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Abstract 

We derived the Hamiltonian of the source free ( )f R  gravity from its 

Euler-Poisson equation. Interpreting it as energy, we have shown that it 

vanishes for linear Lagrangians in Ricci scalar curvature without source, 

which is the same result, obtained using the stress-energy tensor equation. 
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(1). Introduction 

H. A. Buchdahl, [1] proposed his generalization to the Einstein field 

equations by considering a generalization of the gravitational Lagrangian 

( )Rφ  to be a general function of the Ricci scalar rather than just a linear 

function proportional to the Ricci scalar curvature. Nowadays it is called 

( )f R  gravity. He suggested a Lagrangian functional of the form 

 

( )L Rφ=  (1.0) 

 

Where ( )Rφ  is unspecified. He has given the generalization to the 

Einstein field equations as a tensor equation, which contains derivatives 

of ( )Rφ  with respect to the Ricci scalar as well as derivatives of the Ricci 

scalar with respect to space-time coordinates. 
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(2). Euler-Poisson equation 

The Euler-Poisson equation of a general Lagrangian functional L  is 

derived from the calculus of variation by varying the Lagrangian 

functional with respect to its independent variables and set the variation 

equals to zero which results in following equation [2] 
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With the boundary term given by 
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Which vanishes if qδ  and qδ ɺ  vanish at the two end points 1q  and 2q . 

To derive field equations for any functional of the fundamental metric 

tensor ( )e

mpg x  we make the following change of variables into the Euler-

Poisson equation 
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The Lagrangian of the ( )f R  gravity is 
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Where 

 

, ,( , , ) ( )Gravity ab ab c ab cdL g g g f R=  (2.5) 
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Substituting Eqs. (2.3 - 2.5) in Eq. (2.1), the Euler-Poisson equation of 

the Lagrangian of ( )f R  gravity may be written explicitly as 
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We derived the equation of motion of the ( )f R  gravity using the Euler-

Poisson equation in Eq. (2.6) [9]. 

 

(3). Derivation of the Hamiltonian of the ( )f R  gravity 

From the Euler-Poisson equation for a single particle given in Eq. (2.1), 

we can construct the Hamiltonian using the Legendre transformation 
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Where we have used the notation in the boundary term in Eq. (2.2), in 

which we defined the conjugate momenta ( )q
p  and ( )q

p ɺ  corresponding to 

the conjugate coordinate variable q  and qɺ  respectively. 

The changes in Eq. (2.3) result in changing the following variables: 
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By considering a local coordinate system in which , ( ) 0e

mp sg x =  and for 

which 
,

0
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, the momentum tensor and the Hamiltonian of the 

any Lagrangian functional L  are then given by 
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Substituting ( )L g f R= − , the momentum tensor becomes 

 

( )

( ( ))
, ,

, ,

,

[ ( )]

( ) ( )

[ ]( )
( )

( ) ( )

( )
( ) (0)

( )

e
mp

mps

r e r eg x

mp sr mp sr

r e e

mp sr mp sr

r e

mp sr

g f RL
p

x g x x g x

gf R
g f R

x g x g x

df R R
g f R

x dR g x

   ∂ −∂ ∂ ∂
 = − = −    ∂ ∂ ∂ ∂   

    ∂ −∂ ∂ = − − +       ∂ ∂ ∂     

  ∂ ∂ = − − +   ∂ ∂   

=
,

,

( )

( )

( )
( )

r e

mp sr

Rr e

mp sr

df R R
g

x dR g x

R
g f R

x g x

 ∂ ∂− −  ∂ ∂ 

 ∂ ∂= − −  ∂ ∂ 

 (3.3) 

 

Recall the Ricci scalar R  may written in terms of the metric tensor and its 

partial derivatives by 
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The Ricci scalar in local coordinates like a geodesic coordinate system 

[4], a local inertial frame [5], or a Riemann Normal Coordinate system 

[7], which all are characterized by 
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Where 
abc

Γ  is the Christoffel symbol of the first kind so, the Ricci Scalar 

in Eq. (3.4) may be rewritten as 
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In which the first partial derivate of the metric tensor vanishes. 

Since ( , , , )a b c h are dummy indices ( ≡summed over), the Ricci Scalar 

R  in Eq. (3.7) may as well be rewritten as 
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This is resulting from making the indices changes

 

( , )a c b h→ →  in the 

first term and ( , )a b c h→ → in the second term, respectively. 

To determine the various derivatives in the three terms in the brackets in 

Eq. (2.6) in the Euler-Lagrange equation, we make use of the derivation 

of Einstein field equation from Einstein-Hilbert Lagrangian [4-7] in 

which 
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Implies 

 

abab

R
R

g

∂ =
∂

 (3.11)

 
 

Since we are using the covariant metric tensor ( )e

mpg x , we may transform 

the Eq. (3.11) to be rewritten in terms of the covariant metric tensor as 
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This is resulting from differentiating ab a

bc c
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g . 

We get the result of the derivative of the Ricci scalar with respect to the 

covariant metric tensor as 
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Since we are considering local coordinates in which the Christoffel 

symbols of both kinds and the first derivative of the metric tensor vanish 

and do not appear in R  expression in Eq. (3.8), this gives 
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The derivative of Ricci scalar in Eq. (3.8) with respect to second 

derivative of the metric tensor with respect to the coordinates is given by 
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The results of derivatives in Eqs. (3.14 - 3.16) are needed to derive the 

momentum tensor and the Hamiltonian in a local coordinate system. To 

obtain the momentum tensor we substitute Eqs. (3.14 - 3.16), in Eq. (3.3), 

which yields 

 

( )

( )

( )

( ) ( )

( ( ))
, ,

,

,

,

( ) ( )
( ) ( )

( )
( )

( )

( )
[ ]

( )

( )
( )

( ) (0)

e
mp

mps

R Rr e e rg x

mp sr mp sr

R e r

mp sr

mp sr mr ps

R r

R

e r

mp sr

R mpe r

mp sr mp

R

R R
p g f R g f R

x g x g x x

R
f R g

g x x

g f R g g g g
x

df RR
g R

g x dR x

R
f R g g

g x g x

g f R

 ∂ ∂ ∂ ∂= − − − −  ∂ ∂ ∂ ∂ 

∂ ∂− −
∂ ∂

∂= − − −
∂

∂ ∂− −
∂ ∂

∂ ∂ ∂− −
∂ ∂ ∂

= − − − ( )
( ) ( ) ( )

,

,

, ,

, ,

( )

( ) 0

( ) ( )

( ) ( )

( ) ( )

mp sr mr ps

RR r

mp sr mr ps

R

mp

mp sr mr ps

RR r

mp sr mr ps

r r RR

mp s ps m

RR

g g g g g f R R

f R g g g g g
g

g g g g g f R R

g g g R g g R f R

g g R g R f R

− −

∂− − −
∂

= − − −

= − − −

= − − −

 

(3.17) 



(8) 

 

 

Contracting Eq. (3.17) - by multiplying both sides with 
mp

g , we get the 

momentum vector 
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Then substituting Eq. (3.16) in Eq. (3.19), we get 
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scalar curvature, - so H  becomes  
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This is a local Hamiltonian of the ( )f R  gravity, since it is a scalar; it has 

the same value in any system of coordinates. 

In the dynamics of a closed system of single particle or scalar field the 

Hamiltonian is interpret as the "energy" of the system, we assume that the 

Hamiltonian given in Eq. (3.22) is to the energy of the ( )f R  gravity. 

Now, we prove the Hamiltonian in Eq. (3.22) vanishes for linear 
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(4). Stress-Energy tensor of the Hilbert-Einstein Lagrangian 

The stress-energy momentum tensor of a source field - not including 

gravitational field energy- is defined as [8] 
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Inserting the identity in Eq. (3.11) in Eq. (4.2), we get 
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However, the expression in the bracket in the right hand side in Eq. (4.3) 

is the Einstein field equations in absence of a source of matter and energy 

derived from the variation of the Einstein-Hilbert action. The expression 

vanishes so does the stress-energy tensor in the left hand side of Eq. (4.3)  

 

5. Conclusion 

When the Hamiltonian of source free ( )f R  gravity is interpreted as 

energy it vanishes for linear Lagrangians in Ricci scalar curvature without 

source, which is the same result, obtained using the stress-energy tensor 

equation. 
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