Diffraction Optics for EUV Microscopy and Lithography

- Actinic Inspection/Metrology/Defect-review/Alignment
- Maskless EUV Lithography
- Holographic Mask-Projection EUV Lithography

Spot-Array Imaging*: Schematic Concept

Advantages:

- Simple microlenses (large, low-NA)
- Accessible focal plane
 - Spatial filtering of stray light, flare
 - MEMS shutter modulators
- Aberration compensation

- * "Maskless EUV lithography, an alternative to e-beam" (JM3 2019)
- "Maskless EUV Lithography" (2019 EUVL Workshop)

"Application of EUV Diffraction Optics for Actinic Mask Inspection and Metrology"

(2018 EUVL Workshop)

Aberration Compensation

Spot-Scanning Microscopy (e.g. inspection, alignment)

Apps:

- Mask inspection (ABMI/APMI): potential order-of-magnitude improvement in phase sensitivity over darkfield, focus scan
- Alignment: alternative to imaging, grating diffraction; potentially smaller alignment targets

EUV Diffractive Microlenses*

Lens zone pattern

Phase-Fresnel lens → λ/NA multilevel

e.g., 6-level:

 λ =13.5nm: ~150 nm Mo (pattern depth) / 50 nm Si (substrate) λ =6.7nm: ~340 nm La (pattern depth) / 50 nm B4C (substrate) ~50% efficiency

Binary-optic zone-plate lens (2-level)

 λ =13.5nm: ~89 nm Mo (pattern) / 50 nm Si (substrate) λ =6.7nm: ~210 nm La (pattern) / 50 nm B4C (substrate) ~30% efficiency

 * <u>Fabrication and performance of transmission engineered molybdenum-rich phase structures in the EUV regime</u> (CXRO 2017); <u>X-ray Fresnel Zone Plate</u> (NTT product specs); <u>Blazed X-ray Optics</u> (Paul Scherrer Inst.); <u>Double-sided zone plates</u> (Paul Scherrer Inst.)

EUV Diffractive Lenses: Chromatic Aberration

Achromatic EUV lens (Schupmann doublet)

EUV Maskless Scanner (13.5 nm, 0.55 NA)

Comparison with e-beam (mask writing)

	IMS multibeam*	Maskless EUVL**
Resolution	11 nm HP	8 to 10 nm HP
Writing grid step	5 nm	4 nm
Throughput	10 h/mask	2.5 to 5 h/mask
Exposure dose	100 μC/cm² (~10 mJ/cm²)	800 mJ/cm ² : flood 58 mJ/cm ² : isolated point, at peak (12.9-nm FWHM) 202 mJ/cm ² : isolated line, at peak (12.9-nm FWHM)

* E. Platzgummer, C. Klein, and H. Loeschner, "<u>Electron multibeam technology for mask and wafer writing at 0.1 nm address grid</u>," J. Micro/Nanolithogr. MEMS MOEMS 12(3), 031108 (2013).

** Kenneth C. Johnson, "Maskless EUV lithography, an alternative to e-beam," J. Micro/Nanolith. MEMS MOEMS 18(4), 043501 (2019).

Diffractive Projection Optics

singlet microlens array (Chromatic correction in M2) 83 µm

Diffractive projection optics,

0.09-NA, 24 phase zones, minimum zone width ~150 nm (for Ø 15- μ m lens)

0.045-NA, 12 phase zones, Minimum zone width ~300 nm (for Ø 15- μ m lens)

332 µm

M2 grating construction

Chromatic aberration from 24-zone microlenses can be corrected with 24-zone diffractive mirror.

Deposit ~40-50 Mo/Si bilayers for λ =13.5nm (or ~200 B/La for 6.7nm):

~6 mm minimum

Stepped vs smooth M2 grating surface

Holographic mask-projection EUV lithography

"holographic" (diffractive) mask*

Step-and-repeat with apodized field stitching

64 mask fields per die

8×8 field pattern is periodically tiled over full wafer.

Mask layout options

16 fields per mask:

Opportunities for Diffraction Optics in Nanofabrication

- Actinic EUV mask inspection/metrology: Potential order-of-magnitude improvement in phase sensitivity
- Maskless EUV lithography
 - Mask writing: High dose, high throughput
 - Wafer writing: Preproduction development for EUV HVM
- Mask-projection lithography (holographic) @ 6.7 nm
 - Normal incidence \rightarrow minimal 3D effects
 - High dose
 - Aberration correction \rightarrow simpler, more efficient projection optics
 - Minimal defect sensitivity
 - Neutralize mask 3D effects (?)
- Potential spin-off applications (DUV/VIS, laboratory microscopy, photonic crystals and metamaterials, ...)