

human beings can understand nature; second, extract philosophical contradictions from 

natural phenomena (axioms) acquired by human senses (the phenomena with 

contradictory constraints are reasonable); finally, based on philosophical contradictions, 
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physical models are established (thus to determine time, space, and the coordinate 

system used to establish mathematical models, etc.) and based on the defined physical 

model, the mathematical model is deduced step by step. Before the derivation, two 

checks have been made: First, it is confirmed that the physical model contains the 

special relativistic effects; second, the Schrödinger equation can be derived from the 

physical model under certain conditions. The process of the two checks also makes it 

clearer how to derive the mathematical model, that is, the generalized diffusion equation. 

The process of deriving the generalized diffusion equation includes: (i) vector 

decomposition. The decomposition of nonmoving particles in space is extended to the 

decomposition of a 2-dimensional vector representing the sum of the 3-dimensional 

vector of moving particles at a certain point in space, which is the core of the whole 

derivation. (ii) The classic diffusion coefficient is reinterpreted and the essential key 

information is obtained. (iii) On the basis of (i) and (ii), the equations are assembled 

according to the classical diffusion principle to obtain the generalized diffusion 

equation. In addition, some important parts related to the equation are discussed and 

verified. For example, how to assign initial values to partial differential equations and 

some other key physical meanings represented by the equations. The following is a 

detailed description. 

2. Methods 

In this article, the physical model with a clear definition is derived employing the 

constraint of philosophical paradox, and then the mathematical model is obtained by 

logical derivation based on the physical model. Finally, it is also logically proven that 

all the typical features of the physical model can be extracted from the mathematical 

model. Mathematica 12.1.1.0 for Mac (Wolfram Research Inc.) was used for all of the 

mathematical calculations, and the operating system was macOS High Sierra 10.13.6. 

The solutions to each specific problem can be found in the Supplementary Information. 

If no specific parameters are specified, the default values in the software system were 

used. The effective number of significant figures in the numerical methods was no less 

than 6. 

3. Results and Discussions 

3.1 Can the World be Understood? 

The innate knowledge possessed by human beings is perceptual knowledge that 

corresponds to external stimuli and is established through long-term interaction and 
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internalization between an organism and its natural environment constrained by the 

elimination mechanism of nature8,9. Therefore, such innate knowledge shows excellent 

reliability. The acquired knowledge or experience accumulated by human beings 

through a model of innate cognition (even if such a cognitive model includes more or 

less subjective factors) should still be reliable and applicable in practice if such practice 

is based on the same cognitive model. Moreover, in view of the relative stability and 

repeatability of certain external conditions (i.e., the translation invariance of time and 

space), the innate knowledge and acquired experience possessed by human beings 

should also be reliable throughout the whole range of human practice. 

Therefore, the theories established by human beings, even if they are cognitions 

only from the perspective of human beings on Earth, who in some sense are equivalent 

to cosmic dust, and even if they contain many limitations or mistakes (such "mistakes" 

are relative; they are related to the fact that the appearances and forms of things as 

reflected in the human consciousness are not, in fact, the original appearances and forms 

of those things), as long as they can effectively explain and predict the phenomena we 

observe, are successful theories, even though we cannot confirm whether they represent 

completely correct truth8. 

3.2 The World from the Perspective of Philosophical Paradoxes 

The reason why the world has infinite energy and runs endlessly must be that there 

exists a series of philosophical paradoxes restricting each other10,11. Only under such 

contradictory constraints can the world become balanced and logical (self-consistent). 

Under the guidance of this perspective, this article summarizes three axioms, as follows: 

AXIO 1: Substances exist in the world. 

Whether substances exist in the world is an ancient topic of philosophical 

discussion. However, this debate serves as the original basis for all rational inference 

and logical extrapolation in this article. There are only two possible situations: either 

some substance exists in the world or there is no substance at all. The fact is obvious: 

there are some substances that exist in this world. On average, however, these 

substances are so sparse that they are almost nonexistent12. As a result, the world (or at 

least within the range of human observation) is as sparse as though it is without 

substance. 

AXIO 2: These substances are inhomogeneous. 
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If the world is full of substance, then there are only two possibilities for its 

distribution: it is either homogeneous or inhomogeneous. Obviously, the distribution of 

substances in this world is inhomogeneous within the range of our observations. 

However, there is no reason that any one of these inhomogeneous substances should be 

favored more than another, that is, substances should have no greater opportunity to be 

distributed in one place than another. Therefore, it should be considered that the 

probability of the distribution of substances in every location (not limited to only 3 

dimensions) is equal, or homogeneous, from a large-scale perspective13,14. To satisfy 

both of these properties of inequality of distribution and equality of probability, the 

substances in this world must exist in quantum form. This fact does not require 

discussion because it has been verified by various physical experiments. In addition, 

there is no reason for the world to "favor one substance more than another", and it 

should be probabilistically identical between different original "quantum dots" (called 

infinitesimal particles in the following). The fact that the above two properties of 

"inequality of distribution" and "equality of probability" are both satisfied also 

necessitates that the world is a paradoxical body with uniform probability but 

inhomogeneous characteristics at the microscale (or in several dimensions). 

AXIO 3: These substances are moving. 

This seems to be another topic of philosophical discussion, but I give it new 

connotation here. The substances observed in the world are moving, or from the 

perspective of human understanding, the substances that exist in the world are moving. 

In any case, the world can be interpreted as dynamic rather than static. Then, what is 

the most reasonable movement pattern? 

The current understanding is as follows: photons, which have no stationary mass, 

are the fastest substance in the universe. It is impossible to accelerate species with 

stationary masses (such as electrons) to the speed of light. If they were to reach this 

speed, their masses would become infinite, and their energy consumption would also 

become infinite (according to the conclusions of relativity). Therefore, there is no 

species that can move faster than the speed of light, even if there is, it cannot transmit 

information. However, from this point of view, the abovementioned essential nature of 

quantum entanglement cannot be understood, the phenomenon of Wheeler's delayed-

choice experiment is astonishing, and the mechanism by which the influence of 

gravitation can reach out beyond a black hole is not easy to explain. 
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Therefore, this point of view is abandoned here, and it is instead considered that 

photons are the fastest species that can transmit information that has been found or 

perceived by human beings at present, that photons have a light mass (or infinitesimal 

mass. This is the observation from another perspective, as discussed in Section 3.3.5.4), 

and that motion cannot substantially change the physical mass of an object. Particles 

(particle swarms) at a smaller mass level than photons, even if they can transmit 

information, cannot be perceived (or consciously perceived) by human beings at present, 

and their limiting speed is faster. Therefore, once the speed of a particle (particle swarm) 

is sufficiently fast, it must "split" into particles (particle swarms) of lower mass levels, 

until the speed reaches infinity and the mass becomes infinitesimal (in the framework 

based on the assertion that "the substances in this world must exist in quantum form", 

Section 3.3.5.2 will confirm that it is possible that particles (particle swarms) of lower 

mass levels can form a particle (particle swarm) of a higher mass level and that the 

opposite process can also occur).  

From this point of view, the whole universe will exhibit motion-related phenomena 

as follows: For a particle with infinitesimal mass, its speed can reach infinity. Therefore, 

no matter how large the space in which it exists, such an infinitesimal particle can 

instantaneously (no time consuming) exist at any position. Therefore, it can be 

everywhere at once, relative to it, any arbitrarily large space is also an infinitesimal 

space in which the concepts of time and distance do not apply, and such a particle is 

infinitely large relative to any such space, meaning that no motion in space can be 

perceived for space at all (particle scatters all over the space). Since there is no concept 

of space or time in the case of infinitesimal particles, there is also no concept of energy. 

If the universe is composed of infinitely many such moving particles (because they are 

infinitesimal particles, there are no collisions between them), then it will not consume 

any so-called energy and can continue to exist and run forever. However, once a particle 

of a larger mass level (a particle swarm of infinitesimal particles) is observed, its speed 

will decrease (in 3-dimensional space, the relationship between the mass of the particle 

swarm, which can be equivalent to the dominance of directional aggregation, and the 

average speed of the constituent particles obeys the Maxwell distribution; see Part 1 of 

the Supplementary Information for details). Simultaneously, the concepts of time, space, 

speed, mass and energy will arise. Therefore, there is no inherent concept of time, space 

or speed and no inherent concept of mass or energy in the universe; all of these concepts 
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instead arise from the representations of the universe that are observed from various 

perspectives. Although a particle is infinitesimal, it is infinite relative to the universe; 

although the universe is infinitely great, it is infinitesimal relative to the infinitesimal 

particles. As the velocity of a particle approaches infinity, the very concept of motion 

will be lost. The universe is both large and small; substances both move and do not 

move within it; and the concepts of time, space, speed, mass and energy are both extant 

and absent. Thus, the nature of the universe is described by several pairs of mutually 

constraining paradoxes. 

The validity of the above three axioms is obvious, and their existence depends on 

the constraints imposed by their counterparts in the mutually constraining paradoxes 

introduced above. Here, only the meaningful sides of these paradoxes are selected for 

further investigation. In addition, under the constraints of logic, the concepts derived 

from the 3 axioms are also contradictory constraints. Only logic that is constrained by 

paradoxes is complete and self-consistent. On the basis of the above three axioms, this 

article makes reasonable inferences and extracts the following 3 hypotheses: 

HYPO 1: The universe is composed of infinitely many uniform particles with 

infinite speed and infinitesimal mass. 

The concepts of "infinity" and "infinitesimal" are equivalent to those in 

mathematical analysis. The statement that the masses of the particles are uniform refers 

to these masses relative to their standard deviation, and the concept of "uniform 

particles" discussed below also has the same meaning. 

HYPO 2: The speeds of these infinitesimal particles in space are equal, and the 

directions of their motion are random. 

As mentioned in AXIO 2, these infinitesimal particles are formed in accordance 

with the same law; therefore, their masses and speeds (or norms of momenta) should 

be either strictly equal or equal relative to their standard deviations. The concepts of 

equal masses and speeds (or norms of momenta) discussed below also have the same 

meaning. The probabilities of the possible directions in each dimension are also equal 

because there is no reason for them to be uneven. 

HYPO 3: There is no interaction between infinitesimal particles. 

In the world we observe, interaction forces exist everywhere. However, this is not 

necessarily true for infinitesimal particles. For infinitesimal particles, it is assumed that 

there is no traditional interaction between them (such as gravitation) and that any 
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observed macroscopic force (or interaction) is caused by a statistical effect of these 

infinitesimal moving particles. This assumption does not conflict with the classical 

force concept but will be helpful for establishing a general equation and expanding the 

self-consistent range of theory. 

These are the 3 basic characteristics (hypotheses) extracted from the 3 basic 

axioms regarding the nature of the world. Next, a model will be built on the basis of 

these 3 hypotheses. 

3.3 Model Building Based on Philosophical Paradoxes 

On the basis of the above 3 axioms and 3 hypotheses (although the 

abovementioned can be examined in accordance with, but not limited to, the 3 + 1 

dimension), this article infers that there are only four possibilities regarding the scale 

(large or small) of space (in any dimension) and the number (many or few) of particles 

in any local domain and that these four possibilities are independent in different local 

domains. This is because, in any dimension, the world is dynamic and inhomogeneous, 

and motion and inhomogeneity are two independent properties. Because of the 

movement of particles, when a certain number of particles are observed without any 

spatial differences, the concept of velocity will be generated in the world. In any 

dimension, the concept of velocity will be characterized in terms of the concepts of time 

and distance. Due to the inhomogeneity of the distribution of particles, when a certain 

number of particles are observed with spatial differences, the concept of density will be 

generated in the world. In any dimension, the concept of density will be characterized 

in terms of the concepts of scale (another single degree of freedom different from 

distance) and the number of particles with spatial differences (disguised distance in 

another degree of freedom). If the latter two degrees of freedom are fixed (that is, the 

two degrees of freedom or the entities they represent are used as references to determine 

the object under inspection), then they will be characterized in terms of the degrees of 

freedom of distance in the other two dimensions. Therefore, there are four independent 

dimensions in this world, with three dimensions characterized in terms of the concept 

of space in our consciousness and one dimension characterized in terms of the concept 

of time in our consciousness. In principle, these 3-dimensional space and 1-dimensional 

time coordinates can describe all natural phenomena. Even methods operating in the 

so-called multidimensional space of string theory have the ultimate purpose of solving 

problems in 4-dimensional space-time. 
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In view of the above discussion, the essence of time can be expounded here. If the 

world is regarded as a whole, there is no concept of time and space. If the substances in 

this world are observed separately from their environment, concepts such as time will 

be produced. Therefore, time is one of the independent degrees of freedom produced 

when the world is thought by "one divides into two". It is the concept of time when this 

independent degree of freedom is reflected in people's consciousness. This article will 

not discuss it in depth, but treats it as a classical concept of time. 

To understand the world more easily and intuitively, humans tend to project 

various abstract results and conclusions into the world we are familiar with. In principle, 

if a 4-dimensional curvilinear coordinate system is adopted through coordinate 

transformation, the necessary mathematical operations may be simple, but this 

conceptualization will lead to difficulties in understanding the problem. Einstein's 

general relativity uses a 4-dimensional curvilinear coordinate system (space-time), 

which is an "immersive perspective" with a sense of participation. Although individual 

immersive physical events (such as the constant speed of light) are consistent with 

physical observations, difficulties will eventually arise in understanding the essence of 

physical problems. In absolute space-time, the coordinate system consisting of 3 spatial 

dimensions and 1 time dimension is the "God perspective", which is helpful in allowing 

people to look at and understand problems from a macroscopic perspective. Of course, 

no matter which perspective is adopted, it does not affect the descriptions of physical 

phenomena in 4-dimensional space-time. Finally, the evolution of various phenomena 

should ultimately be measured and understood in the flat coordinate system that we are 

familiar with at present. 

It should be emphasized that the "God perspective" (or "absolute space-time") 

mentioned here also has relativity. When absolute space-time is used as the reference 

system, the particles in it should satisfy the conditions given by 3-dimensional HYPO 

1–3 (this system can also be regarded as the classical "inertial reference system" here). 

This means that if the entire swarm of existing particles moves as a whole, then absolute 

space-time will also move with it; it would be meaningless if absolute space-time (or 

the corresponding absolute coordinate system) did not follow the overall movement of 

the particle swarm. 

Since our goal is to understand and grasp the world, it is unnecessary to use a 

relatively variable view of space-time. Sometimes, the concept of absolute space-time 
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is more advantageous for building models and understanding laws. In view of the above 

analysis, the physical and mathematical models presented in this paper will be 

established in the 4-dimensional (3 dimensions of space plus 1 dimension of time) 

absolute coordinate system. 

3.3.1 Physical Model 

Here, the abovementioned conclusions are combined to form the physical model 

considered in this article: The universe is composed of infinitely many uniform particles 

with infinite speed and infinitesimal mass. The speeds of these infinitesimal particles 

in 3-dimensional space are equal, and the directions of their motion are random. There 

is no interaction between infinitesimal particles. No additional rules are needed. 

3.3.2 Special Relativistic Effects on Infinitesimal Particles 

It will be proven that (special) relativistic effects exist in the abovementioned 

physical model (Section 3.3.1). Once again, it is emphasized that the speeds of these 

particles (throughout this article, the "infinitesimal particles" described in the above 

physical model are called "particles", "1st-order particles" or "tiny particles", while 

larger finite-mass-level particles composed of k particles are called "kth-order particles") 

are exactly the same (or , where c is the mean value of the particle speeds and 

 is their standard deviation), and the directions of their motions in 3-dimensional 

space are random. Therefore, these particles can be represented by random vectors with 

equal norms in Euclidean space. When the position of particles in a certain background 

(environment) domain is well distributed and particles in a certain subdomain of the 

background region have the phenomenon of velocity direction aggregation, we call it 

the situation that the velocity direction aggregation is dominant in the subdomain. When 

the velocity direction of particles in a certain background (environment) domain is well 

distributed and the particles in a certain subdomain of the background domain have the 

phenomenon of position aggregation, we say that the position aggregation is dominant 

in the subdomain. They are the statistical expression of a large number of particles, and 

diffusion has no discrimination to these two kinds of aggregation or their influence on 

diffusion is equivalent, so they can be equivalent to each other. The case of velocity 

direction aggregation being dominant of particles is studied here for the time being. In 

this article, statistical methods will be used to prove the existence of special relativistic 

effects in the vector swarm (with velocity direction aggregation being dominant) 

composed of such a group of vectors. When a group of particles in the same 3-

σ 1≪ c

σ 1
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dimensional space is moving in one direction on average (i.e., their centroid is moving 

in one direction), they will lose some probability of movement in other directions due 

to statistical effects, i.e., the movement trends in other directions will decrease, giving 

rise to a special relativistic effect. This phenomenon will be quantitatively explained in 

detail below. 

Note that the velocity of a kth-order particle is the velocity of the overall center of 

mass of the k particles, which is the average of the velocity vectors of all these particles. 

Moreover, the projection of the velocity vector of a kth-order particle onto one of the 

three equivalent coordinate axes of the 3-dimensional Cartesian coordinate system is 

the mean value of the projection (onto the same axis) of the velocity vectors of the 1st-

order particles forming the kth-order particle, which follow the same distribution; 

therefore, when k is a large value, it approximately follows a normal distribution 

(central limit theorem). There are three equivalent (approximate) normal distributions, 

one on each of the three axes, which are not completely independent. However, James 

Clerk Maxwell15 and Ludwig Boltzmann16 proved that these distributions can, in fact, 

be equivalently treated as completely independent. This is because randomly selecting 

a vector is equivalent to randomly determining a three-axis coordinate (each 3-

dimensional random vector consists of three random dimensions); moreover, the 

problem of the momentum transfer of gas molecules participating in random collisions 

is also equivalent to the problem discussed in this article. Accordingly, the speeds of 

kth-order particles follow the Maxwell distribution. Suppose that the standard deviation 

of the projection (treated as a random variable; the same is done below) of the velocity 

of any one of the k equivalent particles forming a kth-order particle onto each equivalent 

coordinate axis is . Then, the standard deviation of the projection of the velocity of 

a kth-order particle onto each equivalent coordinate axis is , namely, the projection 

onto each coordinate axis follows a normal distribution with a standard deviation of 

. As a result, the speed of kth-order particles follows the Maxwell distribution with 

scale parameter  (see Part 1 of the Supplementary Information for details). 

As already mentioned, it is assumed that the speed of all particles is c (c > 0) and 

that the directions of their movement are evenly distributed in 3-dimensional space. 

σ

σ
k

σ
k

σ
k
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Among the possible particle swarms composed of randomly moving particles, the 

particle swarm with an average velocity of 0 (i.e., the "absolute space-time" mentioned 

earlier) is called the stationary reference system (denoted by R0), and a 3-dimensional 

Cartesian (rectangular) coordinate system Oxyz is established for it. A particle swarm 

formed by a subset of particles in a certain period of time and moving at an average 

velocity u is called a moving reference system (denoted by Ru). Let the direction of the 

velocity of Ru be parallel to the z-axis in the direction of increasing z. Then, the mean 

value of the velocity component of the particles in Ru along the z-axis must be u. Under 

the assumptions that all particles in Ru are represented by vectors with their starting 

points at the origin of the coordinate system and that the point (0, 0, u) is taken as the 

dividing point of the z-axis, the vectors in Ru can be separated into two groups: the 

components of the vectors above this dividing point and the components of the vectors 

below it. These vectors randomly enter Ru from R0 with equal probability. Therefore, 

the distribution of the vectors in Ru can be thought of as a mixed distribution of the 

vector distribution of the components above the dividing point and the vector 

distribution of the components below the dividing point. When the mean value of the 

components on the z-axis of this mixed distribution is u, the mixture weights w can be 

determined. With this value (w) as the reference, the component distribution of the 

vectors that form the mixed distribution on the x-axis (or y-axis) can be determined; 

thus, the standard deviation  of these components can also be obtained. When the 

standard deviation of the components on the z-axis of this mixed distribution is also 

(this will be proved below), then the speed of kth-order particles (of mass , 

where  is the mass of a single particle; the same is true below) in Ru follows the 

Maxwell distribution with scale parameter , where 

   (1) 

Therefore,  is directly proportional to the average speed  of the kth-order 

particle ( ), namely, 

   (2) 

By substituting Eq. 1 into Eq. 2, we obtain 

   (3) 

σ u

σ u µk

µ

σ u,k

σ u,k =
σ u

k
.

σ u,k vu,k
µk

vu,k = 2
2
π
σ u,k .

vu,k = 2
2
π
⋅
σ u

k
.
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The distribution of components of vectors forming R0 on each axis is relatively 

simple (all of them are approximately normal distributions). Suppose that the standard 

deviation of their components on the x-axis (or y- or z-axis) is ; similarly, the 

average velocity of the kth-order particles ( ) that is formed by them is 

   (4) 

When (kth-order) particles ( ) of the same mass level are formed in both Ru and R0, 

the ratio (Eq. 3 to Eq. 4) between their average speeds (relative to the coordinate system 

in R0) is 

   (5) 

Therefore, the ratio of  to  is the ratio between the average speeds (relative to 

the coordinate system in R0) of (kth-order) particles of higher mass levels in Ru and 

R0. A more detailed introduction will be presented in the following. 

As mentioned above, in the 3-dimensional Cartesian coordinate system 

constructed in the stationary reference system R0, if the moving reference system Ru 

moves along the z-axis at velocity u, then the x- and y-coordinates are equivalent; hence, 

only the x-coordinate is considered in the following. In view of the nature of probability 

theory, in R0, if the components of these vectors (with norms being c) along the z-axis 

are uniformly distributed in the interval [–c, c], then the probability density of the 

components on the x-axis is 

   (6) 

where the random variables are Q~U(–p, p) and H~U(–1, 1). Note that in this article, 

random variables (vectors) are expressed in capital Greek letters, and the values of 

random variables (vectors) are expressed in the corresponding lower-case letters. The 

component distribution of the vectors whose components are above (0, 0, u) on the x-

axis is denoted by D1, and its probability density is written as 

   (7) 

where the random variables are Q~U(–p, p) and H~U( , 1). Correspondingly, the 

component distribution of these vectors on the z-axis is denoted by D3, namely, D3~U(u, 

c). The component distribution of the vectors whose components are below (0, 0, u) on 

the x-axis is denoted by D2, and its probability density is written as 
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   (8) 

where the random variables are Q~U(–p, p) and H~U(–1, ). Correspondingly, the 

component distribution of these vectors on the z-axis is denoted by D4, namely, D4~U(–

c, u). When the mean value of the components of the mixed distribution consisting of 

D3 and D4 on the z-axis is u, the corresponding mixture weights are  and , 

respectively. Note that D1 and D2 are randomly selected from the random vector swarms 

with the same characteristics as D3 and D4, respectively. When D1 or D2 is taken from 

all the samples from its population, D3 or D4 is also taken from all the samples from its 

population. The determination of each random 3-dimensional vector is the random 

determination of three coordinates. Therefore, the mixed distribution of the components 

of these vectors on the x-axis is only affected by the mixing weights of the two vectors. 

Thus, the mixed distribution consisting of D1 and D2 can be calculated in accordance 

with the abovementioned two weights (the analytical form of this mixed distribution 

cannot be given in this article at present); then, it can be found that the standard 

deviation of the velocity components on the x-axis of the particles in Ru is 

   (9) 

By evaluating the ratio between Eq. 9 and the standard deviation of the velocity 

components on the x-axis of the particles in R0, we can obtain the corresponding scale 

factor, namely, 

 . (10) 

This equals the additive inverse of the Lorentz factor when c represents the speed of 

light. Obviously, the ratio of the standard deviations of the velocity components on the 

y-axis is also this scale factor, as shown in Eq. 10. This same factor can also be obtained 

by evaluating the ratio of the standard deviation of the velocity components (of particles 

forming Ru) on the z-axis of the mixed distribution in Ru to the standard deviation of 

the velocity components (of particles forming R0) on the z-axis in R0. The detailed 

Mathematica code for the above calculation can be found in Part 2 of the Supplementary 

Information. This result implies that when a subset of the particles in the reference 

system R0 composed of particles moving at the same speed (such as c) and in (spatial) 
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random directions forms a reference system Ru moving at speed u, the speed of the 

particles or their forming kth-order (  and ) particles in Ru will be relatively 

decreased, with a degree of deceleration corresponding to the value determined by the 

scale factor given by Eq. 10. 

The abovementioned results prove that vectors with equal norms in Euclidean 

space exhibit special relativistic effects. In a stationary (inertial) reference system, if 

particles of different mass levels are moving in accordance with the relationship 

determined by Eq. 40 below, they will be considered to have different average velocities 

based on the corresponding Maxwell distributions. When the average velocity of a 

larger-mass-level particle composed of Kth-order particles is measured in a moving 

reference system Ru with velocity u, the corresponding degree of deceleration is 

determined by the average speed cK of the Kth-order particles in accordance with the 

scale factor , and when the average velocity of a larger-mass-level particle 

composed of Lth-order particles is measured similarly, the corresponding degree of 

deceleration is determined by the average speed cL of the Lth-order particles in 

accordance with the scale factor . If a moving species in a moving reference 

system Ru consists entirely of photons (an energy group of photons), then the degree 

of reduction in their average velocity is calculated using the Lorentz factor given in Eq. 

10 (or determined by special relativity). At present, human beings can detect only 

photons and photon-level formations (such as electromagnetic waves and atomic 

clocks); from this point of view, the quantitative relationship given by special relativity 

is extremely accurate! 

It is also noted that in Ru, the slowdown on all three axes is the same. This means 

that there is no difference in physical laws that can be perceived between Ru and the 

stationary reference system R0. Therefore, when another moving reference system  

appears in Ru, Ru can, in turn, be treated as a stationary reference system, which is a 

useful feature. This reveals that any reference system that satisfies the conditions given 

in 3-dimensional HYPO 1–3 can be regarded as a stationary reference system, 

regardless of whether it is an absolutely stationary reference system. At the same time, 

any Ru randomly generated in R0 (when u is fixed) is equivalent to Ru which can be 

regarded as a stationary reference frame, and is the same Ru without physical law 

k ∈! k ≠ 1
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2 − u2
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difference. Therefore, any Ru (as an undifferentiated particle set) can be regarded as 

generated randomly by R0 with relative motion (the speed is u) to Ru. In this way, R0 

(as an undifferentiated particle set) can also be regarded as randomly generated by Ru 

with relative motion (the speed is u) to R0. Therefore, not only the speed slowing effect 

in Ru exists but also other special relativistic effects (such as time expansion and length 

contraction). In this article, we will not discuss more about the special relativistic effects 

based on this logic. The principle of the special relativity effect of moving particles in 

space is the statistical effect of randomly moving particles, which is exactly the 

statistical effect of randomly moving particles with velocity direction aggregation being 

dominant. When direction aggregation is dominant, this special relativistic effect 

manifests, while in general, the possible aggregation effects also include the situation 

in which position aggregation is dominant (it shows the influence of "gravitation"). 

Here, these two (aggregation) effects are collectively called the general relativistic 

effect. Their essence is the statistical effect of randomly moving particles, and they are 

equivalent (see Part 3 of Supplementary Information for the proof process). If the 

equation established in this article can capture the statistical effects of moving particles, 

then it can also describe the effects of relativity. 

3.3.3 Establishment of the Classical Diffusion Equation 

To comprehensively describe the physical model mentioned earlier, we should 

establish a four-parameter equation, including time, for the law governing the motion 

of each particle, i.e., Ã(x, y, z, t). For a system with n particles, it is necessary to 

establish an equation with 3n + 1 degrees of freedom in the same time dimension, where 

n ® +¥. This is obviously extremely unrealistic. In this article, we take the second best 

approach. We do not expect to describe all of the motion characteristics of all particles; 

instead, we wish only to describe the laws of particle motion succinctly and practically, 

to establish an equation that does not fundamentally fail to capture any critical motion 

characteristics of particles and can be described (solved) in actuality to the greatest 

possible extent. To do so, it may be appropriate to approach the problem from the 

perspective of statistics, that is, to establish a mathematical model with certain 

statistical characteristics on the basis of the physical model. 

Theoretically, infinitely many aggregations of any number of particles can be 

found in infinite 4-dimensional space-time, although the greater the difference between 

the degree of aggregation and the total average density in space-time, the lower the 
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formation probability of the corresponding particles, and the more unstable they will be 

in the time dimension. However, it is difficult to describe this situation with a specific 

function. Therefore, this article does not seek functions that apply at the micro level or 

for uncertain cases but rather seeks statistical description functions that are relatively 

certain by expanding the considered scope to cover a sufficiently large range of cases. 

Regardless of how these particles move in 3-dimensional space, their trajectories are 

continuous, which will lead to diffusion (or agglomeration) behavior, which is the 

generalized diffusion of randomly moving particles. Here, each moving particle is 

regarded as a vector whose direction is the same as the movement direction of the 

particle and whose norm is equal to the movement speed. Therefore, the generalized 

diffusivity of randomly moving particles is equivalent to the generalized diffusivity of 

random vectors (in direction). Thus, the "random vectors" and "randomly moving 

particles (or velocities)" mentioned below have the same meaning. Considering 

particles of the same mass and speed, the generalized diffusivity of the corresponding 

random vectors is equivalent to the generalized diffusivity of random momenta (which 

are also vectors). It is considered that the scale of the "generalized diffusivity of vectors" 

is simply the scale that is most suitable for describing the invariant laws for randomly 

moving particles. More information will be lost if the scale is even slightly more 

macroscopic (e.g., the scale can be approximately described by real diffusion), and there 

will be no invariant statistical law to follow if the scale is even slightly more 

microscopic (for example, the scale described at the beginning of this paragraph). At 

this scale, the external behavior of the vectors in a tiny space cannot be considered 

isotropic. When the randomly moving particles are in the case of (being equivalent to) 

the position aggregation being dominant, according to the Maxwell distribution, the 

total vector in a certain domain always points in an uncertain direction, and the norm is 

directly proportional to , where k is the (equivalent) number of vectors (see Part 1 
of the Supplementary Information for details). Although the direction of the total vector 

in a tiny space cannot be determined from the Maxwell distribution, we hope to use 

appropriate constraints to obtain the distribution rules governing the norm and direction 

of the total vector at any position in space. 

First, we determine the constraints acting on spatial vectors. Let the density of the 

vector sum at some point in space be denoted by X, which is a function of position and 

time, namely, X(x, y, z, t). It is defined as follows: At a certain time t, let Y(V) be a 

k
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function of the sum of all vectors in the closed domain V containing P(x, y, z); then, 

) (in the following, X is also a function of the spatial 

coordinates (x, y, z) and the time coordinate t). The situation in which particle position 

aggregation is dominant will be studied in the following. 

X is a statistical average vector. When position aggregation is dominant, the 

relationship between X and the number of vectors follows the Maxwell distribution. As 

illustrated in Fig. 1a, it is assumed that there are two microdomains  and  of the 

same size along the normal direction on both sides of the segmentation surface F. If 

the sum of all vectors in  is  and the sum of all vectors in  is , then 

their sum is , and their difference is . Let the sum and difference vectors 
intersect at point M (Fig. 1b). In view of the previous assumption that the domains  

and  on both sides of F are equal, there is no need to consider statistical effects 

before the particles move. Due to the characteristic that the distribution of the velocity 

directions is homogeneous, both vectors must tend to approach their average value 

, that is, both  and  will tend towards . Accordingly, the rate of 
change in X along the normal direction at a particular point should be related to the 

time-dependent rate of change in X. This time-dependent rate of change is also affected 

by another inherent factor (i.e., the velocity of the particles forming X), the concrete 

value of which is temporally uncertain. Therefore, the above two rates of change should 

be directly proportional when the differences between particles caused by density 

(including position aggregation and direction aggregation) are neglected. 
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Figure 1 | Illustration of the principle of the generation of a mutual diffusion 

potential in microdomains VA and VB. 

In view of the similar calculus properties of vector and scalar, the derivation 

method for real diffusion is imitated here. If a domain W is enclosed by a closed surface 

S, then during the infinitesimal period , the directional derivative  of X along 

the normal direction of an infinitesimal area element dS on the surface S is directly 

proportional to the vector  flowing through dS along the normal direction in the 

closed domain W enclosed by S (Fig. 2), under the assumption that the coefficient is a 

positive real number D. 

 
Figure 2 | Illustration of the diffusion of the vector sum density X. 

From time t1 to time t2, when the influence of the vector density on D is not 

considered (i.e., the diffusion coefficient is the same at every position), the variation of 

the vector sum A inside the closed surface S is 

   (11) 

According to the Gauss formula, Eq. 11 can also be written in the form 

   (12) 

where D is the Laplace operator, which describes the second derivative with respect to 

the position (x, y, z). The left-hand side of Eq. 11 (namely, ) can also be written as 

   (13) 

By setting Eq. 13 equal to Eq. 12 and transforming the order of integration, we can 

obtain 
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   (14) 

Based on the observation that t1, t2 and the domain W are all arbitrary, the following 

equation can be written: 

   (15) 

It is clear that the above conclusion still holds when X is formed by particles whose 

dominant velocity direction aggregation is equivalent to position aggregation being 

dominant. 

To facilitate the task of vector decomposition in the following, a 3-dimensional 

vector needs to be converted into a plane vector. Next, we determine the constraints 

acting on plane vectors. Although the operation in Eq. 15 is performed using 3-

dimensional vectors, when differential operations are performed on a spatial vector, the 

(sum or) difference operations are always performed at two points on the vectors that 

are separated by an infinitesimal distance; thus, all 3-dimensional vectors can exhibit 

only relative 2-dimensional characteristics. Consequently, by solving this differential 

equation, only 2-dimensional constraints can be obtained. Therefore, only the 

derivatives of plane vectors are needed to act as the derivatives of the 3-dimensional 

vectors (in this case, plane vectors can retain the important information, such as the 

norms of the vectors and the included angle between them). Moreover, the function of 

plane vectors obtained by solving the partial differential equation expressed in terms of 

plane vectors is unique and corresponds to the 3-dimensional vectors obtained from a 

differential equation of the same form. It is assumed that the function of plane vectors 

describing the density of the vectors or momenta is M(x, y, z, t), which corresponds to 

X at the point (x, y, z, t) (unless otherwise stated, in the following, M is a function of 

the spatial coordinates (x, y, z) and the time coordinate t). Thus, the abovementioned X 

can be replaced with M. After this replacement, it is obvious that the norm of the plane 

vector will not change, but its direction will be reoriented. Finally, Eq. 15 can be written 

as 

   (16) 

Now, let us determine the constraints on the direction of the plane vector M. In 

view of the continuity of the trajectories of infinitesimal particles, since M is also 
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characterized in terms of the statistical properties of an enormous number of particles, 

it should also be smooth. According to the theory of plane curves, the first and second 

derivatives of a plane vector in any direction in space are vertical. If an equation relating 

these derivatives is established following the above derivative relationship (Eq. 16), the 

direction needs to be adjusted to be consistent; then, this relationship can be written in 

the form 

   (17) 

where i is the imaginary unit. By multiplying both sides of Eq. 17 by i, the form of the 

Schrödinger equation (without an external field) can be obtained: 

   (18) 

Eq. 18 describes the distribution of a moving particle swarm (including the 

direction of movement) in space following the same diffusion coefficient; in other 

words, it is the classical diffusion equation. However, when the particle swarm is 

moving faster (velocity direction aggregation is dominant) or more particles are 

aggregating in a certain microdomain (position aggregation is dominant), the effect on 

diffusion is not clear. To more comprehensively describe this kind of diffusion process 

(which is called generalized diffusion), further analysis is needed. 

3.3.4 Construction of the Generalized Diffusion Equation 

To construct the generalized diffusion equation, we need to take into account many 

aspects, including whether the generalized diffusion coefficient Ð should vary and how 

to describe it to include the effects of general relativity (gravitation) and special 

relativity. 

The classical view is that regardless of how large the target norms of vectors are, 

they follow a diffusion equation with the same diffusion coefficient (the Schrödinger 

equation). However, this article adopts an alternative viewpoint: Ð should vary with the 

value of the target vector. As derived above, when the influence of the vector sum 

density (including the aggregation densities of position and direction; the same is also 

considered below) on D is not considered, the diffusion for the vectors follows the 

Schrödinger equation. However, when the vector sum density is large, the effect on D 

cannot be ignored. Suppose that, as illustrated in Fig. 1a, the vector sum density in the 

microdomain VA is greater than that in VB. If both microdomains exist in the same 
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background field, there is a cost for the higher density in VA. If this high density is 

maintained at the next moment (in terms of probability, more uncertainty is introduced 

into the unit volume), which will inevitably affect the (average) movement speed of the 

particles, the overall movement speed of the particles in VA will decrease (Section 3.3.2). 

As mentioned above (or in Eq. 31 below), the particle speed is what determines D; 

therefore, the law governing the diffusion rate towards the right (DA) is not the same as 

the law governing the diffusion rate in VB towards the left (DB) (under the assumption 

that Ð is a combination of DA and DB). Therefore, it is necessary for the generalized 

diffusion coefficient to vary in time with the vector sum density to reflect this inequality. 

In view of the above considerations, choosing the appropriate quantitative function 

to describe this phenomenon (with different laws) is the main problem to be solved in 

this article. First, the momentum vector in the microdomain is decomposed as follows. 

3.3.4.1 Vector Decomposition 

Let us determine the distribution function for a certain number of particles with 

equal probability (randomly) distributed in a certain domain, as follows: Suppose that 

the whole domain contains n particles in total. For convenience of description, the 

whole domain is also partitioned into n boxes of equal size. The gaps between boxes 

and the wall thickness are both 0. Now, let us determine the probability of k ( ; the 

same also holds below) particles in a local area containing M boxes (suppose that the 

particles are small enough to fall into the box, not the wall). In view of the statement 

described above, the probability of particles existing in each domain is the same. 

Accordingly, the total number of possible cases describing how n particles can be 

randomly distributed among n boxes is , there are  total ways that k particles 

can be randomly chosen from among n particles, there are  total ways in which 

the k chosen particles can be randomly distributed among M boxes, and there are 

 total ways in which the remaining n – k particles can be randomly 

distributed among the remaining n – M boxes. Therefore, the probability P(M, k) of k 

particles existing in M boxes can be expressed as 

  (19) 

Suppose that the number n of particles in the whole domain is infinite; then, by taking 
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the limit of Eq. 19 as n ® +¥, we find that 

   (20) 

again, where M denotes the number of boxes comprising the local domain of interest 

(the size of the volume in 3-dimensional space), k denotes the number of particles in 

that domain of M boxes, and P denotes the probability that k particles exist in that 

domain. Eq. 20 is the (position-based) Poisson distribution. 

It is considered that this is the most appropriate method of partitioning a whole 

domain (the domain can be the whole universe or simply a broad range including the 

objects of investigation) into uniform boxes with the same number as that of particles. 

In addition to reducing the parameters involved and facilitating discussion, the reasons 

are as follows: if the boxes are slightly larger, they will not ensure the accuracy of the 

following vector decomposition; if they are slightly smaller, they will not adequately 

reflect the grouping effect of the particles. Therefore, in this article, the whole domain 

is divided into a number of uniform boxes equal to the number of particles it contains, 

and this partitioning serves as the basis for all of the following discussions. In this 

article, the whole domain (environment) is called the T-domain, and the local domain 

(target) is called the S-domain; the set of all particles contained in the T-domain is called 

the T-particle swarm, and the subset of particles contained in the S-domain is called the 

S-particle swarm. 

Next, we will investigate the equiprobability distribution of the static particle 

swarm in the abovementioned S-domain V. In Eq. 20, M denotes the number of boxes 

(volume) spanned by some S-domain (which belonged to the domain in which the target 

particles are distributed). Put another way, when the T-domain is partitioned into 

uniform boxes following the above method, M can also denote the average relative 

density of the particles in the S-domain V, where the reference density is the average 

density of the T-particle swarm in the T-domain. M represents the corresponding 

multiple of the average density, k denotes the number of particles in one box, and P is 

the probability of k particles existing in that box. Thus, the distribution of the S-particle 

swarm in V is a Poisson distribution with density intensity M. Next, we will analyze 

the Poisson distribution formula given in Eq. 20. In fact, it is the proportion of each 

term determined by k (when  is expanded as a power series) to the value of . 
The meaning here is that it is also the proportion of the number of boxes containing k 

P(M,k) = e
−MMk
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particles each to the total number of boxes in V when the S-particle swarm of relative 

density M is distributed among the reference boxes determined by the above criteria 

and spanned by the S-domain V (supposing that the number of boxes spanned by V is 

sufficiently large). According to mathematical analysis, we can see that the power series 

expansion for this case is unique, and obviously, this ratio distribution is also unique. If 

the right-hand side of Eq. 20 is multiplied by k, the result, denoted by R(M, k), takes 

the following form: 

   (21) 

In this way, termwise addition (by k) based on this expression offers a possible form for 

the decomposition of M into infinite items. Because the power series expansion above 

is unique, this decomposition form of the containing power series is also unique. 

According to the previous statement of physical meaning, the meaning of Eq. 21 is the 

relative density contributed by the particles in the boxes that contain k particles each to 

the total relative density M (the average relative density in V) after the particles of 

relative density M are dispersed among the (infinitely many) reference boxes spanned 

by V with equal probability. Multiplying Eq. 21 by the number of boxes contained in V 

yields the total number of particles in the boxes containing k particles each. Since the 

distribution of particles in this form is definite (following the Poisson distribution), 

from this point of view, the decomposition of the relative density M in this (containing 

power series) form is also unique.  

If M is a complex number (or plane vector), Eq. 21 can be written in vector form 

as follows: 

   (22) 

The form obtained by dividing Eq. 22 by k is still the ratio of each term (complex) 

determined by k (when  is expanded as a power series) to the complex of . 
There is one more dimension here, and the power series expansion is still unique. 

Similarly, the termwise addition of Eq. 22 also provides a decomposition form for the 

vector M. This decomposition form of the containing power series is also unique. 

Now, we study the distribution of the velocity of the moving S-particle swarm in 

the abovementioned S-domain V. If the particles of the T-particle swarm are moving 

randomly in the T-domain, the distribution of the S-particle swarm in a time slice in a 
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sufficiently small S-domain (when the particle speed is fast enough) can also be 

approximately regarded as the equiprobable distribution. At the human scale (it will be 

proved with self-consistency that, in fact, in any scale range), the number of S-particles 

in almost every "microdomain" of the universe can be regarded as approaching infinity; 

therefore, the distribution of the moving S-particle swarm in a certain microdomain V 

can be described by Eq. 20. The moving particles in each type of box partitioned by k 

in one S-domain V can form a component vector, and these components can be added 

together to form the total vector in V. Once the total 3-dimensional vector Y of the 

moving S-particle swarm in V, which includes the specific number of particles, is 

determined (that is, the average speed u of the system is determined), the norm 

(mathematical expectations) of each component vector should be (approximately) 

directly proportional to the number of particles forming it when the number of particles 

is large (see Part 4 of the Supplementary Information for details). It should be noted 

that even for k = 1, the number of samples in V should be very large. Therefore, the 

ratios between the norms (mathematical expectations) of the component vectors in 

various boxes partitioned by k are uniquely determined by the form of (containing) the 

power series determined by Eq. 20. As the limiting value X of the quotient of Y and V, 

it can still be considered as a sum of 3-dimensional vectors in the S-domain V. 

Therefore, there is also a form of component vectors with the ratios of norms 

determined by Eq. 20 spanning various boxes partitioned by k. When the 3-dimensional 

component vectors (spanning various boxes partitioned by k) of the 3-dimensional 

vector X are mapped to the 2-dimensional component vectors (spanning various boxes 

partitioned by k) of the plane vector M, it is obvious that there is also a corresponding 

2-dimensional form of component vectors with the ratios of norms determined by Eq. 

20, but the direction is not determined. From the abovementioned decomposition 

method of scalar M (Eq. 21), it can be seen that if the ratios of norms of the component 

vectors of M follow the Poisson distribution, it is necessary to use a unique and 

specified form of containing power series (this is one of the necessary conditions. If the 

ratios between the norms of the component vectors are required to be directly 

proportional to the numbers of particles forming them at the same time, the other 

necessary condition is required, i.e., u = 1. See Part 4 of the Supplementary Information 

for details), that is, the method for calculating the norms of the component vectors 

determined by Eq. 22. At this time, the direction of each component vector is uniquely 
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determined. Therefore, the plane mapping of the sum of all the vectors in the boxes 

containing the same number k of particles is the component vector determined by k in 

Eq. 22. When k takes all values in , the termwise sum of these terms is the unique 

decomposition of M (spanning various boxes partitioned by k), namely, 

   (23) 

As mentioned earlier: regardless of whether the moving particles are dominated 

by position or direction aggregation, as long as their vectors are equal, their influences 

on diffusion and relativistic effects are the same; therefore, the position or direction 

aggregation are equivalent (when it is equivalent to position aggregation, the velocity 

direction is uniform distribution; when it is equivalent to velocity direction aggregation, 

the position is uniform distribution. The equivalent velocity direction or position 

aggregation represented by equal momentum in this article are both this meaning). 

According to the conclusion in Part 4 of the Supplementary Information, the norm 

(mathematical expectations) of each component vector is the product of the number of 

particles forming it and the average speed of the system it located. The average velocity 

of the particles in each S-domain V is regarded as 1, so the number of particles is 

numerically equal to the magnitude of the momentum. Accordingly, the equivalent 

numbers of vectors distributed in various boxes are directly proportional to the norms 

of vectors, and it is also comparable (computable) between S-domains. As mentioned 

above, M represents the relative density of particles in the S-domain V, which is a 

concept of multiples. It is obvious that M should also be a relative vector. The essence 

of the determination of the number of reference boxes for scalar M is the maximum 

number of boxes that can be occupied by particles in the T-domain. Here, when the 

particles in the S-domain V (which contains n particles in total, and the velocity of each 

particle is c) are thought of as a system with an average velocity of 1, the maximum 

number of boxes occupied (after expansion) is nc, namely, the number of (equivalent) 

reference boxes of vector M, and the direction of vector M is the same as that of the 

absolute sum of vectors located at that place. Therefore, M in Section 3.3.3 should be 

exactly the relative vector sum density. As mentioned above, the sum and difference 

operations between two spatial vectors are performed in their shared plane. In this plane, 

they can be decomposed respectively into a sum of plane vectors, as described in Eq. 

23. Therefore, the two sets of plane component vectors can also serve as their respective 
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spatial component vectors to correspondingly perform sum, difference or derivative 

operations. 

3.3.4.2 Description of Diffusion 

Suppose that the standard deviation of the projection (treated as a random variable; 

the same is done below) of the velocities of the k equivalent particles forming a kth-

order particle onto each equivalent coordinate axis is . As mentioned earlier, the 

speed of kth-order particles follows the Maxwell distribution with scale parameter  

(in this case, the situation of direction aggregation being dominant has been 

equivalented to the situation of position aggregation being dominant; the diffusion 

coefficient is the inherent statistical effect in the system, and only the average speed 

needs to be calculated in accordance with its definition). Then, the average speed of 

kth-order particles is 

  (24) 

For k1th- and k2th-order particles, the ratio of their average speeds is 

  (25) 

Because the sizes, or masses, of all 1st-order particles are the same, if the masses of a 

k1th-order particle and a k2th-order particle are m1 and m2, respectively ( ), then 

according to the relationship shown in Eq. 25, the ratio of their average speeds can also 

be written as 

   (26) 

See Part 1 of the Supplementary Information for the detailed calculation and derivation 

process. According to Eq. 26, for any-order particles, the product of the square root of 

mass and the average speed is a constant (suppose it is ). Then, when the mass of a 

kth-order particle is m, its average speed is 

   (27) 

The diffusion coefficient can be defined as follows: it is the mass or mole number 
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of a substance that diffuses vertically through a unit of area along the diffusion direction 

per unit time and per unit concentration gradient. Therefore, it is believed that classical 

real diffusion is consistent with the essence of vector diffusion described here. 

According to the Einstein-Brown displacement equation, the diffusion coefficient is 

   (28) 

where  is the average displacement of kth-order particles along the direction of the 

x-axis. To replace the average displacement  in Eq. 28 with the average 

speed (namely, ) of kth-order particles along the direction of the x-axis, this diffusion 

coefficient can be transformed into 

   (29) 

The unit of the diffusion coefficient D is m2·s–1. By combining Eq. 28 and Eq. 29 (where 

t1 and the t implied in  are consistent, so t1 = 1 s), the abovementioned diffusion 
coefficient can also be regarded as follows: it is the average area over which kth-order 

particles spread out on a plane per unit time. This average area is related to the speed 

of a single kth-order particle. If the (average) speed of a single kth-order particle is , 

then the statistical average speed of these particles in one direction is 

   (30) 

The kth-order particle swarm spreads in the plane at this rate. By substituting Eq. 30 

into Eq. 29 and combining t1 = 1 s into the coefficient, which we then denote by , 

we can obtain 

   (31) 

where  is a constant coefficient with units of seconds (s). 

By substituting Eq. 27 into Eq. 31, the diffusion coefficient of a (kth-order) particle 

swarm of (average) mass m is obtained: 

   (32) 

The above equation (Eq. 32) can also be thought of as the apparent diffusion coefficient 

of particle(s) with mass m described by the 1st-order particle swarm (which forms a 

particle of mass m after collapse) without relativistic effects. Moreover, the specific 

form of this coefficient is given in the Schrödinger equation without relativistic effects 
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(i.e., in the case of the apparent diffusion described by a 1st-order particle swarm). By 

comparing the diffusion coefficient in the Schrödinger equation with Eq. 32, the 

following relationship can be immediately obtained: 

   (33) 

where ħ is the reduced Planck's constant. 

3.3.4.3 Construction of the Generalized Diffusion Equation 

Previously, we adopted the assumption that there is no interaction between 

infinitesimal particles. Even if there are interactions (which are produced by statistical 

effects and held by this article) between particles of larger mass levels they form, there 

is also a continuous dynamic process of large particles disappearance and generation, 

meaning that in fact, there is no interaction. In addition, considering that the essence of 

these "interactions" is gravitation (that is, the statistical effects of moving particles; 

other types of interactions can be treated similarly), it is equivalent to the concept that 

there is no interaction between advanced particles of various mass levels (The following 

Section 3.3.5.4 will prove that this view is self-consistent). Accordingly, in a time slice 

of a microdomain, the decomposition of the vector given by Eq. 23 must be exhibited, 

and all boxes containing the same number of particles in different microdomains 

containing different densities of vectors are equivalent. This is because there should be 

no differences between boxes of the same type (i.e., containing the same number of 

particles) when (the whole domain is equivalent to a system with an average speed of 

1 and) the Poisson distribution determines the numbers of boxes of different types in 

different microdomains of different vector densities. Although the moving particles are 

distributed in a time slice of the microdomains with the same probability, when the 

overall behavior of k equivalent particles is counted, their equivalent average speed will 

inevitably slow down. Therefore, when more than the average number of equivalent 

particles appears in a limited domain, the overall speed of the particles in the domain 

will slow down or be significantly affected by statistical effects. The particles in various 

boxes partitioned by k move at their average equivalent speed and the centroids of boxes 

containing k equivalent particles each are, on average, located at the center of each box. 

Among all boxes of the same type (i.e., containing k equivalent particles), the average 

equivalent speed of each kth-order equivalent particle is the same and must conform to 

the diffusion form of the Schrödinger equation determined by the diffusion coefficient 
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for particles of this type. Therefore, according to the particle numbers k in the 

previously partitioned boxes, from 1 to ¥, we study the corresponding term R(M, k), 

which is the component vector of M. First, we investigate the diffusion of individual 

terms, and then, we add them together to characterize the overall slowing down 

behavior of diffusion. 

Here, all the particles in each box containing k particles are regarded as forming a 

kth-order particle of a larger mass level, and together, all kth-order particles in all boxes 

containing k particles in microdomain V are called the kth-order particle swarm in that 

microdomain. Based on the above discussion, it can be considered that the average 

equivalent speed of each (kth-order) particle in the kth-order particle swarm is the same, 

and all of them have the same diffusion coefficient. According to the relationship given 

in Eq. 32 (the diffusion coefficient is inversely proportional to the mass of a kth-order 

particle, or the number of 1st-order particles forming a kth-order particle), if the 

diffusion coefficient of a 1st-order particle swarm is D1, then the diffusion coefficient 

of a kth-order particle swarm is 

   (34) 

where  is called the diffusion coefficient factor. 

When it is not necessary to consider the influence of the deceleration effect of the 

statistical speed due to particle (position or direction) aggregation on diffusion, the 

diffusion behavior of interest is that of a 1st-order particle swarm, which is consistent 

with the description of diffusion given by the Schrödinger equation. Therefore, the 

diffusion coefficient is 

   (35) 

The diffusion equation determined by this coefficient describes the dynamics of the 

probabilistic diffusion of a target object (or the aggregation after collapse) of mass m 

on the basis of the apparent diffusion rate (after deceleration) determined by the 1st-

order particles forming it (before collapse); however, the distribution characteristics of 

the target object in its dispersion space is determined by the diffusion behavior of the 

1st-order particles in the background field. When , according to the above 

discussion, the diffusion coefficient of a kth-order particle swarm can be obtained by 
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substituting Eq. 35 into Eq. 34, namely, 

   (36) 

This is equivalent to the proportional decline in the apparent diffusion rate of a target 

object (or the aggregation after collapse) of mass m due to the slowdown in the speed 

of the kth-order particles forming the target object. The meaning of the diffusion 

equation determined by this diffusion coefficient is similar to the case for 1st-order 

particles as considered above, that is, the dynamics of the probabilistic diffusion of a 

target object (or the aggregation after collapse) of mass m are described on the basis of 

the apparent diffusion rate (after deceleration) determined by the kth-order particles 

forming it (before collapse); however, the distribution characteristics of the target object 

in its dispersion space is determined by the diffusion behavior of the kth-order particles 

in the background field. 

By taking the second partial derivative of R(M, k) (this is the plane vector sum in 

the boxes containing k moving particles, namely, the kth-order particle swarm, which 

is one of the component vectors in the whole microdomain V) with respect to position 

(x, y, z) and considering the intermediate variable M, we obtain the following 

expression: 

   (37) 

where . It should be emphasized that the 

absolute sizes of the two (infinitesimal) microdomains V1 and V2, which are selected to 

compare their differences, are equal when calculating the derivative of the vector M. 

After multiplying Eq. 37 by the diffusion coefficient for the particle swarm of each 

order (Eq. 36) and then adding the products for all orders together, the complete 

generalized diffusion expression (including coefficients) can be obtained as follows: 

   (38) 

The diffusion calculated in this way is the generalized diffusion from the whole 

(infinitesimal) microdomain V1 to V2. Eq. 38 can be simplified as follows: 

   (39) 
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By combining the left-hand side of Eq. 18 with Eq. 39, a complete expression for the 

generalized diffusion equation for vectors is obtained: 

 . (40) 

Therefore, the expression for the generalized diffusion coefficient with relativistic 

effects (including gravitation) is 

 . (41) 

The diffusion coefficient here is not a constant but rather a natural exponential function 

that varies with the relative vector density of moving particles. Hence, the generalized 

diffusion equation and the generalized diffusion coefficient Ð for vectors have been 

determined. The norms of the spatial equivalent vectors in a microdomain can be 

determined in accordance with the Maxwell distribution, while the norms and directions 

of the spatial equivalent vectors in the complex plane can be determined in accordance 

with Eq. 40. Thus, the basic effective information for a spatial (moving) particle swarm 

has been derived. 

The slowing down of diffusion based on spatial position is the only manifestation 

of the statistical effect of position aggregation being dominant in diffusion. Obviously, 

the statistical (gravitational) effect of particles can be reflected according to the 

treatment method in Eq. 38 when position aggregation is dominant. As mentioned 

above, all relativistic effects include statistical effects of position and direction 

aggregation. For the case of particle velocity direction aggregation being dominant, 

because it can be equivalent to the situation of position aggregation being dominant, 

the statistical effect is also transferred accordingly; that is, the phenomenon of diffusion 

becoming slow based on spatial position is the only embodiment. In summary, the 

statistical effects of these moving particles can be incorporated into Eq. 38 by 

multiplying the second derivatives of the component vectors (after comparative 

treatment) by different diffusion coefficients according to the classification standard 

based on k and summing the results. By contrast, equations that are subject to the 

constraints of Lorentz covariance (such as the Dirac equation and quantum field theory) 

are not sufficient to reflect all relativistic effects. 

3.3.5 Further Study of Eq. 40 

3.3.5.1 The Relationship with the Schrödinger Equation 

i ∂M
∂t

= − !e
−M

2m
ΔM−T 2(M)⎡⎣ ⎤⎦

Ð = − !e
−M

2m



 35 

By expanding the right-hand side of Eq. 40 using the power-series representation 

of e–M, we can obtain the following equation: 

   (42) 

When only the first term to the right of the equals sign in the second line of Eq. 42 is 

considered, this equation has the form of the Schrödinger equation without an external 

field. Thus, it can be concluded that Eq. 40 is the result of adding several corrections to 

the Schrödinger equation. Obviously, the form of the Schrödinger equation does not 

contain a relativistic effect, so the rest of the equation is caused by a relativistic effect. 

When the norm of the wave function , obviously,  is an 

infinitesimal of higher order than  (this is similar to the case of the sine and 

cosine wave functions when the velocity is small but the acceleration is large); 

moreover, the terms after  to the right of the equals sign in the second line 

of Eq. 42 are all the products with M or the higher power of M, and it is obviously 

they are also the infinitesimal of higher order than . Therefore, when  is 

sufficiently small, Eq. 40 can be approximated to take the form of the Schrödinger 

equation without an external field; however, when  is larger, the relativistic effect 

(the statistical effect of moving particles) in Eq. 40 is nonnegligible, and this equation 

cannot be replaced by the Schrödinger equation. 

3.3.5.2 Nondispersive Particle Swarm 

Creation and annihilation operators for particles are included in quantum field 

theory, but such descriptions are rigid. By contrast, the equation (Eq. 40) presented in 

this article naturally contains the processes of the appearance and disappearance of 

particles and can even give their half-lives (we will not study this problem in detail 

here). Eq. 40 is the equation describing the generalized diffusion of a randomly moving 

particle swarm. When 

   (43) 

M does not vary with time t, and a particle swarm that meets this condition is a 

nondispersive particle swarm. Such a particle swarm can also be regarded as a particle 

of a higher mass level, which is composed of a set of particles of a lower mass level 
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that obey statistical laws. 

To investigate the shape of a nondispersive particle swarm in detail, it is assumed 

that M is a function only of position (x, y, z) and that the position aggregation of 

moving particles is dominant. In 3-dimensional space, the following initial conditions 

are specified for Eq. 43: 

   (44) 

To numerically solve the simultaneous equations given in Eq. 43 and Eq. 44 (see the 

description of the process of generating Fig. 3 in Part 8 of the Supplementary 

Information for the detailed Mathematica code for the solution process), the distribution 

of mass density ( ) can be obtained, as illustrated in Fig. 3. 

 

Figure 3 | Distribution of mass density for a particle swarm meeting the 

conditions given by Eq. 43 and Eq. 44 (shown from various perspectives): a, 3-

dimensional density distribution; b, 2-dimensional density distribution at z = 0; c, 2-

dimensional density distribution on the plane at z = 0; d, 1-dimensional density 

M(0,0,0) = 1+ 2 i,
M(x, y, z) = 0, x2 + y2 + z2 = 42.
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distribution at y = 0 and z = 0. For convenience of comparison, the three (two) 

coordinate axes in each figure are displayed at a scale of 1:1. 

It can be seen from the figure that the mass of such a stable particle is almost 

entirely concentrated in a small spherical area near the center of a larger spherical region 

and that the rest of this region is very sparse (with a very low mass density), similar to 

the structure of an atom. This result further qualitatively shows that we can study not 

only the distribution of electrons but also the distribution of nuclear mass by solving 

Eq. 40. 

It should be noted that for the boundary condition  given in 

Eq. 44, the value on the sphere described by  is assigned to be 1 + 

2 i in the solution process to approximate this condition. It can be inferred that when 

the radius of this (inner boundary) sphere approaches infinitesimal, the shape is still 

similar to what is shown in Fig. 4. Moreover, the equations for the 2-dimensional case 

under the same conditions are also solved in this article; see Part 5 of the Supplementary 

Information for details. Without affecting the discussion of the problem, only a small 

value ( ) as the norm of the initial wave function and a relatively larger radius (0.04) 
of the inner boundary sphere are taken for the initial conditions. If the norm is further 

increased or the radius of the inner boundary sphere is further reduced, there will be a 

more obvious contrast in mass density, but the difficulty of solving the equation and 

drawing the graph will also be greatly increased. In addition, the value of the function 

on the sphere with a radius of 4 is 0 with the above boundary conditions, which is also 

approximately consistent with the actual situation. In reality, the mass density 

environment around the research object is complex. Even if this complex environment 

is not considered, the object will exist in a background field with a nonzero mass density. 

In this case, the outer boundary condition should be a constant value close to 0 or a 

wave function with a norm close to 0 at infinity (when M is a function of position (x, 

y, z) and time t). 

Based on the analysis of the above equation (Eq. 40), the formation mechanism 

for particles of a large mass level in the universe can be estimated as follows: As 

particles of a lower mass level in the universe undergo randomly fluctuating movements, 

if they meet the appropriate external conditions, they will have the chance to form many 

standing waves with the same distribution. When the external conditions change, these 

standing waves will undergo generalized diffusion over time. Some of them will 
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x2 + y2 + z2 = 0.042
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disappear; some of them will form particle swarms that also essentially meet the above 

conditions. These particle swarms will become larger-mass-level particles that will 

decay extremely slowly (the decay rate depends on the value of  in Eq. 40 and the 
conformity of the particle shape to the condition given in Eq. 43) and thus will continue 

to stably exist in the universe for a long time (if the external or boundary conditions do 

not change significantly). At different positions and under different external conditions, 

standing waves of different densities may form. Once the above conditions are 

essentially met, these standing waves can persist for a long time, thus forming more 

stable particles of different mass levels. Thus, it can be concluded that the concept of 

macroscopic mass is a characterization of a number of agglomerated lower-mass-level 

particles in a certain domain, while the concept of macroscopic energy is a 

characterization of a number of nonagglomerated lower-mass-level particles in a certain 

domain. Moreover, the boundary between these two concepts is extremely blurred. It 

should be noted that due to limitations of computing scale, it is impossible to simulate 

or watch the process of the generation of particles from uniformly distributed energy or 

other conditions described in this article; therefore, the above possible generation 

process is merely hypothesized, and its veracity remains to be investigated. 

The above content only discusses the case of the particle position aggregation 

being dominant. For the case of the particle moving direction aggregation being 

dominant, the solution is the same. The specific discussion will be carried out in Section 

3.3.5.4. 

3.3.5.3 Method of Acquiring the Initial Wave Function 

Obviously, the initial conditions for the solution to Eq. 40 place constraints on the 

norm of the wave function. The following presents the method of acquiring the initial 

wave function when the position aggregation of lower-mass-level particles is dominant 

(mostly, in this case). To eliminate the classical diffusion coefficient D by solving the 

simultaneous equations given by Eq. 29, Eq. 32 and Eq. 33, we can obtain 

   (45) 

Note that t1 = 1 s in Eq. 45; we ignore it for now. By replacing m in Eq. 46 with 

the mass  in a certain domain V and extracting the roots of both sides of the 

equation, we can obtain a quantitative expression for the average velocity  of the 

particle swarm in this domain after finding the norm of both sides of the equation: 
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  (46) 

From a statistical point of view, the norm of the vector sum in a certain domain is 

 in a system with identical norms and identical probabilities of all 

directions in space, where  is the average contribution of each particle to the total 

norm of the vector sum in the domain and k is the number of vectors. If these random 

vectors are regarded as representing the random movements of small particles moving 

with the same speed in space, then the total momentum of the particle swarm in domain 

V, or the sum of the total velocity in domain V from a statistical point of view, is 

   (47) 

where k is the number of particles in domain V. By substituting Eq. 46 into Eq. 47 and 

replacing k with , we obtain 

   (48) 

where µ is the mass of a single particle. 

From the perspective of Max Born's interpretation of the wave function, after the 

wave function of a system is normalized (let it be denoted by ), the mass density of 

the wave function everywhere it reaches is expressed as follows: 

   (49) 

where m is the mass of the target object (the same as the m given in Eq. 40). In fact, 

even from the perspective of statistics in accordance with the logic of this article, the 

square of the speed or the square of the norm of the wave function is also directly 

proportional to the mass; see Part 1 of the Supplementary Information for details. 

Since the wave function represents the velocity or velocity density per unit volume, 

if  is used to denote the wave function at a certain point, then by substituting Eq. 

49 into Eq. 48, the norm of the wave function at a certain point can be obtained as 

follows: 

   (50) 

In view of the discussion presented in Section 3.3.4.1, a further operation on  

is needed to obtain the relative wave function M0 (  is divided by the speed of a 
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single particle and the number of particles per unit volume in background field, and 

M0 is assigned to the same direction as ). If the system is composed of particles at 

the photon level, M0 can be written as 

 , (51) 

where c is the speed of light,  is the average mass density over a range larger than 

V (the background field) and is generally accepted to be , and 

 is the unit coefficient, whose value is . The purpose of this coefficient is 

mainly to correct the dimensional difference caused by the conversion of the diffusion 

coefficient into a velocity and to compensate for the specification of the unit volume 

implied in the conversion relationship. The method described above is the acquisition 

method for the initial condition for Eq. 40. 

In the case of a low mass density (such as the electron distribution outside the 

nucleus of an atom), the norm  of the wave function is extremely small in the 

initial condition obtained from Eq. 51 (electrostatic interaction is not considered in the 

initial condition; however, even if the electrostatic interaction with the nucleus were to 

be considered in the calculation process, the norm of the wave function would still be 

small, and the details will not be discussed in this article). As mentioned before, in this 

case, Eq. 40 is almost the same as the Schrödinger equation. That is, Eq. 40 will reduce 

to the Schrödinger equation when solving for the electron distribution outside the 

nucleus of an atom, while the case of the application of an external electromagnetic 

field to the atomic system needs to be investigated separately. It should be noted that, 

as mentioned above, when the target system (background field) is composed of particles 

at the photon level, c in Eq. 51 is equal to the speed of light, while if the target system 

is composed of particles at another mass level, c is equal to the speed of particles at that 

mass level. The background domain here can be either the whole universe or a smaller 

range that encompasses the research objects. Once the background domain is defined, 
the corresponding average mass density  of the background field can be 

determined. In addition, as seen from Eq. 40 and the acquisition method for the initial 

wave function, only when both the position aggregation and direction aggregation are 

ψ 1

M0 = ! ⋅
!m

c ⋅ρm,0
⋅ψ 1

ρm,0

ρm,0 = 2×10
−28 kg ⋅m−3

! 1m−3 ⋅s
−1
2

M

ρm,0



 41 

at a maximum is  infinitesimal and can a particle swarm ( ) that does not 

satisfy the condition in Eq. 43 be completely nondispersive. In other words, for a 

particle swarm for which only direction or position aggregation is dominant, diffusion 

cannot be completely prohibited when the shape of the particle swarm does not satisfy 

the condition described in Eq. 43. 

3.3.5.4 Further Discussion 

Although Section 3.3.5.3 only considers the case when the particle position 

aggregation is dominant, the way in which the initial wave function M0 is acquired 

from Eq. 51 still reflects the way in which the wave function at a point is calculated. 

Therefore, to judge whether the wave function M at a point changes with the selections 

of the reference system or the minimum reference particles, it is necessary only to 

examine whether the method of acquiring the initial wave function M0 has changed. 

In view of the discussion in Section 3.3.2, in any stationary (inertial) reference system, 

the synchronous change in movement and time from which movement is measured, 

from which the obtained speed of light c and the velocity determining M are both 

constant; in addition, the speed of light is included in Eq. 51, and other parameters are 

not limited by the reference system. Therefore, in any reference system, as long as the 

conditions HYPO 1–3 in 3-dimensional space are satisfied, Eq. 40, which is deduced 

in this article, and Eq. 51, which is the acquisition method for the initial wave function, 

are applicable. Moreover, let us consider the case of particles of different mass levels 

being thought of as the minimum (infinitesimal) reference particles in the same 

reference system. There is no need to consider the mass of an infinitesimal particle in 

the acquisition method for the initial wave function (Eq. 51); regardless of which mass-

level particle is treated as the minimum reference particle, the synchronous change in 

movement and time from which movement is measured, from which the obtained speed 

of light c and the velocity determining M are both constant; in addition, the other 

parameters in the acquisition method (Eq. 51) for the initial wave function M0 are not 

limited by the selection of the minimum reference particle. Therefore, regardless of 

how large the particles are that are regarded as the minimum reference particles, Eq. 40 

and Eq. 51 are still applicable. In summary, the gravitational effect between various 

particles can be regarded as a statistical effect of moving particles; it can be considered 

that there is no interaction between particles of any mass level. This is self-consistent 

e−M M
2
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with the hypothesis stated in HYPO 3. In this way, particles can be constructed step by 

step, and particles of a high mass level can form particles of a higher mass level under 

appropriate conditions. The whole universe is quantized regardless of the mass level, 

and each mass level is also equivalent. This is self-consistent with the statement that 

"the substance in the world is quantized", which is the axiomatic inference (or 

hypothesis) derived from AXIO 2. 

When direction aggregation is dominant, the form of Eq. 43 allows the velocities 

of some particles to be extremely fast, while the velocities of other particles that are not 

far from them decrease rapidly. Particles with a very fast velocity can also have a higher 

mass density than their surroundings, and under certain conditions, the mass and 

velocity can mutually transform (as long as the condition of Eq. 43 is met). The above 

conclusion is consistent with the hypothesis of "high-speed and random motion of 

particles in the universe" mentioned above. 

To summarize the results stated above, in any reference system that satisfies the 

conditions of HYPO 1–3 in 3-dimensional space, no matter what the mass level of the 

basic (infinitesimal) reference particle considered in this article actually is, and no 

matter how slow the "absolute" movement speed of that particle, from the perspective 

of human understanding, the particle mass at this level is infinitesimal, and the speed is 

infinite (corresponding to the expansion of the self-consistent range). This conclusion 

gives legitimacy to the view that "photons have small or infinitesimal masses". At the 

same time, it also gives legitimacy to the vector decomposition in the (infinitesimal) 

microdomain V introduced in Section 3.3.4.1 and the viewpoint that "the absolute 

coordinate system needs to move along with the whole particle swarm". In this way, Eq. 

40, which is derived in this article, and Eq. 51, which is the acquisition method for the 

initial wave function, can be applied not only in a local space but also in a broader space 

(or in various inertial reference systems), and they can also be applied not only in a 

low-mass-level particle system but also in a high-mass-level particle system (i.e., either 

low-mass-level particles or high mass-level particles can be treated as infinitesimal 

particles). Based on the above conclusions, we infer that Eq. 40 and the 

abovementioned physical model are completely equivalent. 

3.4 A Simple Verification of the Mathematical Model 

It can be seen from the above discussion that Eq. 40 can completely describe all 

objects and phenomena in nature and that the situation described by Eq. 40 is logically 
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self-consistent with the physical model (hypotheses) given at the beginning of this 

article; however, its reliability in real situations should be further tested. In this article, 

the description of the time-dependent diffusion of a 1-dimensional Gaussian wave 

packet without an external field with even parity along the x-axis and the initial 

condition  is solved for comparison with known theories to guide further 
discussion. For convenience of operations, we adopt natural units (i.e., ħ = c = 1) and 

set m = 1 eV for all evaluations in this section, while the International System of Units 

is still adopted in other sections. 

As mentioned above, to correctly solve Eq. 40, it is necessary to give the equation 

an initial condition with an appropriate norm in accordance with Eq. 51, which is 

different from solving the Schrödinger equation. In the following, the average electron 

mass density outside the nucleus of the hydrogen atom is taken as a reference to 

determine the norm of the wave function for the initial condition of the Gaussian wave 

packet  in the case of time-dependent diffusion. It is assumed that these two kinds 
of problems are essentially the same; both of them concern the movements of particles 

at the photon level. Let m = 9.109 389 7(54) ´ 10–31 kg, which is the electron mass; 

then, the coefficient pre the normalized wave function  in Eq. 51 can be evaluated 

to be approximately . The normalized norm of the above Gaussian wave-

packet is . Therefore, the approximate value  of the same 

order of magnitude can be taken as the initial condition without affecting the discussion 

of the problem (after verification, when the coefficient of  is less than , the 
maximum relative deviation between the contours for the wave packet obtained using 

these two methods is less than 1.14% in all ranges; see Part 6 of the Supplementary 

Information for details). For comparison, the case of a larger norm in the initial 

conditions (such as ) is also evaluated. At the same time, the 

Schrödinger and Dirac equations are used to solve for the description of the time-

dependent diffusion of this wave packet. For the Dirac equation, the case in which the 

two components of the wave function are equal (i.e., ) is 

taken as the initial condition here (see the description of the process of generating Fig. 

4 in Part 8 of the Supplementary Information for the detailed Mathematica code for the 

solution process). 
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Figure 4 | Illustrations of the 1-dimensional time-dependent diffusion of the Gaussian 

wave packet  as obtained using various methods in natural units. a, 
Computation result of Eq. 40 when the initial condition is . The 

norm has been magnified ( ) to facilitate the shape comparison. b, Computation 

result of Eq. 40 when the initial condition is . c, Computation result 

of the Schrödinger equation. d, Computation result of the Dirac equation. 

As illustrated in Fig. 4, there is almost no difference between the visualization of 

the time-dependent diffusion of the wave packet obtained from Eq. 40 under an 

appropriate initial condition  (Fig. 4a) and that obtained from the 

Schrödinger equation (Fig. 4c) (note: for convenience, the norms of wave functions, 

not the squares of the norms, are discussed in this section). This small difference is 

illustrated in greater detail in Fig. 5 by presenting the standard deviations of the norms 

at different diffusion times, from which it can be seen that the profiles of the Gaussian 

wave packets predicted by the two methods almost completely coincide at each time 

point. Thus, it is further verified that the equation given in this article well approximates 

the Schrödinger equation (at least for the problem of a Gaussian wave packet) in a 

domain with an extremely sparse mass density (such as the distribution of electrons 

outside the nucleus of an atom, excluding the influence of the electric field of the 
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2

×1013
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nucleus), which is consistent with the conclusion presented in Section 3.3.5.1 above. 

 
Figure 5 | Visualizations of the time-dependent diffusion trend of a Gaussian wave 

packet (norm) as predicted using four methods (for Eq. 401, the initial condition is 

; for Eq. 402, the initial condition is ) in natural 

units at various moments in time (t = 0.0, 0.2, 0.4, and 0.6 eV–1). 

If the norm of the wave function in the initial condition is large (such as 

), the profile of the wave packet will show an obvious bulge or particle 

(position or direction) aggregation near t = 0.3 eV–1 (Fig. 4b). Because of self-

aggregation, the profile obtained from Eq. 40 is steeper along the direction of the x-axis, 

which can be clearly seen from the standard deviation of the norm of the Gaussian wave 

packet in Fig. 5 at the three nonzero times. Under such initial conditions, the diffusion 

rate predicted by Eq. 40 is not as fast as that predicted by the Schrödinger equation, and 

the main peak in the profile does not tend to quickly dissipate; this is closer to the 

situation described by the Dirac equation (Fig. 4d). It can be speculated that this 

behavior is mainly caused by the gravitation of the wave packet itself. After t = 1 eV–1, 

the main peak begins to split into two peaks (for more obvious splitting, see the case in 

which the coefficient of  is 1.4 in Part 7 of the Supplementary Information); in 
the case described by the Dirac equation, strong splitting occurs after t = 0.5 eV–1 (the 

main peak splits into two secondary peaks, and then each secondary peak splits into 

two smaller peaks). This phenomenon is considered to be caused by the fact that the 
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−13e−2x

2
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gravitation of the wave packet itself is not considered in the Dirac equation and the 

corresponding correction to the real result is excessive. This is also confirmed by the 

standard deviation profiles illustrated in Fig. 5. 

To study the influence of the norm in the initial condition on the diffusion of the 

wave packet in greater detail, we also compare the shapes of the key parts of the profiles 

(the time-dependent trend of the norm for the wave packet at x = 0 and the wave packet 

at the maximum value of the norm) after assigning various initial conditions ( , 

,  and ) for Eq. 40 (see the description of the process of 

generating Fig. 6 in Part 8 of the Supplementary Information for the detailed 

Mathematica code for the solution process); the results are illustrated in Fig. 6. It can 

be seen from this figure that when different initial conditions are specified, with norms 

ranging from small to large, the wave-packet diffusion profiles predicted by Eq. 40 (at 

x = 0) are initially consistent with those predicted by the Schrödinger equation and then 

gradually tend to continue to agglomerate near 0.3 eV–1 (the profile gradually begins to 

bulge); the corresponding trend is shown in Fig. 6a. In addition, Fig. 6b shows the shape 

of the wave packet at the highest point (see Part 7 of the Supplementary Information 

for the full spectrum waveforms for the initial conditions of  and 

 and the corresponding comparisons with the Dirac equation). As 

the initial norm gradually increases, the wave packet initially will gradually shrink, and 

when the norm reaches the maximum, the waveform will gradually become steeper and 

steeper and (presumably) will gradually approach that of the function satisfying Eq. 43. 

It can also be seen from this trend that as the mass density of the wave packet increases, 

the attenuation speed of the wave packet becomes slower. 

 

Figure 6 | Comparison of the shapes of the Gaussian wave packets obtained when 

assuming different initial conditions M0 = (10, 1.0, 1.2, 1.4)  in natural units. a, 
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Time-dependent trends of the norm for the wave packet at x = 0 (solid line) and for 

the wave packet at the maximum value of the norm (dashed line of the same color). b, 

Profiles at the maximum values of the norms. The numbers in the legend are the 

coefficients of  corresponding to the different initial conditions. The initial 
norm at t = 0 eV–1 in each case is normalized to facilitate the shape comparison. 

4. Conclusions 

In this article, a physical model of the whole universe has been constructed from 

the most basic philosophical paradoxes. Based on this model, a mathematical equation 

has been established to describe the generalized diffusion behavior of moving particles, 

and its simple verification is also carried out. For the first time, relativistic effects have 

been interpreted as statistical effects of moving particles, based on the understanding 

that the higher the degree of aggregation of particles is (in terms of either position or 

movement direction), the greater their average velocity in other directions is consumed. 

Thus, the gravitational force and (special) relativistic effects can be actually integrated 

into the derived equation (achieved by selecting an initial wave function with a specific 

norm when solving it), thus avoiding the problem of nonrenormalizability when 

gravitation is introduced into quantum mechanics. Further analysis has shown that the 

gravitation between objects is also caused by a statistical effect of randomly moving 

particles. These particles can also form stable nondispersive particle swarms, which, as 

larger-mass-level particles, can further unite into stable nondispersive particle swarms. 

Regardless of the mass level of the particles that are regarded as infinitesimal particles 

and regardless of how slow the speed is regarded as an infinite speed, the equations 

derived in this article are equivalent at the scale of human understanding. On the one 

hand, based on the hypotheses stated in HYPO 1–3 (physical model), this article has 

deduced the form of the Schrödinger equation and the conclusions of special relativity, 

thus further confirming the rationality of these hypotheses concerning the universe. On 

the other hand, based on these assumptions, the derived equation contains the 

conditions for the generation of stable particles, which, in turn, form a logical self-

consistency with the previous assumptions. Therefore, the basic physical model of the 

universe established in this article is a relatively reliable and complete logical model, 

and the universe is likely to be a product of the movement of noninteracting random 

particles and to obey the mathematical equation given in Eq. 40. 

Based on this physical model, we can answer the questions raised at the beginning 

e−2x
2
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of this article. The universe is both large and small, and its size is only a relative logical 

concept. From this relative point of view, the universe is boundless (for human beings). 

The current appearance of the universe is only one stage of its evolution, and this 

evolution is a process without beginning or end. The constant random motion or 

generalized diffusion of particle swarms is the mechanism by which it operates, and 

there is no beginning or end point of this diffusive movement (although there may be a 

beginning and end in local space). The energy in the universe cannot be designated as 

existing or not; it is merely a relative concept arising from the movement of 

infinitesimal particles. If we observe the group behavior of these particles, their average 

speed will decrease, giving rise to the concepts of time, space, speed and energy. 

Therefore, these concepts (including force) are all statistical effects that arise when 

observing these moving particles from different angles. Energy will never be exhausted, 

nor will it increase or decrease. According to this view, the total entropy in the whole 

universe will also not increase or decrease. 

�
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Appendix:

Supplementary Information
(Mathematica v12.1.1.0 code of TraditionalForm)

Part 1. The Square of the Norm of the Average Velocity is Proportional to the 
Number of Vectors

Definition: Particles with a higher mass level composed of k particles are called kth-order particles.
Then, the velocity of a kth-order particle is the velocity of the overall center of mass of the k particles, 
which is the average of the velocity vectors of all these particles.
Assumption: Each particle is moving at the same speed and in a random direction in space.
Thus, the projection of the velocity vector of a kth-order particle onto one of the three equivalent 
coordinate axes of the 3-dimensional Cartesian coordinate system is the mean value of the projection 
(onto the same axis) of the velocity vectors of the 1st-order particles forming the kth-order particle, 
which follow the same distribution; therefore, it approximately follows a normal distribution (central 
limit theorem).
There are three equivalent (approximate) normal distributions, one on each of the three axes, which are 
not completely independent. However, James Clerk Maxwell and Ludwig Boltzmann proved that these 
distribution can, in fact, be equivalently treated as completely independent. This is because randomly 
selecting a vector is equivalent to randomly determining a three-axis coordinate; moreover, the prob-
lem of the momentum transfer of gas molecules participating in random collisions is also equivalent to 
the problem discussed in this article.

First, the probability density of the norm of the 3-dimensional vectors formed by three normal distribu-
tion N(0, σ2) components that are independent on three coordinate axes is calculated.

In[!]:= Clear["Global`*"];
$= SimplifyPDFTransformedDistributionx2 + y2 + z2,

{x, y, z} * ProductDistribution[{NormalDistribution[0, σ2], 3}], x, Assumptions→σ2 > 0;

$1 = PDFTransformedDistribution x , x* ProbabilityDistribution[$, {x, 0, +∞}], x

Out[!]=

2

π
x2 ⅇ

-
x2

2 σ2
2

σ2
3

x > 0

0 True

Then, we find the probability density of the Maxwell distribution with scale parameter σ2:

In[!]:= $2 = PDF[MaxwellDistribution[σ2], x]

Out[!]=

2

π
x2 ⅇ

-
x2

2 σ2
2

σ2
3

x > 0

0 True

Therefore, these two probability densities are equal:

In[!]:= $1 -$2

Out[!]= 0

We verify the above conclusion (c is the speed of 1st-order particle; n is the number of vectors) (This 
code takes approximately 13 hours):
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We verify the above conclusion (c is the speed of 1st-order particle; n is the number of vectors) (This 
code takes approximately 13 hours):

In[!]:= c = 1;
n = 1000;
m = 3 000 000;
dd = {};
ProgressIndicator[Dynamic[i], {1, m}]
For[i = 1, i <m, i++,

ℋ =RandomPoint[Sphere[{0, 0, 0}, c], n];
ℋℋ =Norm[Total /@ Transpose[ℋ]];
dd =AppendTo[dd, ℋℋ]];

$= SmoothKernelDistribution[dd, {"Adaptive", Automatic, Automatic}];

s1 = PlotPDF[$, x], PDFMaxwellDistribution
c

3
n , x,

{x, 0, 100 c}, PlotStyle→ {{Red, Thickness→ 0.0032}, {Blue, Thickness→ 0.0032}},
Frame→ {{True, False}, {True, False}}, FrameLabel→ {"Momentum", "Probability Density"},
FrameStyle→Directive[Black, Thickness→ 0.0017],
LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 14],
Epilog→ Inset[LineLegend[{Directive[Blue, Thickness[0.0032]], Directive[Red, Thickness[0.0032]]},

{Style["Theoretical", FontFamily→ "Arial", FontSize→ 14],
Style["Simulated", FontFamily→ "Arial", FontSize→ 14]}, LegendFunction→
(Framed[#, RoundingRadius→ 4, FrameStyle→GrayLevel[0.6]]&)], Scaled[{0.732, 0.644}]]

Export["/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure S1.png",
s1, Background→None, ImageResolution→ 600];

Out[!]=

Out[!]=
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Figure S1. Probability density of momentum norm formed by 1000 randomly moving particles with c 
= 1 (theoretical and simulated results).

Accordingly, the norm of the 3-dimensional vectors formed by three normal distribution N(0, σ2) 
components which are independent on three coordinate axes follows the Maxwell distribution with the 
scale parameter σ2.
Suppose that the standard deviation of the projection of the velocity of any one of the k equivalent 
particles forming a kth-order particle onto each equivalent coordinate axis is σ. Then, the standard 
deviation of the projection of the velocity of a kth-order particle onto each equivalent coordinate axis 

(i.e., the mean value of the projection of the velocity of 1st-order particle) is σ
k

, namely, the projec-

tion onto each coordinate axis (approximate) follows a normal distribution with a mean value of 0 and 

a standard deviation of σ
k

. As a result, the speed of kth-order particles follows the Maxwell distribu-

tion with scale parameter σ
k

.

Then, the average velocity of the kth-order particles is51



Accordingly, the norm of the 3-dimensional vectors formed by three normal distribution N(0, σ2) 
components which are independent on three coordinate axes follows the Maxwell distribution with the 
scale parameter σ2.
Suppose that the standard deviation of the projection of the velocity of any one of the k equivalent 
particles forming a kth-order particle onto each equivalent coordinate axis is σ. Then, the standard 
deviation of the projection of the velocity of a kth-order particle onto each equivalent coordinate axis 

(i.e., the mean value of the projection of the velocity of 1st-order particle) is σ
k

, namely, the projec-

tion onto each coordinate axis (approximate) follows a normal distribution with a mean value of 0 and 

a standard deviation of σ
k

. As a result, the speed of kth-order particles follows the Maxwell distribu-

tion with scale parameter σ
k

.

Then, the average velocity of the kth-order particles is

In[!]:= v =MeanMaxwellDistribution
σ

k


Out[!]=

2 2
π
σ

k

For the kth-order particles in different reference frames (Ru and R0) and with different standard 
deviations (σu and σ0), the ratio of their average velocity vu / v0 =

In[!]:=

2 2
π
σu

k


2 2
π
σ0

k

Out[!]=
σu

σ0

Therefore, the ratio of σu to σ0 is the ratio between the average speeds of particles of higher mass 
levels in Ru and R0.

For k1th- and  k2th-order particles, the ratio of their average velocity v1 / v2 =

In[!]:=

2 2
π
σ

k1


2 2
π
σ

k2

Out[!]=
k2

k1

And because:�m1 = μ k1 and m2 = μ k2, where μ is the scale factor or the  mass of 1st-order particle. 
v1 / v2 is also equal to

In[!]:= Simplify

m2
μ

m1
μ

, Assumptions→ μ > 0

Out[!]=
m2

m1

Therefore, the square of the average velocity of particles is directly proportional to the mass of parti-
cles or the number of 1st-order particles forming it.

Part 2. Special Relativistic Effects on Infinitesimal Particles
Correspondence:
The mixed distribution of "1and "2 is represented by )12;
The mixed distribution of "3and "4 is represented by )34;
The rest of the symbols are consistent with those in the main text.
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In[!]:= Clear["Global`*"];
$= TransformedDistribution[cCos[θ] Sin[ArcCos[η]],

{θ *UniformDistribution[{-π, π}], η *UniformDistribution[{-1, 1}]}];
$1 = TransformedDistributioncCos[θ] Sin[ArcCos[η]],

θ *UniformDistribution[{-π, π}], η *UniformDistribution
u

c
, 1;

$2 = TransformedDistributioncCos[θ] Sin[ArcCos[η]],

θ *UniformDistribution[{-π, π}], η *UniformDistribution-1,
u

c
;

$3 = TruncatedDistribution[{u, c}, UniformDistribution[{-c, c}]];
$4 = TruncatedDistribution[{-c, u}, UniformDistribution[{-c, c}]];
$34 =MixtureDistribution[{w, 1 - w}, {$3, $4}];
Simplify[Mean[$34], Assumptions→ 0 < u < c]

Out[!]=
1

2
(c (2w - 1) + u)

Let the mean value expression be
1

2
(c (2 w - 1) + u) = u, and then we find the weight w

In[!]:= Reduce
1

2
(c (2 w - 1) + u) ⩵ u, w

Out[!]= (u- 0 ∧ c- 0) ∨ c ≠ 0 ∧ w-
c + u

2 c

Then, the mixed distribution )12 consisting of "1 and "2 can be calculated in accordance with this 
weight w. The analytical form of )12 cannot be given by Mathematica.�Therefore, the standard devia-
tion of )12 is calculated directly (This code takes approximately 72 seconds).

In[!]:= w =
c + u

2 c
;

$12 =MixtureDistribution[{w, 1 - w}, {$1, $2}];
σu = Simplify[StandardDeviation[$12], Assumptions→ 0 < u < c]

Out[!]=
c2 - u2

3

The standard deviation of )34 is the same.

In[!]:= Simplify[StandardDeviation[$34], Assumptions→ 0 < u < c]

Out[!]=
c2 - u2

3

Then, the ratio between σu and the velocity components on the x-axis of the particles in R0 can be 
obtained.

In[!]:= Simplify[σu /StandardDeviation[$], Assumptions→ 0 < u < c]

Out[!]=
c2 - u2

c

The same factor can also be obtained by evaluating the ratio of the standard deviation of )34 to the 
standard deviation of the velocity components on the z-axis in R0.
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In[!]:= Simplify[StandardDeviation[$34]/StandardDeviation[UniformDistribution[{-c, c}]],
Assumptions→ 0 < u < c]

Out[!]=
c2 - u2

c

When c = 10 and u = 6, the distribution of )12 on x- or y-axes is like this (This code takes approxi-
mately 350 seconds):

In[!]:= c = 10;
u = 6;
data =RandomVariate[$12, 300 000 000];
$0 = SmoothKernelDistribution[data, {"Adaptive", Automatic, Automatic}];
s2 = Plot[PDF[$0, x], {x, -10, 10}, PlotRange→ Full, PlotStyle→ {Blue, Thickness→ 0.0032},

AxesLabel→ {HoldForm[Speed], HoldForm[Probability Density]},
AxesStyle→Directive[Black, Thickness→ 0.001],
LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 14]]

Export["/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure S2.png",
s2, Background→None, ImageResolution→ 600];

Out[!]=
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Figure S2. Simulated probability density of the mixed distribution )12 when c = 10 and u = 6.

Part 3. Position aggregation being dominant is equivalent to velocity direction 
aggregation being dominant

Suppose that the standard deviation of the projection of the velocity of the 1st-order particle swarm 
onto each equivalent coordinate axis is σ. Then, the Maxwell speed density function related to mass is 
as follows:

In[!]:= $=MaxwellDistribution
σ

k
;

PDF[$, x]

Out[!]=

2

π
k32 x2 ⅇ

-
k x2

2 σ2

σ3
x > 0

0 True

In the main text, Y is generally used to represent the magnitude of the momentum in a microdomain V. 
However, due to the characteristics of Mathematica, we replace Y with Y and substitute it with x in the 
above formula, namely,
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x =
Y

k
;

Then, the probability density of the magnitude of the momentum (Y) is

In[!]:= $= TransformedDistributionk x, x* ProbabilityDistribution

2
π
k3/2 x2 ⅇ-

k x2

2 σ2

σ3
, {x, -∞, ∞};

Simplify[PDF[$, Y], Assumptions→ k > 0]

Out[!]=

2
π
Y2 ⅇ-

Y2

2 k σ2

k32 σ3

Find the value of k at the maximum value of the above formula:

In[!]:= ReduceD

2
π
Y2 ⅇ-

Y2

2 k σ2

k3/2 σ3
, {k, 1} ⩵ 0, k

Out[!]= (k ≠ 0 ∧ σ ≠ 0 ∧ Y - 0) ∨ σ ≠ 0 ∧ Y ≠ 0 ∧ k -
Y2

3 σ2

And this formula is expanded by a Taylor series about the point k = Y 2

3 σ2  according to k.

In[!]:= Series

2
π
Y2 ⅇ-

Y2

2 k σ2

k3/2 σ3
, k,

Y2

3σ2
, 3

Out[!]=

3 6
π
Y2

ⅇ32 σ3  Y
2

σ2

32

-
81 3

2 π
σ k - Y2

3 σ2

2

2 ⅇ32 Y2  Y
2

σ2

32

+
81 6

π
σ3 k - Y2

3 σ2

3

ⅇ32 Y4  Y
2

σ2

32

+O k -
Y2

3 σ2

4

Therefore, this formula is a parabola with its opening facing downward about the point k = Y 2

3 σ2 , 

which is symmetric! This result shows that the two aggregation effects are equivalent about the point k 

= Y 2

3 σ2 .

Each mass level particle can be seen as being formed by particles of lower mass level. Regardless of 
how much mass aggregation or velocity direction aggregation the particles exhibit, it can be regarded 
as a slight one with a lower mass level. This is carried out step by step. Finally, the minimal deviation 
of the aggregation behavior of the position or velocity direction for infinitesimal particles can be 
achieved. The above results show that when the slightest aggregation behavior occurs, the difficulty of 
the two aggregation behaviors is equivalent. Therefore, the two aggregation behaviors can be replaced 
with each other for the statistical influence of the diffusion behavior on the infinitesimal particles. 
When the particles of higher mass level are investigated, their dynamic behaviors are affected by the 
dynamic behaviors of the lower-mass-level particles forming them (this is not contradictory to the 
viewpoint that each mass level particle can be treated equally, that is, when the behavior of particles of 
higher quality level is investigated, these particles can be regarded as free particles with a statistical 
effect, while the lower-mass-level particles forming them can be completely ignored. See Section 
3.3.5.4 of the main text for more details. When the number of particles of higher mass level is small 
and does not meet the statistical conditions, their dynamic behavior should be investigated according to 
the dynamic behaviors of the particles of lower mass level. When the number of particles of higher 
mass level is large enough, their dynamic behaviors can be investigated separately, that is, they are not 
affected by the dynamic behaviors of lower-mass-level particles, and they show the minimal deviation 
of the aggregation behavior. However, when there are artificial regulations, even if the number of 
particles of higher mass level is large enough, they will still be affected by the dynamic behavior of 
particles of lower mass level), thus following the dynamic behaviors of the lower-mass-level particles. 
Therefore, the two aggregation behaviors are equivalent to that of the higher mass-level-particles. In 
summary, the two aggregation effects are interchangeable for any mass level particles and thus affect 
the diffusion behavior as a single statistical effect of the aggregation behavior.
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Each mass level particle can be seen as being formed by particles of lower mass level. Regardless of 
how much mass aggregation or velocity direction aggregation the particles exhibit, it can be regarded 
as a slight one with a lower mass level. This is carried out step by step. Finally, the minimal deviation 
of the aggregation behavior of the position or velocity direction for infinitesimal particles can be 
achieved. The above results show that when the slightest aggregation behavior occurs, the difficulty of 
the two aggregation behaviors is equivalent. Therefore, the two aggregation behaviors can be replaced 
with each other for the statistical influence of the diffusion behavior on the infinitesimal particles. 
When the particles of higher mass level are investigated, their dynamic behaviors are affected by the 
dynamic behaviors of the lower-mass-level particles forming them (this is not contradictory to the 
viewpoint that each mass level particle can be treated equally, that is, when the behavior of particles of 
higher quality level is investigated, these particles can be regarded as free particles with a statistical 
effect, while the lower-mass-level particles forming them can be completely ignored. See Section 
3.3.5.4 of the main text for more details. When the number of particles of higher mass level is small 
and does not meet the statistical conditions, their dynamic behavior should be investigated according to 
the dynamic behaviors of the particles of lower mass level. When the number of particles of higher 
mass level is large enough, their dynamic behaviors can be investigated separately, that is, they are not 
affected by the dynamic behaviors of lower-mass-level particles, and they show the minimal deviation 
of the aggregation behavior. However, when there are artificial regulations, even if the number of 
particles of higher mass level is large enough, they will still be affected by the dynamic behavior of 
particles of lower mass level), thus following the dynamic behaviors of the lower-mass-level particles. 
Therefore, the two aggregation behaviors are equivalent to that of the higher mass-level-particles. In 
summary, the two aggregation effects are interchangeable for any mass level particles and thus affect 
the diffusion behavior as a single statistical effect of the aggregation behavior.

Part 4. The Norm of the Component Vector is Proportional to the Number of 
Vectors Forming It

When the total vector value of a specified vector swarm is determined, the mean norms between 
different component vectors should be proportional to the number forming them.�The following proves 
this viewpoint in detail.

It has been proven that the degree of slowdown on all three axes is the same in Part 2 of the Supplemen-
tary Information. Then, let ℳk being the norm of momentum of k particles observed from Ru, it 

follows Maxwell distribution with scale parameter 
k c2-u2

3  when observing from Ru. And when 

observing all of the moving particles in Ru from R0, all the randomly moving particles in Ru can be 
considered to have an additional velocity component u along the z-axis. Therefore, according to cosine 
theorem, the probability density of momentum norm formed by k particles in Ru observed in R0 can 
be expressed as (This code takes approximately 54 seconds):

In[!]:= Clear["Global`*"];

$= TransformedDistribution (k u)2 +ℳk2 - 2 k uℳkCos[ArcCos[η]] ,

ℳk *MaxwellDistribution
k c2 - u2

3
, η *UniformDistribution[{-1, 1}];

FullSimplify[PDF[$, x], Assumptions→ c > 0 ∧ 0 < u < c]

Out[!]=

3 x ⅇ
6 u x

c2-u2 -1 ⅇ
-
3 k u+x2

2 k c2-u2

k u 2 π c2 k-2 π k u2
k > 0 ∧ ((x > 0 ∧ k u > x) ∨ k u < x)

-
6 π c2 k-u x 5 u x-2 c2 k erf 6 x

c2 k-u x
+4 x ⅇ

6 x2

u x-c2 k c2 6 k+2-u 2 u+3 x-8 x (c-u) (c+u)

4 6 π k52 u ((c-u) (c+u))32
k u- x ∧ k > 0

The meaningful part (first branch) is selected to be verified. Note that the sampling with the replace-
ment method in the particle swarm with a mean speed of u can simulate all of the cases of the particle 
swarm with a mean speed of u. (The following code takes averagely 4.2 + 0.5 hours)
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In[!]:= c = 1;
n = 1 000 000;
ℋℋ = 0;
While[ℋℋ < 2700,

ℋ =RandomPoint[Sphere[{0, 0, 0}, c], n];
ℋℋ =Norm[Total /@ Transpose[ℋ]]];

m = 1 000 000;
dd = {};
ProgressIndicator[Dynamic[ j], {1, m}]
For[ j = 1, j <m, j++,

ℋ0 =RandomChoice[ℋ , 0.3 n];
ℋℋ0 =Norm[Total /@ Transpose[ℋ0]];
dd =AppendTo[dd, ℋℋ0]];

$= SmoothKernelDistribution[dd, {"Adaptive", Automatic, Automatic}];
k = 0.3 n;

u =
ℋℋ

n
;

s3 = PlotPDF[$, x],
3 x ⅇ

6 u x

c2-u2 - 1 ⅇ
-
3 k u+x2

2 k c2-u2

k u 2 π c2 k - 2 π k u2
, {x, 0, 2500},

PlotStyle→ {{Red, Thickness→ 0.0032}, {Blue, Thickness→ 0.0032}},
Frame→ {{True, False}, {True, False}}, FrameLabel→ {"Momentum", "Probability Density"},
FrameStyle→Directive[Black, Thickness→ 0.0017],
LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 14],
Epilog→ Inset[LineLegend[{Directive[Blue, Thickness[0.0032]], Directive[Red, Thickness[0.0032]]},

{Style["Theoretical", FontFamily→ "Arial", FontSize→ 14],
Style["Simulated", FontFamily→ "Arial", FontSize→ 14]}, LegendFunction→
(Framed[#, RoundingRadius→ 4, FrameStyle→GrayLevel[0.6]]&)], Scaled[{0.756, 0.644}]]

Export["/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure S3.png",
s3, Background→None, ImageResolution→ 600];

Out[!]=

Out[!]=
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Figure S3. Probability density of momentum norm formed by 3 × 105 particles in Ru observed in R0 
when c = 1 and u is a fixed value.

In view of the above conclusions, we find the mean value of this distribution (This code takes approxi-
mately 150 seconds).
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In[!]:= Y k = FullSimplify

MeanProbabilityDistribution
3 x ⅇ

6 u x

c2-u2 - 1 ⅇ
-
3 k u+x2

2 k c2-u2

k u 2 π c2 k - 2 π k u2
, {x, 0, +∞}, Assumptions→ c > u > 0 ∧ k > 0

Out[!]=

c2 + (3 k - 1) u2 erf
3

2
k u

k (c-u) (c+u)
+ 6

π
u ⅇ

3 k u2

2 u2-c2 k (c - u) (c + u)

3 u

We find the limit of the ratio of this mean value Y k and k when k approaches +∞.

SimplifyLimit
Y k

k
, k→+∞, Assumptions→ u > 0

Out[!]=
-u argc2 - u2 ≥ π
u True

The second brunch is meaningful. Therefore, when k is a large number, the norm of the mean value 
Y k is directly proportional to the number k forming Y k, namely  Y k  = k·u.

Eq. 21 in the main text determines the proportion of particle number distributed in various boxes 
partitioned by k, and these particles are distributed in each box of V with equal probability. That is, the 
particles are randomly extracted from the micro domain V to be distributed in each box. When the 
number of extractions is large enough, the norm of each component vector partitioned by k should be 
directly proportional to the number of particles according to the probability and the scale factor is u.

In view of the fact that the unique expansion of scalar ℳ in the form of including power series is

ℳ=
k=1

∞ ⅇ-ℳ ℳk

(k - 1) !

If the corresponding terms marked by k is directly proportional between the expansion of the norm @ℳA 
of vector ℳ and the expansion of the scalar ℳ representing the number of particles or let the numbers 
of particles be proportional to the norms of vectors they form, the number ℳ of particles must be equal 
to the norm @ℳA of the vector ℳ  they form besides they are required to obey Poisson distribution. 
According to the above conclusion Y k = k·u, so the average speed u = 1 is needed in the system.

Next, we verify the standard deviations of this distribution in the three axes (This  code takes averagely 
291 seconds).
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In[!]:= c = 1;
n = 10 000 000;
ℋℋ = 0;
While[ℋℋ < 6600,

ℋ =RandomPoint[Sphere[{0, 0, 0}, c], n];
ℋℋ =Norm[Total /@ Transpose[ℋ]]];

ℋ0 =RandomChoice[ℋ , 0.3 n];
ℋℋx = StandardDeviation[Transpose[ℋ0][[1]]]
ℋℋy = StandardDeviation[Transpose[ℋ0][[2]]]
ℋℋz = StandardDeviation[Transpose[ℋ0][[3]]]

Out[!]= 0.57735

Out[!]= 0.577374

Out[!]= 0.577327

The standard deviation in theory is:

u =
ℋℋ

n
;

c2 - u2

3
Out[!]= 0.57735

This result also verifies that the conclusions in Part 2 and Part 3 are both correct.

Part 5. The 2-Dimensional Situation Under the Same Conditions
This code takes approximately 22 seconds.
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In[!]:= Clear["Global`*"];
Needs["NDSolve`FEM`"];

Ω= ImplicitRegion
16

10 000
≤ x2 + y2 ≤ 16, {x, y};

mesh = ToElementMeshΩ, MeshRefinementFunction→

Function{vertices, area}, area >
3

100 000

1

10
+ 80 Norm[Mean[vertices]] ;

uif =NDSolveValue
∂2u(x, y)

∂x2
+

∂2u(x, y)

∂ y2
-

∂u(x, y)

∂x

2

-
∂u(x, y)

∂ y

2

⩵ 0,

DirichletConditionu[x, y] ⩵ 1 + 2 ⅈ, x2 + y2⩵
16

10 000
,

DirichletConditionu[x, y] ⩵ 0, x2 + y2⩵ 16, u, {x, y} ∈mesh;

s4 = Plot3D(Abs[uif[x, y]])2, {x, y} ∈mesh, PlotRange→ {0, 5}, ColorFunction→ (Hue[0.65, #3]&),

MeshStyle→GrayLevel[0.4], AxesLabel→ Style["x", 15, FontFamily→ "Arial", Black, Italic, Bold],

Style["y", 15, FontFamily→ "Arial", Black, Italic, Bold], Rotate"Density",
π

2
,

AxesStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 15],
BoxStyle→Directive[Black, Thickness→ 0.002], BoxRatios→Automatic, ViewPoint→ {15, -26, 16};

ImageResize[s4, 700]
Export["/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure S4.png",

s4, Background→None, ImageResolution→ 600];

Out[!]=

Figure S4. Distribution of mass density of a particle swarm meeting the conditions ℳ(0, 0) = 1 + 2ⅈ ∧ 
(ℳ(x, y) = 0 ∧ x2 + y2 = 42).

It can be seen from Figure S4 that it is a circular symmetrical structure.

Part 6. Differences Between the Two Solving Methods (Schrödinger Equation 
and Eq. 40)
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This code takes approximately 45 hours.

In[!]:= Clear["Global`*"];

usol =DSolveValueⅈ
∂ψ(x, t)

∂ t
⩵-

1

2

∂2ψ(x, t)

∂x2
, ψ(x, 0) ⩵ ⅇ-2 x2, ψ, {x, t};

F[x_] := ⅇ-x; L = 20;

vsol =NDSolveValueⅈ
∂ℳ(x, t)

∂ t
⩵-

1

2
F[ℳ(x, t)]

∂2ℳ(x, t)

∂x2
-

∂ℳ(x, t)

∂x

2

,

ℳ(x, 0) ⩵ 10-2 ⅇ-2 x2 , ℳ(-L, t) ⩵ℳ(L, t), ℳ, {x, -L, L}, {t, 0, 3}, WorkingPrecision→ 40;

s5 = Plot3DAbs[usol[x, t]] - 102 Abs[vsol[x, t]], {t, 0, 1.6}, {x, -8, 8}, PlotPoints→ 60,
MaxRecursion→ 3, PlotRange→ {{0, 1.6}, {-8, 8}, {-0.002, 0.003}},
MeshStyle→GrayLevel[0.4], BoundaryStyle→GrayLevel[0.4],
AxesLabel→ Style["t ", 15, FontFamily→ "Arial", Black, Italic, Bold],

Style["x", 15, FontFamily→ "Arial", Black, Italic, Bold], Rotate"Deviation ",
π

2
,

AxesStyle→Directive[Black, Thickness→ 0.002], BoxStyle→Directive[Black, Thickness→ 0.002],
Ticks→ {{{0, "0.0"}, {0.5, 0.5, {0.01, 0}, Thickness→ 0.003}, {1.0, "1.0", {0.01, 0}, Thickness→ 0.003},

{1.5, 1.5, {0.01, 0}, Thickness→ 0.003}}, {{-6, -6, {0.011, 0}, Thickness→ 0.003},
{-3, -3, {0.011, 0}, Thickness→ 0.003}, {0, 0, {0.011, 0}, Thickness→ 0.003},
{3, 3, {0.011, 0}, Thickness→ 0.003}, {6, 6, {0.011, 0}, Thickness→ 0.003}},

{{-0.002, -0.002, {0.012, 0}, Thickness→ 0.003}, {-0.001, -0.001, {0.012, 0}, Thickness→ 0.003},
{0, "0.000", {0.012, 0}, Thickness→ 0.003}, {0.001, 0.001, {0.012, 0}, Thickness→ 0.003},
{0.002, "0.002", {0.012, 0}, Thickness→ 0.003}, {0.003, "0.003", {0.012, 0}, Thickness→ 0.003}}},

LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 15], ViewPoint→ {1, -2, 2.1};

FindMaxValueAbs[usol[x, t]] - 102 Abs[vsol[x, t]], x > 0, t > 0, {x, t}, WorkingPrecision→ 34
Abs[usol[x, t]] /. Last

FindMaximumAbs[usol[x, t]] - 102 Abs[vsol[x, t]], x > 0, t > 0, {x, t}, WorkingPrecision→ 34

ImageResize[s5, 700]
Export["/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure S5.png",

s5, Background→None, ImageResolution→ 600];
Out[!]= 0.01137609304650582034220637885507277

Out[!]=

Figure S5. Deviation of the contours computed by the Schrödinger equation and Eq. 40 with the initial 
wave function being 10-2 ⅇ-2 x2.
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Part 7. Another Comparison When the Initial Wave Function Is 1.4 e-2 x2

This code takes approximately 3 hours.

In[!]:= Clear["Global`*"];
Off[NDSolveValue::eerr];
L = 20;
F[x_] := ⅇ-x;

usol =NDSolveValueⅈ
∂ℳ(x, t)

∂ t
⩵-

1

2
F[ℳ(x, t)]

∂2ℳ(x, t)

∂x2
-

∂ℳ(x, t)

∂x

2

,

ℳ(x, 0) ⩵
6

5
ⅇ-2 x2 , ℳ(-L, t) ⩵ℳ(L, t), ℳ, {x, -L, L}, {t, 0, 3}, WorkingPrecision→ 22;

vsol =NDSolveValueⅈ
∂ℳ(x, t)

∂ t
⩵-

1

2
F[ℳ(x, t)]

∂2ℳ(x, t)

∂x2
-

∂ℳ(x, t)

∂x

2

, ℳ(x, 0) ⩵
7

5
ⅇ-2 x2 ,

ℳ(-L, t) ⩵ℳ(L, t), ℳ, {x, -L, L}, {t, 0, 3}, WorkingPrecision→ 26;
χ[x, t] = {u[x, t], v[x, t]};

σ3 =
1 0
0 -1

; σ1 =
0 1
1 0

;

xsol =NDSolveⅈ D[χ[x, t], t] U -σ1.χ(x, t) - ⅈ σ3.D[χ[x, t], x], u[x, 0] ⩵
2

2
ⅇ-2 x2 , v[x, 0] ⩵

2

2
ⅇ-2 x2 ,

u[L, t] ⩵ u[-L, t], v[L, t] ⩵ v[-L, t], {u, v}, {x, -L, L}, {t, 0, 3}, WorkingPrecision→ 14;

G1 = Plot3D
5

6
Abs[usol[x, t]], {t, 0, 1.6}, {x, -8, 8}, PlotPoints→ 60, MaxRecursion→ 3,

PlotRange→ {{0, 1.6}, {-8, 8}, {0, 1.23}}, MeshStyle→GrayLevel[0.4],
BoundaryStyle→GrayLevel[0.4], AxesLabel→ {Style["t ", 22, FontFamily→ "Arial",

Black, Italic, Bold], Style["x", 22, FontFamily→ "Arial", Black, Italic, Bold], ""},
AxesStyle→Directive[Black, Thickness→ 0.002], BoxStyle→Directive[Black, Thickness→ 0.002],
Ticks→ {{{0, "0.0"}, {0.5, 0.5, {0.01, 0}, Thickness→ 0.003}, {1.0, "1.0", {0.01, 0}, Thickness→ 0.003},

{1.5, 1.5, {0.01, 0}, Thickness→ 0.003}}, {{-6, -6, {0.011, 0}, Thickness→ 0.003},
{-3, -3, {0.011, 0}, Thickness→ 0.003}, {0, 0, {0.011, 0}, Thickness→ 0.003},
{3, 3, {0.011, 0}, Thickness→ 0.003}, {6, 6, {0.011, 0}, Thickness→ 0.003}},

{{0, "0.0"}, {0.5, 0.5, {0.012, 0}, Thickness→ 0.003}, {1, "1.0", {0.012, 0}, Thickness→ 0.003}}},
LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 21], ViewPoint→ {1, -2, 2.1},
Epilog→ Text[Style["a", 22, FontFamily→ "Arial", Bold, Black], {-0.09, 0.88}, {-1, 1}];

G2 = Plot3D
5

7
Abs[vsol[x, t]], {t, 0, 1.6}, {x, -8, 8}, PlotPoints→ 60, MaxRecursion→ 3,

PlotRange→ {{0, 1.6}, {-8, 8}, {0, 1.23}}, MeshStyle→GrayLevel[0.4],
BoundaryStyle→GrayLevel[0.4], AxesLabel→ {Style["t ", 22, FontFamily→ "Arial",

Black, Italic, Bold], Style["x", 22, FontFamily→ "Arial", Black, Italic, Bold], ""},
AxesStyle→Directive[Black, Thickness→ 0.002], BoxStyle→Directive[Black, Thickness→ 0.002],
Ticks→ {{{0, "0.0"}, {0.5, 0.5, {0.01, 0}, Thickness→ 0.003}, {1.0, "1.0", {0.01, 0}, Thickness→ 0.003},

{1.5, 1.5, {0.01, 0}, Thickness→ 0.003}}, {{-6, -6, {0.011, 0}, Thickness→ 0.003},
{-3, -3, {0.011, 0}, Thickness→ 0.003}, {0, 0, {0.011, 0}, Thickness→ 0.003},
{3, 3, {0.011, 0}, Thickness→ 0.003}, {6, 6, {0.011, 0}, Thickness→ 0.003}},

{{0, "0.0"}, {0.5, 0.5, {0.012, 0}, Thickness→ 0.003}, {1, "1.0", {0.012, 0}, Thickness→ 0.003}}},
LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 21], ViewPoint→ {1, -2, 2.1},
Epilog→ Text[Style["b", 22, FontFamily→ "Arial", Bold, Black], {-0.09, 0.88}, {-1, 1}];

G3 = Plot3D[Norm[Evaluate[{u[x, t], v[x, t]} /. xsol]], {t, 0, 1.6}, {x, -8, 8},
PlotPoints→ 60, MaxRecursion→ 3, PlotRange→ {{0, 1.6}, {-8, 8}, {0, 1.23}},
MeshStyle→GrayLevel[0.4], BoundaryStyle→GrayLevel[0.4],
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In[!]:=

AxesLabel→ {Style["t ", 22, FontFamily→ "Arial", Black, Italic, Bold],
Style["x", 22, FontFamily→ "Arial", Black, Italic, Bold], ""},

AxesStyle→Directive[Black, Thickness→ 0.002], BoxStyle→Directive[Black, Thickness→ 0.002],
Ticks→ {{{0, "0.0"}, {0.5, 0.5, {0.01, 0}, Thickness→ 0.003}, {1.0, "1.0", {0.01, 0}, Thickness→ 0.003},

{1.5, 1.5, {0.01, 0}, Thickness→ 0.003}}, {{-6, -6, {0.011, 0}, Thickness→ 0.003},
{-3, -3, {0.011, 0}, Thickness→ 0.003}, {0, 0, {0.011, 0}, Thickness→ 0.003},
{3, 3, {0.011, 0}, Thickness→ 0.003}, {6, 6, {0.011, 0}, Thickness→ 0.003}},

{{0, "0.0"}, {0.5, 0.5, {0.012, 0}, Thickness→ 0.003}, {1, "1.0", {0.012, 0}, Thickness→ 0.003}}},
LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 21], ViewPoint→ {1, -2, 2.1},
Epilog→ Text[Style["c", 22, FontFamily→ "Arial", Bold, Black], {-0.09, 0.88}, {-1, 1}]];

G4 = Plot
5

6
Norm[usol[x, 1]],

5

7
Norm[vsol[x, 1]], Norm[Evaluate[{u[x, 1], v[x, 1]} /. xsol]], {x, -3.8, 3.8},

PlotStyle→ {{Red, Thickness→ 0.005}, {Blue, Thickness→ 0.005}, {Black, Thickness→ 0.005}},
PlotRange→ {{-3, 3}, {-0.02, 0.9}}, Frame→ {{False, False}, {True, False}},
FrameStyle→Directive[Black, Thickness→ 0.002],
AxesStyle→Directive[GrayLevel[0.3], Thickness→ 0.0012], FrameTicks→
{{{-3, -3, {0.01, 0}, Thickness→ 0.003}, {-2, -2, {0.01, 0}, Thickness→ 0.003}, {-1, -1, {0.01, 0},

Thickness→ 0.003}, {0, 0, {0.01, 0}, Thickness→ 0.003}, {1, 1, {0.01, 0}, Thickness→ 0.003},
{2, 2, {0.01, 0}, Thickness→ 0.003}, {3, 3, {0.01, 0}, Thickness→ 0.003}}, {{0, 0}}},

FrameLabel→ {Style["x", 22, FontFamily→ "Arial", Black, Italic, Bold]},
LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 22], PlotLegends→
Placed[LineLegend[{Directive[Red, Thickness[0.0036]], Directive[Blue, Thickness[0.0036]], ,

Directive[Black, Thickness[0.0036]]}, {"1.2", "1.4", "Dirac"}], {0.873, 0.72}];
s6 =GraphicsGrid[{{G1, G2}, {G3, G4}}, Alignment→ Bottom, ImageSize→ 700,

Epilog→ Text[Style["d", 22, FontFamily→ "Arial", Black, Bold], Scaled[{0.6053, 0.7776}]]];

ImageResize[s6, 1000]
Export["/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure S6.png",

s6, Background→None, ImageResolution→ 600];

Out[!]=

Figure S6. Illustrations of the 1-dimensional time-dependent diffusion of the Gaussian wave packet 
ⅇ-2 x2  as obtained using various methods in natural units. a, Computation result of Eq. 40 when the 

initial condition is ℳ0(x, t) = 1.2 ⅇ-2 x2. The norm has been reduced (× 5
6 ) to facilitate the shape 

comparison. b, Computation result of Eq. 40 when the initial condition is ℳ0(x, t) = 1.4 ⅇ-2 x2. The 

norm has been reduced (× 5
7 ) to facilitate the shape comparison. c, Computation result of the Dirac 

equation. d, Comparison between them at t = 1.
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Figure S6. Illustrations of the 1-dimensional time-dependent diffusion of the Gaussian wave packet 
ⅇ-2 x2  as obtained using various methods in natural units. a, Computation result of Eq. 40 when the 

initial condition is ℳ0(x, t) = 1.2 ⅇ-2 x2. The norm has been reduced (× 5
6 ) to facilitate the shape 

comparison. b, Computation result of Eq. 40 when the initial condition is ℳ0(x, t) = 1.4 ⅇ-2 x2. The 

norm has been reduced (× 5
7 ) to facilitate the shape comparison. c, Computation result of the Dirac 

equation. d, Comparison between them at t = 1.

Part 8. Figures Used in This Article
###### Figure1##############################################

In[!]:= Clear["Global`*"];

aa =GraphicsRGBColor
178

255
,
252

255
,
61

255
, Rectangle[{0, 0}, {1, 1}],

RGBColor
178

255
,
252

255
,
61

255
, 0.5, Rectangle[{1, 0}, {2, 1}],

RGBColor
250

255
,
200

255
, 0, Arrowheads[0.06], {Thickness[0.006], Arrow[{{0.7, 0.54}, {1.3, 0.54}}]},

RGBColor
250

255
,
200

255
, 0, Arrowheads[0.06], {Thickness[0.006], Arrow[{{1.3, 0.46}, {0.7, 0.46}}]},

RGBColor
178

255
,
252

255
,
61

255
, 0.5, Arrowheads[0.06],

{Thickness[0.006], Arrow[{{0, -1.3}, {1.2, -1.3}}]},

RGBColor
178

255
,
252

255
,
61

255
, Arrowheads[0.06], {Thickness[0.006], Arrow[{{0, -1.3}, {0.8, -0.3}}]},

{Orange, {Thickness[0.002], DotDashed, Line[{{1, -0.05}, {1, 1.05}}]}},
{Orange, {Thickness[0.004], Dashed, Line[{{0.8, -0.3}, {2, -0.3}}]}},
{Orange, {Thickness[0.004], Dashed, Line[{{1.2, -1.3}, {2, -0.3}}]}},
{Blue, Arrowheads[0.06], {Thickness[0.006], Arrow[{{1.2, -1.3}, {0.8, -0.3}}]}},
{Blue, Arrowheads[0.06], {Thickness[0.006], Arrow[{{0, -1.3}, {2, -0.3}}]}},
{Blue, Arrowheads[0.06], {Thickness[0.006], Arrow[{{0, -1.3}, {1, -0.8}}]}},
Text[Style["V", 24, FontFamily→ "Euclid Math One", White], {0.45, 0.5}],
Text[Style["A", 17, FontFamily→ "Arial", White], {0.513, 0.456}],
Text[Style["V", 24, FontFamily→ "Euclid Math One", White], {1.55, 0.5}],
Text[Style["B", 17, FontFamily→ "Arial", White], {1.616, 0.455}],
Text[Style["D", 24, FontFamily→ "Arial", Orange, Italic], {0.982, 0.63}],
Text[Style["A", 17, FontFamily→ "Arial", Orange], {1.063, 0.59}],
Text[Style["D", 24, FontFamily→ "Arial", Orange, Italic], {0.982, 0.38}],
Text[Style["B", 17, FontFamily→ "Arial", Orange], {1.065, 0.34}],
Text[Style["Φ", 24, FontFamily→ "Arial", Orange], {1.06, 1.08}],
Text[Style["O", 24, FontFamily→ "Arial", Orange], {0, -1.39}],

TextStyle"B", 24, FontFamily→ "Arial", RGBColor
178

255
,
252

255
,
61

255
, 0.5, {1.2, -1.39},

TextStyle"A", 24, FontFamily→ "Arial", RGBColor
178

255
,
252

255
,
61

255
, {0.7, -0.28},

Text[Style["C", 24, FontFamily→ "Arial", Orange], {2.02, -0.4}],
Text[Style["M", 24, FontFamily→ "Arial", Orange], {0.972, -0.93}],
Inset[Style["a", Black, Bold, FontFamily→ "Arial", FontSize→ 24], {0.034, 1.12}],
Inset[Style["b", Black, Bold, FontFamily→ "Arial", FontSize→ 24], {0.034, -0.2}];

Export["/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure 1.png",
aa, Background→None, ImageResolution→ 600];
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###### Figure1##############################################

###### Figure2##############################################

In[!]:= Clear["Global`*"];
text =Graphics{Gray, Line[{{1, 0}, {1, 10}}], Line[{{2, 0}, {2, 10}}],

Line[{{3, 0}, {3, 10}}], Line[{{4, 0}, {4, 10}}], Line[{{5, 0}, {5, 10}}],
Line[{{6, 0}, {6, 10}}], Line[{{7, 0}, {7, 10}}], Line[{{8, 0}, {8, 10}}], Line[{{9, 0}, {9, 10}}],
Line[{{0, 1}, {10, 1}}], Line[{{0, 2}, {10, 2}}], Line[{{0, 3}, {10, 3}}], Line[{{0, 4}, {10, 4}}],
Line[{{0, 5}, {10, 5}}], Line[{{0, 6}, {10, 6}}], Line[{{0, 7}, {10, 7}}], Line[{{0, 8}, {10, 8}}],

Line[{{0, 9}, {10, 9}}], Orange, Rectangle[{6, 4}, {7, 5}]}, PlotRangePadding→
1

1000
;

bb = ShowPlot3D[Sin[x +Cos[y]], {x, -3, 3}, {y, -3, 3}, PlotPoints→ 60, MaxRecursion→ 3,
PlotStyle→ Texture[text], Mesh→None, Lighting→ "Neutral",
PlotLabels→ Placed[Style["dS", 14, FontFamily→ "Arial", Orange],

{0.9, -0.9}, Background→None], BoundaryStyle→None, Boxed→ False,
Axes→None, ViewPoint→ {1, -1.9, 1.4}], Graphics3D{Thickness[0.007], Black,

Arrow[{{0, 0, 0}, {-Evaluate[D[Sin[x +Cos[y]], x] /. {x→ 0.88, y→-0.3}],
-Evaluate[D[Sin[x +Cos[y]], y] /. {x→ 0.88, y→-0.3}], 1}} +

{{0.88, -0.3, Sin[0.88 +Cos[-0.3]]}, {0.88, -0.3, Sin[0.88 +Cos[-0.3]]}}]},
{Text[Style["N", 14, FontFamily→ "Arial", Bold, Italic, Black],

{-Evaluate[D[Sin[x +Cos[y]], x] /. {x→ 0.88, y→-0.3}],
-Evaluate[D[Sin[x +Cos[y]], y] /. {x→ 0.88, y→-0.3}], 1} +

{0.88, -0.3, Sin[0.88 +Cos[-0.3]]} + {0.02, 0.03, 0.23}]},
{Thickness[0.007], Blue, Arrow[{{0.88, -0.3, Sin[0.88 +Cos[-0.3]]}, {1.88, -0.5, 2}}]},
TextStyle"W", 14, FontFamily→ "Arial", Bold, Italic, Blue, {2.01, -0.5, 2.01},
{Text[Style["Σ", 14, FontFamily→ "Arial", Italic, Gray], {-2.14, -1.5, 0.7}]};

Export["/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure 2.png",
bb, Background→None, ImageResolution→ 600];

bfg =
Import[
"/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure 2.png"];

bfg = ImageTake[bfg, {290, 1870}, {110, 2920}];
Export[

"/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure 2.png", bfg];

###### Figure2##############################################

###### Figure3##############################################

This code takes approximately 227 seconds.
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In[!]:= Clear["Global`*"];
Needs["NDSolve`FEM`"];

Ω= ImplicitRegion
16

10 000
≤ x2 + y2 + z2 ≤ 16, {x, y, z};

nr = 50; nφ = 50; nθ = 50;

coordinates = Flatten Table{r Sin[φ]Cos[θ], r Sin[φ] Sin[θ], r Cos[φ]}, r,
4

100
, 4, 4 -

4

100
(nr - 1),

φ,
1

10 000
, π -

1

10 000
, π -

2

10 000
(nφ - 1), {θ, 0, 2 π, 2 π/(nθ - 1)}, 2;

incidents = Flatten[Table[Block[{p1 = ( j - 1)*nr + i, p2 = j*nr + i, p3 = p2 + 1, p4 = p1 + 1, p5, p6, p7, p8},
{p5, p6, p7, p8} = {p1, p2, p3, p4} + k*nr*nφ;
{p1, p2, p3, p4} += (k - 1)*nr*nφ;
{p1, p2, p3, p4, p5, p6, p7, p8}], {i, 1, nr - 1}, { j, 1, nφ - 1}, {k, 1, nθ - 1}], 2];

mesh =
ToElementMesh["Coordinates"→ coordinates, "MeshElements"→ {HexahedronElement[incidents]}];

uif =NDSolveValue
∂2ℳ(x, y, z)

∂x2
+

∂2ℳ(x, y, z)

∂ y2
+

∂2ℳ(x, y, z)

∂ z2
-

∂ℳ(x, y, z)

∂x

2

-
∂ℳ(x, y, z)

∂ y

2

-

∂ℳ(x, y, z)

∂ z

2

⩵ 0, DirichletConditionℳ[x, y, z] ⩵ 1 + 2 ⅈ, x2 + y2 + z2⩵
16

10 000
,

DirichletConditionℳ[x, y, z] ⩵ 0, x2 + y2 + z2⩵ 16, ℳ, {x, y, z} ∈mesh;

G1 = SliceDensityPlot3D(Norm[uif[x, y, z]])2, "CenterPlanes", {x, -4, 4}, {y, -4, 4},
{z, -4, 4}, Boxed→ False, Axes→None, ColorFunction→ (Hue[0.65, #1]&),
BoundaryStyle→Directive[Thickness[0.001], Gray], PlotRange→ {0, 5}, PlotPoints→ 100,
Epilog→ Text[Style["a", 23, FontFamily→ "Arial", Bold, Black], {0.2478, 0.93}, {0.5, 4}];

G2 = Plot3D(Norm[uif[x, y, 0]])2, {x, -4, 4}, {y, -4, 4},
PlotRange→ {{-4.52, 4.52}, {-4.52, 4.52}, {-1.7, 5}}, MeshStyle→
{Directive[GrayLevel[0.4], Thickness[0.001]], Directive[GrayLevel[0.4], Thickness[0.001]]},

BoundaryStyle→Directive[Thickness[0.001], Gray], Boxed→ False, Axes→None,
ColorFunction→ (Hue[0.65, #3]&), BoxRatios→Automatic, MeshStyle→Gray,
ImageSize→ {360, 360}, PlotPoints→ 30, ViewPoint→ {1.2, -2, 0.7},
Epilog→ Text[Style["b", 23, FontFamily→ "Arial", Bold, Black], {0.2478, 0.93}, {0.5, 4}];

G3 =DensityPlot(Norm[uif[x, y, 0]])2, {x, -4, 4}, {y, -4, 4}, PlotRange→ {{-7.2, 7.2}, {-7.2, 7.2}, {0, 5}},
ColorFunction→ (Hue[0.65, #1]&), Frame→ False, PlotPoints→ 180,
Epilog→ {Text[Style["c", 23, FontFamily→ "Arial", Bold, Black], {-3.75, 4.24}],

{Directive[Thickness[0.001], Gray], Circle[{0, 0}, 4]}};
G4 = Plot(Norm[uif[x, 0, 0]])2, {x, -4, 4}, PlotRange→ {{-7.3, 7.3}, {-0.95, 6}},

ColorFunction→ (Hue[0.65, #2]&), PlotPoints→ 180, PlotStyle→ {Thickness→ 0.0036},
Frame→ False, Axes→None, AspectRatio→Automatic;

G4 = ShowG4, Plot(Norm[uif[x, 0, 0]])2, {x, -4, 4}, PlotRange→ {{-7.3, 7.3}, {-0.95, 0.9}},
PlotStyle→Directive[GrayLevel[0.66], Thickness→ 0.0036, Dashed],
Frame→ False, Axes→None, AspectRatio→Automatic;

cc =GraphicsGrid[{{G1, G2}, {G3, G4}}, Spacings→ {-70, -70}, ImageSize→ 700,
Epilog→ Text[Style["d", 22, FontFamily→ "Arial", Black, Bold], Scaled[{0.6684, 0.3371}]]];

Export["/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure 3.png",
cc, Background→None, ImageResolution→ 500];

cfg =
Import[
"/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure 3.png"];

cfg = ImageTake[cfg, {570, 4670}, {560, 4300}];
Export[

"/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure 3.png", cfg];
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###### Figure3##############################################

###### Figure4##############################################

This code takes approximately 12 minutes.

In[!]:= Clear["Global`*"];
L = 20;
F[x_] := ⅇ-x;

usol =NDSolveValueⅈ
∂ℳ(x, t)

∂ t
⩵-

1

2
F[ℳ(x, t)]

∂2ℳ(x, t)

∂x2
-

∂ℳ(x, t)

∂x

2

,

ℳ(x, 0) ⩵ 10-13 ⅇ-2 x2 , ℳ(-L, t) ⩵ℳ(L, t), ℳ, {x, -L, L}, {t, 0, 3}, WorkingPrecision→ 66;
F[x_] := ⅇ-x;

vsol =NDSolveValueⅈ
∂ℳ(x, t)

∂ t
⩵-

1

2
F[ℳ(x, t)]

∂2ℳ(x, t)

∂x2
-

∂ℳ(x, t)

∂x

2

,

ℳ(x, 0) ⩵ ⅇ-2 x2 , ℳ(-L, t) ⩵ℳ(L, t), ℳ, {x, -L, L}, {t, 0, 3}, WorkingPrecision→ 20;

wsol =NDSolveValueⅈ
∂ψ(x, t)

∂ t
⩵-

1

2

∂2ψ(x, t)

∂x2
, ψ(x, 0) ⩵ ⅇ-2 x2 , ψ(-L, t) ⩵ ψ(L, t),

ψ, {x, -L, L}, {t, 0, 3}, WorkingPrecision→ 18;
χ[x, t] = {u[x, t], v[x, t]};

σ3 =
1 0
0 -1

; σ1 =
0 1
1 0

;

xsol =NDSolveⅈ D[χ[x, t], t] U -σ1.χ(x, t) - ⅈ σ3.D[χ[x, t], x], u[x, 0] ⩵
2

2
ⅇ-2 x2 , v[x, 0] ⩵

2

2
ⅇ-2 x2 ,

u[L, t] ⩵ u[-L, t], v[L, t] ⩵ v[-L, t], {u, v}, {x, -L, L}, {t, 0, 3}, WorkingPrecision→ 14;

G1 = Plot3D1013 Abs[usol[x, t]], {t, 0, 1.6}, {x, -8, 8}, PlotPoints→ 60,
MaxRecursion→ 3, PlotRange→ {{0, 1.6}, {-8, 8}, {0, 1.05}}, MeshStyle→
{Directive[GrayLevel[0.4], Thickness[0.0014]], Directive[GrayLevel[0.4], Thickness[0.0014]]},

BoundaryStyle→Directive[GrayLevel[0.4], Thickness[0.0014]],
AxesLabel→ {Style["t ", 20, FontFamily→ "Arial", Black, Italic, Bold],

Style["x", 20, FontFamily→ "Arial", Black, Italic, Bold], ""},
AxesStyle→Directive[Black, Thickness→ 0.002], BoxStyle→Directive[Black, Thickness→ 0.002],
Ticks→ {{{0, "0.0"}, {0.5, 0.5, {0.01, 0}, Thickness→ 0.003}, {1.0, "1.0", {0.01, 0}, Thickness→ 0.003},

{1.5, 1.5, {0.01, 0}, Thickness→ 0.003}}, {{-6, -6, {0.011, 0}, Thickness→ 0.003},
{-3, -3, {0.011, 0}, Thickness→ 0.003}, {0, 0, {0.011, 0}, Thickness→ 0.003},
{3, 3, {0.011, 0}, Thickness→ 0.003}, {6, 6, {0.011, 0}, Thickness→ 0.003}},

{{0, "0.0"}, {0.5, 0.5, {0.012, 0}, Thickness→ 0.003}, {1, "1.0", {0.012, 0}, Thickness→ 0.003}}},
LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 20], ViewPoint→ {1, -2, 2.1},
Epilog→ Text[Style["a", 20, FontFamily→ "Arial", Bold, Black], {-0.09, 0.88}, {-1, 1}];

G2 = Plot3D[Abs[vsol[x, t]], {t, 0, 1.6}, {x, -8, 8}, PlotPoints→ 60, MaxRecursion→ 3,
PlotRange→ {{0, 1.6}, {-8, 8}, {0, 1.05}}, MeshStyle→
{Directive[GrayLevel[0.4], Thickness[0.0014]], Directive[GrayLevel[0.4], Thickness[0.0014]]},

BoundaryStyle→Directive[GrayLevel[0.4], Thickness[0.0014]],
AxesLabel→ {Style["t ", 20, FontFamily→ "Arial", Black, Italic, Bold],

Style["x", 20, FontFamily→ "Arial", Black, Italic, Bold], ""},
AxesStyle→Directive[Black, Thickness→ 0.002], BoxStyle→Directive[Black, Thickness→ 0.002],
Ticks→ {{{0, "0.0"}, {0.5, 0.5, {0.01, 0}, Thickness→ 0.003}, {1.0, "1.0", {0.01, 0}, Thickness→ 0.003},

{1.5, 1.5, {0.01, 0}, Thickness→ 0.003}}, {{-6, -6, {0.011, 0}, Thickness→ 0.003},
{-3, -3, {0.011, 0}, Thickness→ 0.003}, {0, 0, {0.011, 0}, Thickness→ 0.003},
{3, 3, {0.011, 0}, Thickness→ 0.003}, {6, 6, {0.011, 0}, Thickness→ 0.003}},

{{0, "0.0"}, {0.5, 0.5, {0.012, 0}, Thickness→ 0.003}, {1, "1.0", {0.012, 0}, Thickness→ 0.003}}},
LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 20], ViewPoint→ {1, -2, 2.1},

];
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In[!]:=

Epilog→ Text[Style["b", 20, FontFamily→ "Arial", Bold, Black], {-0.09, 0.88}, {-1, 1}]];
G3 = Plot3D[Abs[wsol[x, t]], {t, 0, 1.6}, {x, -8, 8}, PlotPoints→ 60, MaxRecursion→ 3,

PlotRange→ {{0, 1.6}, {-8, 8}, {0, 1.05}}, MeshStyle→
{Directive[GrayLevel[0.4], Thickness[0.0014]], Directive[GrayLevel[0.4], Thickness[0.0014]]},

BoundaryStyle→Directive[GrayLevel[0.4], Thickness[0.0014]],
AxesLabel→ {Style["t ", 20, FontFamily→ "Arial", Black, Italic, Bold],

Style["x", 20, FontFamily→ "Arial", Black, Italic, Bold], ""},
AxesStyle→Directive[Black, Thickness→ 0.002], BoxStyle→Directive[Black, Thickness→ 0.002],
Ticks→ {{{0, "0.0"}, {0.5, 0.5, {0.01, 0}, Thickness→ 0.003}, {1.0, "1.0", {0.01, 0}, Thickness→ 0.003},

{1.5, 1.5, {0.01, 0}, Thickness→ 0.003}}, {{-6, -6, {0.011, 0}, Thickness→ 0.003},
{-3, -3, {0.011, 0}, Thickness→ 0.003}, {0, 0, {0.011, 0}, Thickness→ 0.003},
{3, 3, {0.011, 0}, Thickness→ 0.003}, {6, 6, {0.011, 0}, Thickness→ 0.003}},

{{0, "0.0"}, {0.5, 0.5, {0.012, 0}, Thickness→ 0.003}, {1, "1.0", {0.012, 0}, Thickness→ 0.003}}},
LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 20], ViewPoint→ {1, -2, 2.1},
Epilog→ Text[Style["c", 20, FontFamily→ "Arial", Bold, Black], {-0.09, 0.88}, {-1, 1}]];

G4 = Plot3D[Norm[Evaluate[{u[x, t], v[x, t]} /. xsol]], {t, 0, 1.6}, {x, -8, 8}, PlotPoints→ 60,
MaxRecursion→ 3, PlotRange→ {{0, 1.6}, {-8, 8}, {0, 1.05}}, MeshStyle→
{Directive[GrayLevel[0.4], Thickness[0.0014]], Directive[GrayLevel[0.4], Thickness[0.0014]]},

BoundaryStyle→Directive[GrayLevel[0.4], Thickness[0.0014]],
AxesLabel→ {Style["t ", 20, FontFamily→ "Arial", Black, Italic, Bold],

Style["x", 20, FontFamily→ "Arial", Black, Italic, Bold], ""},
AxesStyle→Directive[Black, Thickness→ 0.002], BoxStyle→Directive[Black, Thickness→ 0.002],
Ticks→ {{{0, "0.0"}, {0.5, 0.5, {0.01, 0}, Thickness→ 0.003}, {1.0, "1.0", {0.01, 0}, Thickness→ 0.003},

{1.5, 1.5, {0.01, 0}, Thickness→ 0.003}}, {{-6, -6, {0.011, 0}, Thickness→ 0.003},
{-3, -3, {0.011, 0}, Thickness→ 0.003}, {0, 0, {0.011, 0}, Thickness→ 0.003},
{3, 3, {0.011, 0}, Thickness→ 0.003}, {6, 6, {0.011, 0}, Thickness→ 0.003}},

{{0, "0.0"}, {0.5, 0.5, {0.012, 0}, Thickness→ 0.003}, {1, "1.0", {0.012, 0}, Thickness→ 0.003}}},
LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 20], ViewPoint→ {1, -2, 2.1},
Epilog→ Text[Style["d", 20, FontFamily→ "Arial", Bold, Black], {-0.09, 0.88}, {-1, 1}]];

dd =GraphicsGrid[{{G1, G2}, {G3, G4}}, Spacings→ {Scaled[-0.01], Scaled[-0.01]}, ImageSize→ 700];
Export["/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure 4.png",

dd, Background→None, ImageResolution→ 600];
dfg =

Import[
"/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure 4.png"];

dfg = ImageTake[dfg, {220, 5009}, {120, 5620}];
Export[

"/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure 4.png", dfg];

###### Figure4##############################################

###### Figure5##############################################

This code takes approximately 11 minutes.

Clear["Global`*"];
L = 20;
F[x_] := ⅇ-x;

usol =NDSolveValueⅈ
∂ℳ(x, t)

∂ t
⩵-

1

2
F[ℳ(x, t)]

∂2ℳ(x, t)

∂x2
-

∂ℳ(x, t)

∂x

2

,

ℳ(x, 0) ⩵ 10-13 ⅇ-2 x2 , ℳ(-L, t) ⩵ℳ(L, t), ℳ, {x, -L, L}, {t, 0, 3}, WorkingPrecision→ 66;
F[x_] := ⅇ-x;

vsol =NDSolveValueⅈ
∂ℳ(x, t)

∂ t
⩵-

1

2
F[ℳ(x, t)]

∂2ℳ(x, t)

∂x2
-

∂ℳ(x, t)

∂x

2

,

ℳ(x, 0) ⩵ ⅇ-2 x2 , ℳ(-L, t) ⩵ℳ(L, t), ℳ, {x, -L, L}, {t, 0, 3}, WorkingPrecision→ 20;
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wsol =NDSolveValueⅈ
∂ψ(x, t)

∂ t
⩵-

1

2

∂2ψ(x, t)

∂x2
, ψ(x, 0) ⩵ ⅇ-2 x2 , ψ(-L, t) ⩵ ψ(L, t),

ψ, {x, -L, L}, {t, 0, 3}, WorkingPrecision→ 18;
χ[x, t] = {u[x, t], v[x, t]};

σ3 =
1 0
0 -1

; σ1 =
0 1
1 0

;

xsol =NDSolveⅈ D[χ[x, t], t] U -σ1.χ(x, t) - ⅈ σ3.D[χ[x, t], x], u[x, 0] ⩵
2

2
ⅇ-2 x2 , v[x, 0] ⩵

2

2
ⅇ-2 x2 ,

u[L, t] ⩵ u[-L, t], v[L, t] ⩵ v[-L, t], {u, v}, {x, -L, L}, {t, 0, 3}, WorkingPrecision→ 14;

G1 = Plotⅇ-2 x2 , {x, -3.8, 3.8}, PlotStyle→ {Gray, Thickness→ 0.005, Dashed},
PlotRange→ {{-3, 3}, {-0.02, 1.1}}, Frame→ {{False, False}, {True, False}},
FrameStyle→Directive[Black, Thickness→ 0.002],
AxesStyle→Directive[GrayLevel[0.3], Thickness→ 0.0016], FrameTicks→
{{{-3, -3, {0.01, 0}, Thickness→ 0.003}, {-2, -2, {0.01, 0}, Thickness→ 0.003}, {-1, -1, {0.01, 0},

Thickness→ 0.003}, {0, 0, {0.01, 0}, Thickness→ 0.003}, {1, 1, {0.01, 0}, Thickness→ 0.003},
{2, 2, {0.01, 0}, Thickness→ 0.003}, {3, 3, {0.01, 0}, Thickness→ 0.003}}, {{0, 0}}},

FrameLabel→ {Style["x", 22, FontFamily→ "Arial", Black, Italic, Bold]},
LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 22],
Epilog→ Text[Style["t = 0.0", 22, FontFamily→ "Arial", Black, Bold], Scaled[{0.1, 0.96}]];

datau = Tablex, 1013 Norm[usol[x, 0.2]], {x, -4, 4};
fu =NormalNonlinearModelFitdatau, a Expb x2, {a, b}, x;

σu =NumberFormStandardDeviationProbabilityDistribution
-∞

∞

fu ⅆx
-1
fu, {x, -∞, ∞}, {3, 2};

σv =NumberForm N
-10

10
N 

-10

10
Norm[vsol[x, 0.2]] ⅆx

-1
 x2 Norm[vsol[x, 0.2]] ⅆx , {3, 2};

dataw = Table[{x, Norm[wsol[x, 0.2]]}, {x, -4, 4}];
fw =NormalNonlinearModelFitdatau, a Expb x2, {a, b}, x;

σw =NumberFormStandardDeviationProbabilityDistribution
-∞

∞

fw ⅆx
-1
fw, {x, -∞, ∞}, {3, 2};

σx =NumberFormN
-10

10
N 

-10

10
Norm[Evaluate[{u[x, 0.2], v[x, 0.2]} /. xsol]] ⅆx

-1


x2 Norm[Evaluate[{u[x, 0.2], v[x, 0.2]} /. xsol]] ⅆx, {3, 2};

G2 = Plotⅇ-2 x2 , Callout1013 Norm[usol[x, 0.2]], StringForm["σ = ``", σu], {0.7, 0.64}, {-0.21, 0.83},
CalloutStyle→ {Red, None}, LabelStyle→ {FontFamily→ "Arial", FontSize→ 22, Red},
Background→None, Callout[Norm[vsol[x, 0.2]], StringForm["σ = ``", σv],
{0.7, 1.03}, {0.11, 1.01}, CalloutStyle→ {Blue, None},
LabelStyle→ {FontFamily→ "Arial", FontSize→ 22, Blue}, Background→None],

Callout[Norm[wsol[x, 0.2]], StringForm["σ = ``", σw], {0.7, 0.9}, {0.23, 0.84},
CalloutStyle→ {Orange, None}, LabelStyle→ {FontFamily→ "Arial", FontSize→ 22, Orange},
Background→None], Callout[Norm[Evaluate[{u[x, 0.2], v[x, 0.2]} /. xsol]],
StringForm["σ = ``", σx], {0.7, 0.77}, {0.42, 0.74}, CalloutStyle→ {Green, None},
LabelStyle→ {FontFamily→ "Arial", FontSize→ 22, Green}, Background→None], {x, -3.8, 3.8},

PlotStyle→ {{Gray, Thickness→ 0.005, Dashed}, {Red, Thickness→ 0.005}, {Blue, Thickness→ 0.005},
{Orange, Thickness→ 0.005}, {Green, Thickness→ 0.005}}, PlotRange→ {{-3, 3}, {-0.02, 1.1}},

FrameLabel→ {Style["x", 22, FontFamily→ "Arial", Black, Italic, Bold]},
Frame→ {{False, False}, {True, False}}, FrameStyle→Directive[Black, Thickness→ 0.002],
AxesStyle→Directive[GrayLevel[0.3], Thickness→ 0.0016], FrameTicks→
{{{-3, -3, {0.01, 0}, Thickness→ 0.003}, {-2, -2, {0.01, 0}, Thickness→ 0.003}, {-1, -1, {0.01, 0},

}, , ,
,
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Thickness→ 0.003}, {0, 0, {0.01, 0}, Thickness→ 0.003}, {1, 1, {0.01, 0}, Thickness→ 0.003},
{2, 2, {0.01, 0}, Thickness→ 0.003}, {3, 3, {0.01, 0}, Thickness→ 0.003}}, {{0, 0}}},

Epilog→ Text[Style["t = 0.2", 22, FontFamily→ "Arial", Black, Bold], Scaled[{0.1, 0.96}]];
G2 = Show[G2, LabelStyle→ {FontFamily→ "Arial", 22, GrayLevel[0]}];
datau = Tablex, 1013 Norm[usol[x, 0.4]], {x, -4, 4};
fu =NormalNonlinearModelFitdatau, a Expb x2, {a, b}, x;

σu =NumberFormStandardDeviationProbabilityDistribution
-∞

∞

fu ⅆx
-1
fu, {x, -∞, ∞}, {3, 2};

σv =NumberForm N
-10

10
N 

-10

10
Norm[vsol[x, 0.4]] ⅆx

-1
 x2 Norm[vsol[x, 0.4]] ⅆx , {3, 2};

dataw = Table[{x, Norm[wsol[x, 0.4]]}, {x, -4, 4}];
fw =NormalNonlinearModelFitdatau, a Expb x2, {a, b}, x;

σw =NumberFormStandardDeviationProbabilityDistribution
-∞

∞

fw ⅆx
-1
fw, {x, -∞, ∞}, {3, 2};

dataw = Table[{x, Norm[wsol[x, 0.4]]}, {x, -4, 4}];
fw =NormalNonlinearModelFitdatau, a Expb x2, {a, b}, x;

σw =NumberFormStandardDeviationProbabilityDistribution
-∞

∞

fw ⅆx
-1
fw, {x, -∞, ∞}, {3, 2};

σx =NumberFormN
-10

10
N 

-10

10
Norm[Evaluate[{u[x, 0.4], v[x, 0.4]} /. xsol]] ⅆx

-1


x2 Norm[Evaluate[{u[x, 0.4], v[x, 0.4]} /. xsol]] ⅆx, {3, 2};

G3 = Plotⅇ-2 x2 , Callout1013 Norm[usol[x, 0.4]], StringForm["σ = ``", σu], {0.8, 0.54}, {-0.22, 0.7},
CalloutStyle→ {Red, None}, LabelStyle→ {FontFamily→ "Arial", FontSize→ 22, Red},
Background→None, Callout[Norm[vsol[x, 0.4]], StringForm["σ = ``", σv],
{0.8, 0.93}, {0.157, 0.93}, CalloutStyle→ {Blue, None},
LabelStyle→ {FontFamily→ "Arial", FontSize→ 22, Blue}, Background→None],

Callout[Norm[wsol[x, 0.4]], StringForm["σ = ``", σw], {0.8, 0.67}, {0.23, 0.713},
CalloutStyle→ {Orange, None}, LabelStyle→ {FontFamily→ "Arial", FontSize→ 22, Orange},
Background→None], Callout[Norm[Evaluate[{u[x, 0.4], v[x, 0.4]} /. xsol]],
StringForm["σ = ``", σx], {0.8, 0.8}, {0.14, 0.756}, CalloutStyle→ {Green, None},
LabelStyle→ {FontFamily→ "Arial", FontSize→ 22, Green}, Background→None],

{x, -3.8, 3.8}, PlotStyle→ {{Gray, Thickness→ 0.005, Dashed}, {Red, Thickness→ 0.005},
{Blue, Thickness→ 0.005}, {Orange, Thickness→ 0.005}, {Green, Thickness→ 0.005}},

PlotRange→ {{-3, 3}, {-0.02, 1.1}}, Frame→ {{False, False}, {True, False}},
FrameStyle→Directive[Black, Thickness→ 0.002],
AxesStyle→Directive[GrayLevel[0.3], Thickness→ 0.0016], FrameTicks→
{{{-3, -3, {0.01, 0}, Thickness→ 0.003}, {-2, -2, {0.01, 0}, Thickness→ 0.003}, {-1, -1, {0.01, 0},

Thickness→ 0.003}, {0, 0, {0.01, 0}, Thickness→ 0.003}, {1, 1, {0.01, 0}, Thickness→ 0.003},
{2, 2, {0.01, 0}, Thickness→ 0.003}, {3, 3, {0.01, 0}, Thickness→ 0.003}}, {{0, 0}}},

FrameLabel→ {Style["x", 22, FontFamily→ "Arial", Black, Italic, Bold]},
Epilog→ Text[Style["t = 0.4", 22, FontFamily→ "Arial", Black, Bold], Scaled[{0.1, 0.96}]];

G3 = Show[G3, LabelStyle→ {FontFamily→ "Arial", 22, GrayLevel[0]}];
datau = Tablex, 1013 Norm[usol[x, 0.6]], {x, -4, 4};
fu =NormalNonlinearModelFitdatau, a Expb x2, {a, b}, x;

σu =NumberFormStandardDeviationProbabilityDistribution
-∞

∞

fu ⅆx
-1
fu, {x, -∞, ∞}, {3, 2};

σv =NumberForm N
-10

10
N 

-10

10
Norm[vsol[x, 0.6]] ⅆx

-1
 x2 Norm[vsol[x, 0.6]] ⅆx , {3, 2};
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dataw = Table[{x, Norm[wsol[x, 0.6]]}, {x, -4, 4}];
fw =NormalNonlinearModelFitdatau, a Expb x2, {a, b}, x;

σw =NumberFormStandardDeviationProbabilityDistribution
-∞

∞

fw ⅆx
-1
fw, {x, -∞, ∞}, {3, 2};

dataw = Table[{x, Norm[wsol[x, 0.6]]}, {x, -4, 4}];
fw =NormalNonlinearModelFitdatau, a Expb x2, {a, b}, x;

σw =NumberFormStandardDeviationProbabilityDistribution
-∞

∞

fw ⅆx
-1
fw, {x, -∞, ∞}, {3, 2};

σx =NumberFormN
-10

10
N 

-10

10
Norm[Evaluate[{u[x, 0.6], v[x, 0.6]} /. xsol]] ⅆx

-1


x2 Norm[Evaluate[{u[x, 0.6], v[x, 0.6]} /. xsol]] ⅆx, {3, 2};

G4 = Plotⅇ-2 x2 , Callout1013 Norm[usol[x, 0.6]], StringForm["σ = ``", σu], {1.1, 0.49}, {0.79, 0.52},
CalloutStyle→ {Red, None}, LabelStyle→ {FontFamily→ "Arial", FontSize→ 22, Red},
Background→None, Callout[Norm[vsol[x, 0.6]], StringForm["σ = ``", σv],
{1.1, 0.88}, {0.157, 0.815}, CalloutStyle→ {Blue, None},
LabelStyle→ {FontFamily→ "Arial", FontSize→ 22, Blue}, Background→None],

Callout[Norm[wsol[x, 0.6]], StringForm["σ = ``", σw], {1.1, 0.62}, {0.79, 0.52},
CalloutStyle→ {Orange, None}, LabelStyle→ {FontFamily→ "Arial", FontSize→ 22, Orange},
Background→None], Callout[Norm[Evaluate[{u[x, 0.6], v[x, 0.6]} /. xsol]],
StringForm["σ = ``", σx], {1.1, 0.75}, {0.64, 0.69}, CalloutStyle→ {Green, None},
LabelStyle→ {FontFamily→ "Arial", FontSize→ 22, Green}, Background→None],

{x, -3.8, 3.8}, PlotStyle→ {{Gray, Thickness→ 0.005, Dashed}, {Red, Thickness→ 0.005},
{Blue, Thickness→ 0.005}, {Orange, Thickness→ 0.005}, {Green, Thickness→ 0.005}},

PlotRange→ {{-3, 3}, {-0.02, 1.1}}, Frame→ {{False, False}, {True, False}},
FrameStyle→Directive[Black, Thickness→ 0.002],
AxesStyle→Directive[GrayLevel[0.3], Thickness→ 0.0016], FrameTicks→
{{{-3, -3, {0.01, 0}, Thickness→ 0.003}, {-2, -2, {0.01, 0}, Thickness→ 0.003}, {-1, -1, {0.01, 0},

Thickness→ 0.003}, {0, 0, {0.01, 0}, Thickness→ 0.003}, {1, 1, {0.01, 0}, Thickness→ 0.003},
{2, 2, {0.01, 0}, Thickness→ 0.003}, {3, 3, {0.01, 0}, Thickness→ 0.003}}, {{0, 0}}},

FrameLabel→ {Style["x", 22, FontFamily→ "Arial", Black, Italic, Bold]},
Epilog→ Text[Style["t = 0.6", 22, FontFamily→ "Arial", Black, Bold], Scaled[{0.1, 0.96}]];

G4 = Show[G4, LabelStyle→ {FontFamily→ "Arial", 22, GrayLevel[0]}];
ee =GraphicsGrid{{G1, G2}, {G3, G4}}, ImageSize→ 800, Spacings→ {Scaled[-0.2], Scaled[0.16]},

Epilog→ InsetLineLegend{Directive[Red, Thickness[0.004]], Directive[Blue, Thickness[0.004]],
Directive[Orange, Thickness[0.004]], Directive[Green, Thickness[0.004]]},

Style"Eq. 401", FontFamily→ "Arial", FontSize→ 22, Style"Eq. 402", FontFamily→ "Arial",
FontSize→ 22, Style["Schrödinger", FontFamily→ "Arial", FontSize→ 22],

Style["Dirac", FontFamily→ "Arial", FontSize→ 22], LegendFunction→
(Framed[#, RoundingRadius→ 5, FrameStyle→GrayLevel[0.3]]&), Scaled[{0.5, 1.081}];

Export["/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure 5.png",
ee, Background→None, ImageResolution→ 600];

efg =
Import[
"/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure 5.png"];

efg = ImageTake[efg, {0, 4650}, {260, 6400}];
Export[

"/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure 5.png", efg];

###### Figure5##############################################

###### Figure6##############################################

This code takes approximately 3 hours.
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Clear["Global`*"];
Off[NDSolveValue::eerr];
L = 20;
F[x_] := ⅇ-x;

usol =NDSolveValueⅈ
∂ℳ(x, t)

∂ t
⩵-

1

2
F[ℳ(x, t)]

∂2ℳ(x, t)

∂x2
-

∂ℳ(x, t)

∂x

2

,

ℳ(x, 0) ⩵ 10-13 ⅇ-2 x2 , ℳ(-L, t) ⩵ℳ(L, t), ℳ, {x, -L, L}, {t, 0, 3}, WorkingPrecision→ 66;

vsol =NDSolveValueⅈ
∂ℳ(x, t)

∂ t
⩵-

1

2
F[ℳ(x, t)]

∂2ℳ(x, t)

∂x2
-

∂ℳ(x, t)

∂x

2

, ℳ(x, 0) ⩵ ⅇ-2 x2 ,

ℳ(-L, t) ⩵ℳ(L, t), ℳ, {x, -L, L}, {t, 0, 3}, WorkingPrecision→ 20;

wsol =NDSolveValueⅈ
∂ℳ(x, t)

∂ t
⩵-

1

2
F[ℳ(x, t)]

∂2ℳ(x, t)

∂x2
-

∂ℳ(x, t)

∂x

2

,

ℳ(x, 0) ⩵
6

5
ⅇ-2 x2 , ℳ(-L, t) ⩵ℳ(L, t), ℳ, {x, -L, L}, {t, 0, 3}, WorkingPrecision→ 22;

xsol =NDSolveValueⅈ
∂ℳ(x, t)

∂ t
⩵-

1

2
F[ℳ(x, t)]

∂2ℳ(x, t)

∂x2
-

∂ℳ(x, t)

∂x

2

, ℳ(x, 0) ⩵
7

5
ⅇ-2 x2 ,

ℳ(-L, t) ⩵ℳ(L, t), ℳ, {x, -L, L}, {t, 0, 3}, WorkingPrecision→ 26;

G1 = Plot1013 Norm[usol[0, t]], Norm[vsol[0, t]], FindMaxValue[Norm[vsol[x, t]], {x, 0, 3}],

5

6
Norm[wsol[0, t]], FindMaxValue

5

6
Norm[wsol[x, t]], {x, 0, 3},

5

7
Norm[xsol[0, t]], FindMaxValue

5

7
Norm[xsol[x, t]], {x, 0, 3},

{t, 0, 3}, PlotStyle→ {{Orange, Thickness→ 0.005}, {Green, Thickness→ 0.005},
{Green, Thickness→ 0.005, Dashed}, {Blue, Thickness→ 0.005},
{Blue, Thickness→ 0.005, Dashed}, {Red, Thickness→ 0.005}, {Red, Thickness→ 0.005, Dashed}},

PlotRange→ {{0, 3}, {0, 1.23}}, Frame→ {{True, False}, {True, False}},
FrameStyle→Directive[Black, Thickness→ 0.002], FrameTicks→
{{{0, "0.0"}, {0.5, 0.5, {0.01, 0}, Thickness→ 0.003}, {1.0, "1.0", {0.01, 0}, Thickness→ 0.003},

{1.5, 1.5, {0.01, 0}, Thickness→ 0.003}, {2.0, "2.0", {0.01, 0}, Thickness→ 0.003},
{2.5, "2.5", {0.01, 0}, Thickness→ 0.003}, {3.0, "3.0", {0.01, 0}, Thickness→ 0.003}},

{{0, "0.0"}, {0.2, 0.2, {0.012, 0}, Thickness→ 0.003}, {0.4, "0.4", {0.012, 0}, Thickness→ 0.003},
{0.6, "0.6", {0.012, 0}, Thickness→ 0.003}, {0.8, "0.8", {0.012, 0}, Thickness→ 0.003},
{1.0, "1.0", {0.012, 0}, Thickness→ 0.003}, {1.2, "1.2", {0.012, 0}, Thickness→ 0.003}}},

FrameLabel→ {Style["t", 22, FontFamily→ "Arial", Black, Italic, Bold]},
LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 22];

xv =NArgMax[Norm[vsol[0, t]], {t, 0.1, 0.5}];
xw =NArgMax[Norm[wsol[0, t]], {t, 0.1, 0.5}];
xx =NArgMax[Norm[xsol[0, t]], {t, 0.1, 0.5}];

G2 = Plot1013 Norm[usol[x, 0]], Norm[vsol[x, xv]],
5

6
Norm[wsol[x, xw]],

5

7
Norm[xsol[x, xx]],

{x, -3, 3}, PlotStyle→ {{Orange, Thickness→ 0.005}, {Green, Thickness→ 0.005},
{Blue, Thickness→ 0.005}, {Red, Thickness→ 0.005}}, PlotRange→ {{-3, 3}, {-0.02, 1.23}},

Frame→ {{False, False}, {True, False}}, FrameStyle→Directive[Black, Thickness→ 0.002],
AxesStyle→Directive[GrayLevel[0.3], Thickness→ 0.0012], FrameTicks→
{{{-3, -3, {0.01, 0}, Thickness→ 0.003}, {-2, -2, {0.01, 0}, Thickness→ 0.003}, {-1, -1, {0.01, 0},

Thickness→ 0.003}, {0, 0, {0.01, 0}, Thickness→ 0.003}, {1, 1, {0.01, 0}, Thickness→ 0.003},
{2, 2, {0.01, 0}, Thickness→ 0.003}, {3, 3, {0.01, 0}, Thickness→ 0.003}}, {{0, 0}}},

FrameLabel→ {Style["x", 22, FontFamily→ "Arial", Black, Italic, Bold]},
;
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LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 22];

ff = LabeledGraphicsRow{G1, G2}, ImageSize→ 800, Spacings→ Scaled[0.15],
Epilog→ InsetLineLegend{Directive[Orange, Thickness[0.004]], Directive[Green, Thickness[0.004]],

Directive[Blue, Thickness[0.004]], Directive[Red, Thickness[0.004]]},
Style"10-13 ", FontFamily→ "Arial", FontSize→ 22,
Style["1.0 ", FontFamily→ "Arial", FontSize→ 22], Style["1.2 ", FontFamily→ "Arial",
FontSize→ 22], Style["1.4", FontFamily→ "Arial", FontSize→ 22],

LegendFunction→ (Framed[#, RoundingRadius→ 5, FrameStyle→GrayLevel[0.3]]&),
LegendLayout→ "Row", Scaled[{0.5, 0.8}],

Text[Style[" a b", 22, FontFamily→ "Arial", Bold, Black]],
{{Top, Left}},
Spacings→ {0, -0.3};

Export["/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure 6.png",
ff, Background→None, ImageResolution→ 600];

ffg =
Import[
"/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure 6.png"];

ffg = ImageTake[ffg, {0, 2500}, {180, 6500}];
Export[

"/Users/gotall/Library/Mobile Documents/com~apple~CloudDocs/SPaper/Figures/Figure 6.png", ffg];

###### Figure6##############################################
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