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Summary 

This paper recaps our electron model – including our explanation of the anomaly – and offers some 

reflections on Nature’s fundamental constants. We will also present a theoretical explanation of the 

radius of the Zitterbewegung charge – aka the classical electron radius – using an electromagnetic mass 

calculation. While, in the previous version of the paper, we limited ourselves to a classical (non-

mainstream) explanation of Schwinger’s α/2π factor, we also offer some reflections on a possible 

explanation of the higher-order factors in the anomaly of the magnetic moment of an electron. 
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Introduction 
The idea of a force combines (1) the idea of a charge – a force acts on a charge, right? – and (2) the idea 

of inertia⎯resistance to a change of the state of motion. Logically, this leads one to conclude that a 

charge should have some mass. Why? Because any force on a zero-mass charge would give it infinite 

momentum. A brief look at the (relativistically correct) force law makes this rather obvious: 

𝐅 = m𝑣 ∙ 𝒂 =
d(m𝑣 ∙ 𝒗)

d𝑡
=
d𝐩

d𝑡
 

m𝑣 = γ ∙ m0 =
1

√1 − 𝑣2 𝑐2⁄
∙ m0 

The velocity v in the inertial reference frame (i.e. the reference frame of the object we would be looking 

at) is equal to zero: the Lorentz factor is, therefore, equal to γ = 1, and mv = m0. Hence, if we have a 

finite force F acting on a zero-mass object, its acceleration a has to be infinite so as to yield a finite 0· 

product. It is, therefore, quite nice that our ring current model of an electron yields a non-zero rest mass 

for the pointlike charge inside of the electron. Let us quickly recap the basics of it. 

The anomaly of the electron’s radius 
Most ring current or Zitterbewegung models of an electron assume the pointlike zbw charge is whizzing 

around the center of the zbw oscillation at the speed of light. We think that assumption is a 

mathematical idealization. This is why the anomalous magnetic moment is not an anomaly: the 

assumption that the elementary charge has no dimension or structure whatsoever is bound to result in 

an ‘anomaly’ between our measurements and these ‘good theories’ we have about the structure of 

electrons, photons and protons.1  

Let us do some calculations. Because ħ and c have precisely defined values since the 2019 revision of SI 

units, we can calculate the Compton radius from the mass⎯not approximately, but exactly.2 The 

CODATA value for the electron mass is equal to: 

 
1 Mathematical idealizations are just what they are: we need the math and the mathematical ideas that come with it (including 
the ideas of nothingness and infinity) to describe reality – math was Wittgenstein's ladder to understanding – but Planck’s 
quantum of action, and the finite speed of light, effectively tell us our mathematical ideas are what they are: idealized notions 
we use to describe a reality which is, in the end, quite finite. Something that has no dimension whatsoever probably exists in 
our mind only. As for the notion of a ‘good theory’, we refer to Dirac’s remarks on gauge and renormalization theory. 
2 Note that the radius is inversely proportional to the mass. The Compton radius of a muon-electron or a proton, for example, is 
much smaller than the Compton radius of an electron. As for the term ‘good theories’, this is, obviously, a bit of a cynical 
reference to Dirac’s 1975 comments on renormalization theories: “This so-called 'good theory' involves neglecting infinities 
which appear in its equations, neglecting them in an arbitrary way. This is just not sensible mathematics. Sensible mathematics 
involves neglecting a quantity when it is small – not neglecting it just because it is infinitely great and you do not want it!”  

mailto:jeanlouisvanbelle@outlook.com


2 
 

mCODATA = 9.1093837015(28)10−31 kg 

Based on this, we can calculate a theoretical electron radius based on a ring current model of the 

electron.3 Interpreting c as the tangential velocity of the zbw charge – and also using the Planck-Einstein 

and mass-energy equivalence relation – we get the following theoretical value for the ring current radius 

of an electron: 

𝑎 =
𝑐

ω
=
𝑐ℏ

E
=

𝑐ℏ

m𝑐2
=

ℏ

m𝑐
=
λ𝐶
2π

≈ 0.38616 pm 

This is the Compton radius, and we interpret it as the effective radius for inelastic (Compton) scattering 

of photons. The Compton radius is to be distinguished from the radius of the pointlike zbw charge 

inside, which we will (later) calculate as re = αrC = αħ/mec. We can also calculate the Compton radius 

from the CODATA value for the magnetic moment4: 

μCODATA = 9.2847647043(28)10−24 J·T−1 

Indeed, the magnetic moment is the product of the current and the area of the loop, and the current is 

the product of the elementary charge and the frequency. The frequency is, of course, the velocity of the 

charge divided by the circumference of the loop. Because we assume the velocity of our charge is equal 

to c, we get the following radius value: 

μ = Iπ𝑎2 = qe𝑓π𝑎
2 = qe

𝑐

2π𝑎
π𝑎2 =

qe𝑐

2
𝑎 ⟺ 𝑎 =

2μ

qe𝑐
≈ 0.38666 pm 

We should note that we get a value that is slightly different from the theoretical a = c/ω = ħ/mc radius: 

we have an anomaly. We can confirm this anomaly by re-doing this calculation using the Planck-Einstein 

relation to calculate the frequency:  

μ = Iπ𝑎2 = qe𝑓π𝑎
2 =

qeω𝑎
2

2
⟺ 𝑎 = √

2μ

qeω
= √

2μℏ

qeE
= √

2μℏ

qem𝑐
2
≈ 0.38638 pm 

We again get a slightly different value. These approximate 0.38666 and 0.38638 pm values we get out of 

our radius calculation using the CODATA value for the magnetic moment are slightly larger than the 

theoretical a = ħ/mc value we get based on the mass or the Compton wavelength, which is 0.38616 

pm⎯more or less.5 So, yes, we do have an anomaly.  

Hence, we will want to think of the radius based on the mass or the Compton wavelength as some kind 

of theoretical radius and so we will put it in the denominator. We can write it like we want, with or 

without some subscript: a = aCODATA = am = aλ = aC. In contrast, we will write the radius based on our 

calculation using the magnetic moment as aμ. We can then write the anomaly as6: 

 
3 NIST gives CODATA values for the Compton wavelength of an electron. It also gives a measure of the electron’s classical 
electron radius, which is the Compton radius divided by the fine-structure constant. We will leave it to the reader to verify 
those values against our calculations and reflect about those results. 
4 We should put a minus sign as per the convention but, because we are interested in magnitudes here, we will omit it. It will, 
hopefully, confuse the reader less, rather than more. 
5 We encourage the reader to re-do the calculations so as to arrive at more precise results. 
6 We used the first of the two radii one can calculate from the magnetic moment. The reader can re-do the calculations using 
the second of the two anomalous radii. 
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𝑎μ − 𝑎

𝑎
≈ 0.00115965 ⟺

𝑎μ

𝑎
= 1.00115965… 

You will immediately recognize the anomaly. It is, effectively, equal to about 99.85% of Schwinger’s 

factor: α/2π = 0.00116141… 

The anomaly of the electron’s magnetic moment 
Let us, for good order, also recalculate the anomaly of the magnetic moment. We will follow a slightly 

different presentation than the usual one but you will see the logic is not very different. We first 

calculate a new theoretical value for the magnetic moment using the Compton radius, which we will 

denote as μa. When writing it all out, we get this: 

μ𝑎 = Iπ𝑎
2 = qe𝑓π𝑎

2 = qe
𝑐

2π𝑎
π𝑎2 =

qe𝑐

2
𝑎 =

qe
2m

ℏ ≈ 9.27401…× 10−24 J ∙ T−1 

We can now calculate the anomaly – against the CODATA value – once more7: 

μ𝑎 − μ

μ
= 0.00115965… 

We get the same anomaly⎯not approximately but exactly. That is what we would expect: in the zbw or 

ring current model, the anomaly is not only related to the actual magnetic moment but to the actual 

radius as well. This should not surprise us: the magnetic moment is, of course, proportional to the radius 

of the loop.8 Hence, if the actual magnetic moment differs from the theoretical one, then the actual 

radius must also differ from the theoretical one. 

At this point, the reader may wonder how we get a theoretical value for the magnetic moment. We get 

it from the same ring current model. We can just equate the two formulas we presented for the 

magnetic moment: 

𝑎 = √
2μℏ

qem𝑐
2
   

𝑎 =
2μ

qe𝑐 }
 
 

 
 

⟺ √
2μℏqe

2𝑐2

4μ2qem𝑐
2
= √

ℏqe
2μm

= 1⟺ μ =
qe
2m

ℏ 

The mass of the zbw charge 
Our assumption is that the anomaly is not an anomaly at all. We get it because of our mathematical 

idealizations. We think the assumption that the electron is just a pointlike or dimensionless charge is 

non-sensical: when thinking of what might be going on at the smallest scale of Nature, we should 

abandon these mathematical idealizations: an object that has no physical dimension whatsoever does – 

quite simply – not exist. 

 
7 You should watch out with the minus signs here – and you may want to think why you put what in the denominator – but it all 
works out! 
8 We have a squared radius in the numerator of the formula for the magnetic moment, and a non-squared radius factor in the 
denominator. 
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Likewise, we should not assume that the pointlike zbw charge is whizzing around at exactly the speed of 

light. It can be very near c, but not quite equal to c. Hence, its theoretical rest mass will also be very 

close to zero, but not exactly zero. As a result, we will have some real radius r that is probably not quite 

equal to the Compton radius a = ħ/mc as well. Let us write it all out. What should we put where? The 

greater value – based on the greater radius – should be in the denominator, so we write: 

μ𝑟
μ𝑎
=

qe
2m

ℏ

qe𝑣
2
𝑟
=

ℏ

m ∙ 𝑣 ∙ 𝑟
=
𝑐 ∙ 𝑎

𝑣 ∙ 𝑟
 

Now, we know the anomaly is very nearly equal to 1 + α/2π. Hence, for practical purposes – we think a 

99.85% explanation is pretty good – we may just equate the expression above with 1 + α/2π to get this:  

1 +
α

2π
=
2π + α

2π
=
𝑐 ∙ 𝑎

𝑣 ∙ 𝑟
⟺ 𝑣 ∙ 𝑟 =

2π ∙ 𝑐 ∙ 𝑎

2π + α
=
2π ∙ 𝑐 ∙

ℏ
m𝑐

2π + α
=

ℎ

m(2π + α)
⟺ L = m ∙ 𝑣 ∙ 𝑟 =

ℎ

2π + α
 

So now we need to answer the question: what is the real velocity v and what is the real radius r of our 

zbw charge? We will come to that. We first ask the reader to note something quite essential here: 

Mainstream quantum mechanics assumes angular momentum must come in units of ħ, and mainstream 

physicists think that is a direct implication of – or even an equivalent to – the Planck-Einstein law: E = h·f 

= ħ·ω. The calculation above brings some nuance to this statement: angular momentum does not come 

in exact units of ħ. There is an anomaly, and we think the anomaly is part and parcel of Nature.  

In contrast, we must believe the Planck-Einstein relation to be true⎯not approximately but exactly. 

Hence, we must believe that the frequency f or ω of the Zitterbewegung oscillation is, effectively equal 

to f = E/h or ω = E/ħ, precisely. If we believe that to be true, then the following relations explain the 

anomaly9: 

μ𝑟
μ𝑎
= 1 +

α

2π
=
𝑐 ∙ 𝑎

𝑣 ∙ 𝑟
=
ω ∙ 𝑎2

ω ∙ 𝑟2
=
𝑎2

𝑟2
⟺ 𝑟 =

𝑎

√1 +
α
2π

≈ 0.99942 ∙
ℏ

m𝑐
 

We get a radius that is slightly smaller than the theoretical a = ħ/mc radius. Does that make sense? It 

does: if the real and theoretical frequency are the same, and if the real tangential velocity of our zbw 

charge (v) is slightly smaller than the speed of light (c), then the real radius must be slightly smaller too. 

In fact, the v/c and r/a ratios must be exactly the same, as we can see from the tangential velocity 

formula: 

1 =
ω

ω
=
𝑣 𝑟⁄

𝑐 𝑎⁄
⟺

𝑣

𝑐
=
𝑟

𝑎
 

We can, therefore, calculate the relative velocity as: 

 
9 We are just using the tangential velocity formula here to do the substitution that is being done: c = a·ω and v = r·ω and – yes – 

we assume stable particles respect the Planck-Einstein relation, which we believe to be true⎯as opposed to the quantum-
mechanical theorem in regard to angular momentum which, as mentioned, we believe to be very nearly true. 
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β =
𝑣

𝑐
=
𝑟

𝑎
=

𝑎

𝑎 ∙ √1 +
α
2π

=
1

√1 +
α
2π

≈ 0.99942 

Very nice! Now we can calculate what we wanted to calculate⎯the real rest mass of the pointlike zbw 

charge: 

m0 = √1 − β
2 ∙ mγ = √1 − β

2 ∙
me

2
= √1 −

1

1 +
α
2π

∙
me

2
= √

α

2π + α
∙
me

2
≈ 0.017 ∙ me ≈ 0.034 ∙ mγ 

Hence, we arrive at the conclusion that the rest mass of the pointlike Zitterbewegung charge is equal to 

about 1.7% of the rest mass of the electron (me), or 3.4% of its relativistic mass (mγ). Is this a credible 

result? We think so, but we will let the reader re-do the calculations.  

We also recommend the reader to verify the logic of the calculations because – even for us – this all 

comes across as somewhat bewildering, doesn’t it? For example, while it is quite logical we find an 

effective radius which is slightly smaller than the theoretical radius (r  0.99942·a) – because we also 

find a velocity which is slightly smaller than the theoretical velocity (v  0.99942·c) – we find it weird 

that the approximate 0.38666 and 0.38638 pm values that we got out of our radius calculation using the 

CODATA value for the magnetic moment are slightly larger than the theoretical a = ħ/mc value we get 

based on the mass or the Compton wavelength, which is 0.38616 pm⎯more or less.10 In the section 

below we offer some reflections on this. 

The Planck-Einstein law and the clock speed of the electron 
We based our calculations on the assumption that the Planck-Einstein relation must be true⎯not 

approximately but exactly. To be precise, we wrote that we must believe that the frequency f or ω of 

the Zitterbewegung oscillation is, effectively equal to f = E/h or ω = E/ħ, precisely. This assumption was 

key to calculating the real ring current radius from the anomalous magnetic moment11, for which we 

wrote:  

μ𝑟
μ𝑎
= 1 +

α

2π
=
𝑐 ∙ 𝑎

𝑣 ∙ 𝑟
=
ω ∙ 𝑎2

ω ∙ 𝑟2
=
𝑎2

𝑟2
⟺ 𝑟2 =

𝑎2

1 +
α
2π

⟺ 𝑟 =
𝑎

√1 +
α
2π

 

Using the v/c = r/a equation, we get the same relation between v and c: 

𝑣

𝑐
=
𝑟

𝑎
⟺ 𝑣 =

𝑟𝑐

𝑎
=

𝑎 ∙ 𝑐

𝑎 ∙ √1 +
α
2π

⟺ 𝑣 =
𝑐

√1 +
α
2π

 

This strongly suggests our logic is impeccable: the Planck-Einstein relation is the Planck-Einstein 

relation⎯it is not slightly off! If it would be, we’d have to introduce subscripts and distinguish between 

 
10 We really encourage the reader to re-do our calculations. Perhaps we got the order wrong, or perhaps we should have used a 
different denominator when calculating the anomaly for the radius. The reader who thinks he has a sensible interpretation here 
is welcome to email us: we think our logic is always consistent but it sometimes lead to results we ourselves do not understand 
intuitively! 
11 We briefly checked but we think other calculations did not depend on this assumption. 
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ωa and ωr: a theoretical and an actual (angular) frequency. But so there is no need for it. We can 

calculate the real frequency to double-check that: 

ω𝑟 =
𝑣

𝑟
=

𝑐

√1 +
α
2π

𝑎

√1 +
α
2π

=
𝑐

𝑎
= ω𝑎 

Hence, the Planck-Einstein relation is, effectively, an absolute law. It gives us the clock speed of the 

electron. In fact, in our interpretation of quantum physics12, the Planck-Einstein relation will give you the 

clock speed of any elementary particle. It is, therefore, convenient to write it in this form: 

ω =
E

ℏ
⟺ 𝑓 =

E

ℎ
 

In contrast, we don’t believe that angular momentum must come in exact units of ħ. There is always an 

anomaly: we think it is part and parcel of Nature. This brings us to the next question: we used an 

approximation. Schwinger’s α/2π factor explains about 99.85% of the anomaly only: very good, but not 

good enough. We need some explanation for the remaining 0.15%⎯and preferably in terms of the fine-

structure constant too!  

We will immediately admit we do not have it ready. However, we think we can offer some useful 

reflections on this question, which may or may not offer a good basis for future progress. Before we get 

there, we should say a few words about the classical electron radius which, in our model, is the radius of 

the zbw charge itself. 

An explanation for the classical electron radius 
We think of the classical electron radius as the radius of the zbw charge inside of the electron. The 

CODATA value of the classical electron radius is this: 

rCODATA = 2.8179403262(13)10−15 m 

This value corresponds, more or less13, to the theoretical re = αrC = αħ/mec value when applying the α =
qe
2

4πε0ℏ𝑐
 CODATA definition14: 

𝑟e = α
ℏ

m𝑐
=

qe
2

4πε0ℏ𝑐
∙
𝑐ℏ

m𝑐2
=

qe
2

4πε0m𝑐
2
= 2.81794032666895… fm 

 
12 See our papers on the proton radius (https://vixra.org/abs/2001.0685), or on the nature of light and photons 
(https://vixra.org/abs/2001.0345). 
13 The reader should note the final digits of the two values are different. 
14 The use of point estimates yields a slightly different value but it is well within the standard error. Hence, we consider the 
results to be equivalent. NIST confirms our intuition here: the relative uncertainty on the Compton wavelength and the classical 

electron radius is of the same order: 3 and 4.510−10 respectively. A 50% or 1/2 factor⎯once more! We suspect it’s the ½ factor 
in the effective mass. 

https://vixra.org/abs/2001.0685
https://vixra.org/abs/2001.0345
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Do we think this might be the real radius of the zbw charge at the core of the electron? We do. Richard 

Feynman gets the following interesting formula when calculating the electromagnetic mass or energy of 

a sphere of charge with radius a15: 

U =
1

2

e2

𝑎
=
1

2

qe
2

4πε0

1

𝑟e
=
1

2

qe
2

4πε0

m𝑐

αℏ
=
1

2

qe
2

4πε0

4πε0ℏm𝑐
2

qe
2ℏ

=
1

2
m𝑐2 

In fact, Feynman does not write it like this, but we inserted and used the α =
qe
2

4πε0ℏ𝑐
  and 𝑎 = 𝑟e = α

ℏ

m𝑐
 

identities above. The point is: we get only half of the (rest) energy or (rest) mass of the electron out of 

this assembly. Feynman was puzzled by that ½ factor: where is the other half? He should not have been 

puzzled by it: he is assembling the zbw charge here⎯not the electron as a whole. Hence, the missing 

mass is in the Zitterbewegung or orbital/circular motion of the zbw charge. We can now derive the 

classical electron radius from the formula above: 

U =
1

2

e2

𝑟e
=
1

2

qe
2

4πε0

1

𝑟e
⟺ 𝑟e =

1

2

qe
2

4πε0U
= α

ℏ𝑐

2mγ𝑐
2
= α

ℏ

me𝑐
= α𝑟C 

This is a nice result. Mystery solved? 

Maybe. Maybe not. We did gloss over some rather important details here. Feynman was assembling a 

thin spherical shell of charge here⎯as opposed to a uniformly charged sphere of charge, in which case 

the coefficient becomes 3/5 instead of 1/2.16 So is our zbw charge a thin spherical shell of charge or a 

uniformly charged sphere of charge? Our honest answer is: we don’t know. The formulas suggest the 

former⎯and that makes sense, instinctively: negative charges repel each other, so they are always on 

the outside of a conductor.  

However, perhaps we should not push our classical ideas too far here. There are a few other – more 

important – things that don’t make sense here. First, one should note that Feynman did not include the 

energy we associated with the spin of the zbw charge in this energy calculation. He only calculated 

potential energy when assembling the elementary charge by bringing infinitesimally small charges 

together. This undermines the logic of the derivation above. More importantly, the me/2 mass of our 

zbw charge is relativistic mass in our model: the pointlike zbw charge only acquires its mγ = me/2 mass 

because it is zittering around at (almost) the speed of light. In other words, the ring current model tells 

us most of the energy is kinetic. To be precise, if our calculations are correct, then about 96.6% of the 

mass (or energy) of the zbw charge is kinetic. 

So what can we say? Not all that much, for the time being. We don’t think we managed to fully solve all 

of the quantum-mechanical mysteries. However, we do think that we have a perfectly consistent realist 

interpretation of quantum mechanics here. To be precise, we think we have a theory here which 

explains all of the mysterious intrinsic properties of an electron (its mass, its radius for elastic as well as 

inelastic scattering, and its magnetic moment) using common-sense physics. We, therefore, hope that 

we have managed to convince the reader that the assumption that the electron is just a dimensionless 

charge is non-sensical. When thinking of what might be going on at the smallest scale of Nature, we 

 
15 See: https://www.feynmanlectures.caltech.edu/II_28.html. The basic idea is to ‘assemble’ the elementary charge by bringing 
infinitesimally small charge fractions together. 
16 See: https://www.feynmanlectures.caltech.edu/II_08.html. 

https://www.feynmanlectures.caltech.edu/II_28.html
https://www.feynmanlectures.caltech.edu/II_08.html
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should abandon our mathematical idealizations: an object that has no physical dimension whatsoever 

does – quite simply – not exist. Pointlike and zero-dimension are not the same: the pointlike zbw charge 

has some (tiny) dimension. 

We will now come to the question we raised earlier: how can we explain the remaining 0.15% of the 

anomaly? 

The higher-order factors in the explanation of the anomaly 
Schwinger’s α/2π factor is a very good first-order factor: it explains about 99.85% explanation of the 

measured anomaly. However, we admit that’s good but not good enough, so we write:  

μ𝑎 − μ

μ
=
𝑎μ − 𝑎

𝑎
=
α

2π
+⋯ 

So how can we explain the nth-order factors (n  1) that follow? We have not any detailed calculations 

here, but we think we have an logical explanation. As mentioned earlier, the μ = Iπ𝑟2 = qe𝑓π𝑟
2 =

qe
𝑣

2π𝑟
π𝑟2 =

1

2
qe𝑟𝑣 tells us that the moment is proportional to the radius of the loop, and the factor of 

proportionality is qev/2. Hence, electric charge that is closer to the theoretical a = ħ/mc radius will make 

a proportionally larger contribution to the magnetic moment. Hence, Feynman’s conceptualization of 

the elementary charge – which is the Zitterbewegung charge in our model – as an assembly of 

infinitesimally small charges is useful here, once again. Let us illustrate this point by thinking about the 

physicality of what we are modeling here. We can re-write the equation above as follows17:  

𝑎μ − 𝑎

𝑎
=
α

2π
+⋯⟺ 𝑎μ − 𝑎 = (α +⋯) ∙

𝑎

2π
 

This is a very interesting equation. A priori, one might have expected that the difference between the a = 

ħ/mc Compton radius and the actual radius r would be of the order of α·a. Why? Because α·a is the 

classical electron radius, which explains elastic scattering. We, therefore, think it is, in effect, the actual 

radius of the zbw charge inside of the electron. But we have a 1/2π factor here, and it is rather obvious 

that we cannot explain it away. This 1/2π factor is equal to about 0.16. It makes us think of the concept 

of the effective center of charge, which we used in an earlier attempt to provide a classical explanation 

for the anomalous magnetic moment.18 As we accepted the idea of an effective radius of the zbw 

charge, we think the concept of an effective center of charge still makes sense. However, it obviously 

needs further tuning.  

We will be honest here and admit we had hoped there would be some recursive logic in our electron 

model⎯and it is there! We calculated a so-called real radius of the Zitterbewegung based on the 

definition of the fine-structure constant, but that calculation is based on the idea of the zbw charge 

being pointlike. But then we say that the zbw charge is not pointlike – or not dimension-less. We say it 

has a radius itself: the classical electron radius⎯rather obvious, but we do need to make the point here.  

 
17 We re-write the nth-order factors (n  1) here: we simply multiply them by 2π as we bring the 1/2π factor out of the brackets. 
18 We refer to our very first Classical Calculations of the Anomalous Magnetic Moment (https://vixra.org/abs/1906.0007), which 
we now think of as being useful but too simple. We think of it as being too simple because we were wedded to the idea of the 
zbw charge moving at lightspeed. This model makes much more sense, but it implies we have an actual radius that is actually 

larger than the theoretical a = ħ/mc radius⎯rather than smaller, as we assumed in the mentioned paper. 

https://vixra.org/abs/1906.0007
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It is, therefore, rather obvious – to us: we hope the reader will see the point too – that some small 

corrections to the calculations will need to be made. We think these small corrections must, somehow, 

explain the nth-order factors (n  1) in the mainstream explanation of the anomalous magnetic moment. 

Let us move to the next topic requiring some attention. 

Spin and orbital angular momentum 
All of what we wrote above is related to orbital angular momentum. In an explanation of atomic 

orbitals, we also have the concept of spin angular momentum. It is easy enough to think of a physical 

interpretation of spin versus orbital angular momentum: the assumption that the spin angular 

momentum is related to the zbw charge spinning around its own axis comes quite logically. Thinking 

that the spin angular momentum may also be either up or down also comes quite logically. The 

question, then, is: what is the contribution of such spin angular moment to the magnetic moment? 

All of what we have discussing above is, obviously, related to the orbital angular momentum of the ring 

current electron. We did not consider spin angular momentum. A priori, we would think its contribution 

to the magnetic moment would be very small⎯infinitesimally small, perhaps. Indeed, the magnetic 

moment of any circulating, orbiting or spinning charge is inversely proportional to the radius. Hence, if 

the radius of the zbw charge is of the order of α times the Compton radius, then its contribution to the 

magnetic moment should be of the order of 1/α. Oliver Consa (2018) took a bit of an engineering 

approach and calculated this contribution using an alternative interpretation of the ring electron model. 

He refers to it as the Helical Electron Model.19 The basic assumptions are the following: 

1. All of the electron’s charge is concentrated in a single infinitesimal point, which is referred to as 

the center of charge, and which rotates at the speed of light around a point in space called the 

center of mass. 

2. As it moves around the center of mass (CM), the center of charge (CC) follows a helical path. 

These two hypotheses are best illustrated in Fig. 3 and 4 of his paper, which we copy below so as to 

illustrate the main ideas. 

Figure 1: Consa’s Helical Electron Model (toroidal versus poloidal currents) 

 

 
19 Oliver Consa, Helical Solenoid Model of the Electron, in: Progress in Physics, Volume 14, Issue 2 (April 2018). See: 
http://www.ptep-online.com/2018/PP-53-06.PDF. 

http://www.ptep-online.com/2018/PP-53-06.PDF
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We find the argument very interesting but somewhat contradictory.20 Consa assumes the zbw charge 

moves around the center at the speed of light. However, he forgets that leaves no room for any motion 

in any other direction: lightspeed is lightspeed. Things cannot move any faster. Hence, we feel Consa 

falls in the same trap as mainstream physicists: he assumes a pointlike charge that has no dimension 

whatsoever. The calculations are interesting though, because it is easy to think of the toroidal current as 

a spherical charge that is just spinning around its own axis. As such, Consa’s model should be 

mathematically equivalent to ours. To make a long story short, Consa obtains the following result: 

1

2
(
𝑟 ∙ N

R
)
2

=
α

2π
 

The N, R and r in this equality are the number of loops (N), the diameter of the ring (R) and its thickness 

(r) respectively. Hence, Consa’s result is great: he gets Schwinger’s factor (/2π) from a very classical 

calculation. We just need to think of what is what here. We assume the r/R ratio to be equal to equal to 

α, i.e. the ratio of the Thomson and Compton radius of an electron. Substituting this value, we get the 

following hypothetical formula: 

1

2
(α ∙ N)2 =

α

2π
⟺ N =

1

√απ
≈ 6.6 

We find it hard to make sense of this result. One would expect the zbw charge to turn around like once 

or twice⎯some integral number: not some number that incorporates π or 1/α or some square root of 

an irrational number. At the same time, we feel Consa is doing something right here because we do not 

get a totally non-sensical number here: the order of magnitude is right on. Hence, we should probably 

leave this question open as for now by quoting Feynman when doing the same kind of back-of-the-

envelope calculations on the Bohr radius of an atom:21:  

“We need not trust our answer to within factors like 2, π, etc. We have not even defined a very 

precisely.” 

To be precise, we think that Consa – as a result of mathematical idealizations – might have gotten a 

1/απ factor wrong. But perhaps not. The right order of magnitude is there, and we feel it should 

explain previously unexplained quantum-mechanical phenomena such as the Lamb shift in the hydrogen 

spectrum.  

Spin and orbital angular momentum (2) 
Let us approach the issue from another angle by doing another classical calculation. We can, effectively, 

calculate the orbital angular momentum of the zbw charge rotating around the center of the ring 

current using the angular mass formula for a hoop: I = m·r2. If we use the effective mass of the zbw 

charge, we get what mainstream physicists will want to see⎯an angular momentum that is equal to 

ħ/2. We write22: 

 
20 For a more detailed analysis of Consa’s argument, see our paper on it (https://vixra.org/abs/2001.0264).  
21 See: https://www.feynmanlectures.caltech.edu/III_02.html#Ch2-S4. 
22 The reader should not confuse the two symbols: I is angular mass or rotational inertia, while I denotes electric current. Note 
that we use the theoretical values for radius and velocity, i.e. the Compton radius and the speed of light.  

https://vixra.org/abs/2001.0264
https://www.feynmanlectures.caltech.edu/III_02.html#Ch2-S4
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L =  Iω = mγ𝑎
2
𝑐

𝑎
=
me𝑟𝑐

2
=
meℏ𝑐

2me𝑐
=
ℏ

2
 

Hurrah! The electron comes out of as a spin-1/2 particle! Personally, we are not so excited. It’s nice we 

see some kind of bridge with the mainstream interpretation of quantum physics, but we actually do not 

think the very general distinction between bosons and fermions (the distinction between spin-1/2 and 

spin-1 particles) is useful. 23 So we will happily cheer along but we are more interested in a related but 

more essential question: how should we calculate the other spin number⎯the spin of our zbw charge, 

which we’ll denote as S? 

We made an effort in the previous section but – to speak very frankly – we don’t know. The spin around 

its own axis has a different symmetry axis and the formula for the angular mass of a sphere or spherical 

shell involves different form factors: I = (3/5)·m·r2 or I = (2/3) ·m·r2, to be precise. Hence, we should 

probably not try to add things here. In any case, we cannot directly measure angular momentum: the 

only thing we can measure is the magnetic moment, which is either up or down, and its magnitude is 

the above-mentioned CODATA value⎯not more or less but pretty precisely so. So what can we say, 

then? Not too much, probably. However, the following guesstimates may be useful. 

1. The considerations and calculations in the previous section show the contribution of the spin angular 

momentum to the magnetic moment of the electron must be very small: the radius of the zbw charge is 

much smaller, and the spin velocity cannot be much faster than the orbital v  0.99942·c velocity, can it? 

Even if we equate the spin velocity to c, the contribution of spin to the measured magnetic moment of 

the electron will only be of the same order as the ratio between the classical electron radius and the 

Compton radius, which is equal to α  0.0073, which is less than 1%. 

2. If we denote this contribution as , and if we equate the main contribution from the orbital angular 

momentum to the magnetic moment to 1, then we get the following matrix24: 

zbw spin vs. ring current clockwise (up)25 counterclockwise (down) 

up 1 +   1 − 1 +   −1 

down 1 −   1 − 1 −   −1 

 

This matrix shows the electron – when doing a Stern-Gerlach experiment – should appear to be in two 

states: its magnetic moment will be either up (+1) or down (−1). However, a finer measurement might 

 
23 The L = m ∙ 𝑣 ∙ 𝑟 =

ℎ

2π+α
 formula we derived must shock mainstream physicists. It does not only violate conventional wisdom 

– angular momentum should come in exact units of ħ or ħ/2, shouldn’t it? – but it also challenges the assumption of an electron 
being a spin-1/2 particle. As for the latter objection, we are afraid we have never come across a decent explanation of what this 

magical spin-1/2 property actually means⎯and then we mean an explanation in terms of plain common-sense physics. Not in 
terms of theoretical boson-fermion distinctions, for which we see neither empirical evidence nor theoretical need.   
24 Wikipedia offers a confusing but – as far as we can see – also quite consistent explanation for the addition of spin and orbital 
angular momenta. See: https://en.wikipedia.org/wiki/Vector_model_of_the_atom. 
25 What is clockwise or counterclockwise depends on your reference frame, but that is the same for defining up or down. If we 
look from the opposite direction, both up and down as well as clockwise as well counterclockwise will swap their definition. 
Hence, the reference frame doesn’t matter here. The same reasoning applies to the definition of what’s up or down in regard to 
the plane of the circulation of the zbw charge. 

https://en.wikipedia.org/wiki/Vector_model_of_the_atom
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reveal a split of these two states. The split will be very fine⎯in line with the secondary structure of 

hydrogen spectrum lines, we would guess. 

We am not aware of any measurements having been made here. In fact, it is curious but it seems actual 

Stern-Gerlach experiments are usually done with much heavier stable particles, like potassium atoms.26 

It is strange because this is a very testable prediction of the ring current electron model: we should have 

a finer split of the two main spots where the electron should hit the detector after going through the 

magnetic field of a Stern-Gerlach apparatus. We are confident this finer split must be there⎯even if we 

know we may be making a fool of ourselves asserting this: after a zillion repetitions of the experiment, it 

could not have escaped attention, could it? 

[…] 

We have been doing very difficult things so now is time, perhaps, to sit back a bit and engage in some 

philosophy. Let us first think about units and constants. We will then also say something about the 

Uncertainty Principle and, to conclude, about the essence of the electron model itself. 

The fundamental units of physics 
Indeed, all of the results above are very wonderful⎯too wonderful, perhaps.27 We may relate them to a 

more philosophical question: what is fundamental in Nature? In other words, what are first principles, 

and what can be derived from them?  

The Planck-Einstein relation tells us that Planck’s constant (h) reflects a fundamental cycle in Nature⎯so 

that is very fundamental, indeed! We also consider the absolute speed of light (c) to be another 

fundamental fact. From these two, we get the idea of a force. Indeed, the physical dimension of Planck’s 

constant is a force over some distance during some time (F·Δs·Δt). Hence, combining h and c, we could 

define a natural unit for the force, based on whatever natural unit we would want to choose for distance 

and time⎯say, the second for time and the light-second for distance, although smaller units would be 

much more convenient at the sub-atomic scale.28 

As mentioned, the idea of a force combines two ideas: it acts on a charge, but the charge must have 

some inertia to a change in its state of motion. Otherwise, we get nonsense as we, hopefully, managed 

to demonstrate in our introduction to this paper. 

The first idea – a force acting on a charge – may be used to define a natural unit for the charge which, in 

this case, is the electric charge.29 The second idea would define a natural mass unit. For the first, it is 

 
26 See, for example, the MIT’s lab experiment for students: http://web.mit.edu/8.13/www/JLExperiments/JLExp18.pdf. 
27 We sent this to two very distinguished physicists whose names we won’t reveal out of respect. We will just mention that both 
have done highly relevant work in the area of measuring the (electric) charge radius of the proton. To their credit, both 
bothered to react. One reacted by saying he finds this ‘interesting’. The other reacted in the same manner but added that 
(some of the calculations) looked a bit like ‘numerology’. We, obviously, do not take the last comment very seriously. We 
believe our calculations are very real: no quantum-mechanical hocus-pocus here!  
28 The only requirement for a natural distance and time unit is that the speed of light as expressed in these units should equal 
unity: c = 1. Hence, our choice for such units will involve some idea of scale. In mathematical terms, these units would all be 
equivalent because they differ by a proportionality constant only. There is a natural constant relating various scales: the fine-
structure constant. We will come back to this. 
29 We wrote about the idea of a strong charge in our previous papers as part of our calculations of the electromagnetic radius of 

a proton (4ħ/mc  0.841 fm). Indeed, something must explain the extraordinarily small radius and, likewise, the extraordinarily 
large mass of a proton (the radius is inversely proportional to the mass in the ring current model). We may, therefore, want to 

http://web.mit.edu/8.13/www/JLExperiments/JLExp18.pdf
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quite obvious that the charge of an electron – which is nothing but the zbw charge inside – would be the 

right choice. For the second, we may briefly wonder whether we shouldn’t consider the mass of the zbw 

charge, but the sensible answer here is obvious: we can only measure the mass of the electron and, 

hence, the mass of the electron should probably be our natural mass unit as well. 

Apart from ħ and c, we also have the fine-structure constant α. How can we define it? The answer is: we 

cannot. We can only measure it from the anomalies and from the finer structure of the hydrogen 

spectrum. Both are related, even if these interrelations are, obviously, not self-evident.  

Of course, while we can (probably) not define its numerical value, we may try to explain what it is. We 

have done so using our ring current model – not only for the electron itself but also for electron orbitals. 

These analyses lead us to characterize the fine-structure constant as a scaling constant but, as evident 

from our previous papers30, it scales various physical dimensions⎯not only the dimensions in space! 

The nature of the Uncertainty Principle 
Is there any room for the Uncertainty Principle in our analysis? There is. We like to think of Planck’s 

constant as a vector. Indeed, the force in the F·Δs·Δt must have some direction. This direction may 

wander around. This is equivalent to saying that the plane of the ring current evolves in time which, of 

course, also means that the direction of the magnetic moment is changing all of the time. When a 

magnetic field is being applied, the electron snaps into place, so to speak.31 

However, we have no idea of how exactly the angle of the plane of the Zitterbewegung or rotary motion 

of the charge could change: we cannot think of some obvious clue here. If we could, we would not 

hesitate to further develop this paper. However, it is, for us, not a priority to develop some answer to 

this question. Why not? Because it doesn’t matter: we do not need to explain anything here. About half 

of the electrons that are entering a Stern-Gerlach apparatus will have their spin up, more or less, and 

the other half will have it down. The magnetic field then, somehow, snaps them into place. Of course, 

the reader will object to such reasoning: there should be some inertia here too, isn’t it? 

We cannot say much to that, except the obvious: apparently, there is no inertia here. Why? We don’t 

know. All we can say is that it is a direct consequence of the Planck-Einstein relation. The question is 

related to the next: what keeps the current going, and what keeps the charge in its orbit? 

What keeps the charge in its orbit? 
It is an obvious question: what keeps the ring current going? It is related to the other obvious questions: 

what keeps the zbw charge in its orbit, and why does the energy not radiate away? Here also, we can 

only provide exploratory or speculative answers. Most current ring or Zitterbewegung theorists – think 

of David Hestenes and others – think the ring current generates the magnetic field that keeps it going. 

As such, they compare it to a superconducting ring of current.  

 
think of a fundamental oscillation of some other charge – a strong charge – to explain the extra mass. This idea would lead to a 
distinction between the idea of an electromagnetic mass and the idea of a strong mass. However, we are very reluctant to 
engage in such theory because we would like to think of other theoretical models here. We may, for example, want to think 
that the electromagnetic oscillation might have different modes or higher harmonics. We are inspired here by the fact that the 

ring current model is easily applicable to the heavier variant of the electron⎯the muon. 
30 See our paper on the meaning of the fine-structure constant (https://vixra.org/abs/1812.0273). 
31 We obviously also think of the Larmor precession as an actual or real precessional motion of the zbw charge. 

https://vixra.org/abs/1812.0273
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We like this comparison and then we do not. We like it because a superconducting ring of current also 

keeps going without radiating any energy away. However, we also note superconduction is being 

explained in a very different way in mainstream mechanics: the explanation involves Bose condensation 

and (Cooper) pairs of electrons. We are quite mystified by that. At the same time, we did seem to be 

able to offer common-sense explanations for quite a few quantum-mechanical mysteries now (the 

physical meaning of the wavefunction, the wavelike behavior and interference of electrons and photons, 

the anomalous magnetic moment, the proton radius, etcetera). Hence, we may be able to explain 

superconductivity in some easier way one day too!  

However, we have a second objection: it would seem a superconducting ring can have any radius. In 

contrast, the electron has only one specific Compton radius, and there is nothing that keeps the charge 

in its orbit. We think of that puzzle as a real ‘fine-tuning problem’. So far, we can only make sense of it 

by assuming our two-dimensional oscillator model32 is, somehow, more fundamental than what I’ll refer 

to as Hestenes’ ‘superconduction’ model. We get our ‘perpetuum mobile’ – so to speak – directly from 

(i) accepting Einstein’s mass-energy equivalence relation (E = m·c2) for what it is, (ii) interpreting c as the 

tangential velocity of the zbw charge33 (c = a·ω), and (iii)  the Planck-Einstein relation (E = ħ·ω): 

𝑎 =
𝑐

ω
=

𝑐ℏ

m𝑐2
=

ℏ

m𝑐
=
λ𝐶
2π

≈ 0.386159268…  pm 

We admit it is still mysterious, but it is the best we’ve got. All the rest – most of the Standard Model, 

that is34 – looks even more mysterious to us. It looks like a remake of the intellectual battle between 

Ptolemaic and Copernican models: both yield results, but one is significantly simpler than the other. 

History will decide which model wins. Until that day, we should just try to heed Wittgenstein’s advice:  

“Wovon man nicht sprechen kann, darüber muß man schweigen.” 

Jean Louis Van Belle, 25 February 2020 

 
32 See: https://vixra.org/pdf/1905.0521v4.pdf. 
33 We also referred to the zbw charge as a naked charge: it has no properties except its charge. It has, therefore, zero rest mass 
and that is why it moves around at lightspeed: the slightest force on it will cause an infinite acceleration. 
34 We think of the Higgs field here, for example. In our model, a charge comes with a (tiny) mass. No need for hocus-pocus! 

https://vixra.org/pdf/1905.0521v4.pdf

