Analyzing two Ramanujan formulas: mathematical connections with various equations concerning some sectors of Black Holes ad Wormholes Physics III

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

The purpose of this paper is to show how using certain mathematical values and / or constants from two Ramanujan expressions, we obtain some mathematical connections with equations of various sectors of Black Holes and Wormholes Physics

[^0]

Monster black hole 100,000 times more massive than the sun is found in the heart of our galaxy (SMBH Sagittarius $\mathrm{A}=1,9891 * 10^{35}$)
https://www.seeker.com/space/astronomy/new-class-of-black-hole-100000-times-larger-than-the-sun-detected-in-milky-way

(N.O.A - Pics. from the web)

From: Manuscript Book 2 of Srinivasa Ramanujan

page 101

$\left(\left(\mathrm{e}^{\wedge}\left(\left(\mathrm{Pi}^{\wedge} 2\right) / 24\right)\right)\right)(2 \mathrm{Pi})^{\wedge}(1 / 2 \ln 2 \mathrm{Pi})$

Input:

$\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}$

Exact result:

$e^{\pi^{2} / 24}(2 \pi)^{1 / 2 \log (2 \pi)}$

Decimal approximation:

8.167228090774159013444084972779671581805396045609743636831...
8.167228090774159.....

Alternate form:

$e^{\pi^{2} / 24}(2 \pi)^{1 / 2(\log (2)+\log (\pi))}$

Alternative representations:

$\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}=\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{\log _{e}(2 \pi / / 2}$
$\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}=\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (a) \log _{a}(2 \pi)}$

Series representations:

$\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}=e^{\pi^{2} / 24}(2 \pi)^{1 / 2\left(\log (-1+2 \pi)-\sum_{k=1}^{\infty}\left(\frac{1}{1-2 \pi}\right)^{k} / k\right)}$
$\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}=$
$e^{\pi^{2} / 24}(2 \pi)^{\left.1 / 2(2 i \pi \operatorname{lag}(2 \pi-x)(2 \pi)]+\log (x)-\sum_{k=1}^{\infty}\left((-1)^{k}(2 \pi-x)^{k} x^{-k}\right) / k\right)}$ for $x<0$
$\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}=$
$e^{\pi^{2} / 24}(2 \pi)^{\left.1 / 2\left(\log \left(z_{0}\right)+\left\lfloor\arg \left(2 \pi-z_{0}\right)\right)(2 \pi)\right]\left(\log \left(1 / z_{0}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty}\left((-1)^{k}\left(2 \pi-z_{0}\right)^{k} z_{0}^{k}\right) / k\right)}$

Integral representations:

$\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}=e^{\pi^{2} / 24}(2 \pi)^{1 / 2} \int_{1}^{2 \pi} 1 / t d t$
$\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}=e^{\pi^{2} / 24}(2 \pi)^{-i /(4 \pi) \int_{-i \infty}^{i \infty+\gamma}\left(\left((-1+2 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)\right) / \Gamma(1-s) d s\right.}$ for $-1<\gamma<0$
$1 / 5\left(\left(\exp \left(\left(\mathrm{Pi}^{\wedge} 2\right) / 24\right)\right)\right)(2 \mathrm{Pi})^{\wedge}(1 / 2 \ln (2 \mathrm{Pi}))+11 * 1 / 10^{\wedge} 3$

Input:

$\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}+11 \times \frac{1}{10^{3}}$

Exact result:

$\frac{11}{1000}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{1 / 2 \log (2 \pi)}$

Decimal approximation:

1.644445618154831802688816994555934316361079209121948727366...
$1.6444456181548318 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Alternate forms:

$$
\begin{aligned}
& \frac{11}{1000}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{1 / 2(\log (2)+\log (\pi))} \\
& \frac{11+25 e^{\pi^{2} / 24} 2^{3+1 / 2 \log (2 \pi)} \pi^{1 / 2 \log (2 \pi)}}{1000} \\
& \frac{11+25 e^{\pi^{2} / 24} 2^{3+\log (2) / 2+\log (\pi) / 2} \pi^{\log (2) / 2+\log (\pi) / 2}}{1000}
\end{aligned}
$$

Alternative representations:

$\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}+\frac{11}{10^{3}}=\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{\log _{e}(2 \pi / 2}+\frac{11}{10^{3}}$
$\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}+\frac{11}{10^{3}}=\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (\alpha) \log (2 \pi)}+\frac{11}{10^{3}}$

Series representations:

$$
\begin{aligned}
& \frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}+\frac{11}{10^{3}}=\frac{11}{1000}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{1 / 2\left(\log (-1+2 \pi)-\sum_{k=1}^{\infty}\left(\frac{1}{1-2 \pi}\right)^{k} / k\right)} \\
& \frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}+\frac{11}{10^{3}}= \\
& \frac{11}{1000}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{\left.1 / 2(2 i \pi\lfloor\arg (2 \pi-x))(2 \pi)]+\log (x)-\sum_{k=1}^{\infty}\left((-1)^{k}(2 \pi-x)^{k} x^{-k}\right) / k\right)} \text { for } x<0 \\
& \frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}+\frac{11}{10^{3}}= \\
& \frac{11}{1000}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{\left.1 / 2\left(\log \left(z_{0}\right)+\left\lfloor\arg \left(2 \pi-z_{0}\right)\right)(2 \pi)\right]\left(\log \left(11 / z_{0}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty}\left((-1)^{k}\left(2 \pi-z_{0}\right)^{k} z_{0}^{k}\right) / k\right)}
\end{aligned}
$$

Integral representations:

$\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}+\frac{11}{10^{3}}=\frac{11}{1000}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{1 / 2} \int_{1}^{2 \pi} 1 / t d t$
$\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}+\frac{11}{10^{3}}=$

$$
\frac{11}{1000}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{-i /(4 \pi) \int_{-i \infty}^{i \infty+\gamma}\left((-1+2 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)\right) / \Gamma(1-s) d s} \text { for }-1<\gamma<0
$$

$1 / 10^{\wedge} 27 *\left(\left(\left(1 / 5\left(\left(\exp \left(\left(\mathrm{Pi}^{\wedge} 2\right) / 24\right)\right)\right)(2 \mathrm{Pi})^{\wedge}(1 / 2 \ln (2 \mathrm{Pi}))+(34+5) * 1 / 10^{\wedge} 3\right)\right)\right)$

Input:

$\frac{1}{10^{27}}\left(\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}+(34+5) \times \frac{1}{10^{3}}\right)$

Exact result:

$\frac{\frac{39}{1000}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{1 / 2 \log (2 \pi)}}{1000000000000000000000000}$

Decimal approximation:

$1.6724456181548318026888169945559343163610792091219487 \ldots \times 10^{-27}$
$1.67244561815 \ldots * 10^{-27}$ result practically equal to the proton mass

Alternate forms:

$\frac{\frac{39}{1000}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{1 / 2(\log (2)+\log (\pi))}}{1000000000000000000000000000}$
$\frac{39}{1000000000000000000000000000000}+\frac{e^{\pi^{2} / 24} 2^{1 / 2 \log (2 \pi)-27} \pi^{1 / 2 \log (2 \pi)}}{37252902984619140625}$

1000000000000000000000000000000

Alternative representations:

$\frac{\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}+\frac{34+5}{10^{3}}}{10^{27}}=\frac{\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{\log _{e}(2 \pi) / 2}+\frac{39}{10^{3}}}{10^{27}}$

$$
\frac{\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}+\frac{34+5}{10^{3}}}{10^{27}}=\frac{\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (a) \log _{a}(2 \pi)}+\frac{39}{10^{3}}}{10^{27}}
$$

Series representations:

$$
\begin{aligned}
& \frac{\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}+\frac{34+5}{10^{3}}}{10^{27}}=\frac{\frac{39}{1000}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{1 / 2\left(\log (-1+2 \pi)-\sum_{k=1}^{\infty}\left(\frac{1}{1-2 \pi}\right)^{k} / k\right)}}{1000000000000000000000000000} \\
& \frac{\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}+\frac{34+5}{10^{3}}}{10^{27}}= \\
& \frac{\frac{39}{1000}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{\left.1 / 2(2 i \pi \operatorname{lag}(2 \pi-x)(2 \pi)]+\log (x))-\sum_{k=1}^{\infty}\left((-1)^{k}(2 \pi-x)^{k} x^{-k}\right) / k\right)}}{1000000000000000000000000000} \text { for } x<0 \\
& \frac{\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}+\frac{34+5}{10^{3}}}{10^{27}}= \\
& \frac{\frac{39}{1000}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{\left.1 / 2\left(\log \left(z_{0}\right)+\left\lfloor\arg \left(2 \pi-z_{0}\right)\right)(2 \pi)\right] \log \left(1 / z_{0}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty}\left((-1)^{k}\left(2 \pi-z_{0} k^{k} z_{0}^{-k}\right) / k\right)}}{1000000000000000000000000000}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}+\frac{34+5}{10^{3}}}{10^{27}}=\frac{39+25 \times 2^{3+1 / 2} \int_{1}^{2 \pi} 1 / t d t}{} e^{\pi^{2} / 24} \pi^{1 / 2} \int_{1}^{2 \pi} 1 / t d t \\
& \frac{\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}+\frac{34+5}{10^{3}}}{10^{27}}= \\
& \frac{\frac{39}{1000}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{-i /(4 \pi)} \int_{-i \infty+\gamma}^{i \infty+\gamma}\left((-1+2 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)\right) / \Gamma(1-s) d s}{10000000000000000000000000000000000000} \text { for }-1<\gamma<0
\end{aligned}
$$

Input:

$\frac{1}{10^{19}}\left(\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}-(34-3) \times \frac{1}{10^{3}}\right)$

Exact result:

$\frac{\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{1 / 2 \log (2 \pi)}-\frac{31}{1000}}{10000000000000000000}$

Decimal approximation:

$1.6024456181548318026888169945559343163610792091219487 \ldots \times 10^{-19}$
$1.60244561815483 \ldots * 10^{-19}$ result practically equal to the value to the elementary charge

Alternate forms:

$\frac{\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{1 / 2(\log (2)+\log (\pi))}-\frac{31}{1000}}{10000000000000000000}$
$\frac{e^{\pi^{2} / 24} 2^{1 / 2 \log (2 \pi)-19} \pi^{1 / 2 \log (2 \pi)}}{95367431640625}-\frac{31}{10000000000000000000000}$
$\frac{25 e^{\pi^{2} / 24} 2^{3+1 / 2 \log (2 \pi)} \pi^{1 / 2 \log (2 \pi)}-31}{1000000000000000000000}$

Alternative representations:

$$
\begin{aligned}
& \frac{\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}-\frac{34-3}{10^{3}}}{10^{19}}=\frac{\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{\log _{e}(2 \pi) / 2}-\frac{31}{10^{3}}}{10^{19}} \\
& \frac{\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}-\frac{34-3}{10^{3}}}{10^{19}}=\frac{\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (a) \log _{a}(2 \pi)}-\frac{31}{10^{3}}}{10^{19}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}-\frac{34-3}{10^{3}}}{10^{19}}=\frac{-\frac{31}{1000}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{1 / 2\left(\log (-1+2 \pi)-\sum_{k=1}^{\infty}\left(\frac{1}{1-2 \pi}\right)^{k} / k\right)}}{10000000000000000000} \\
& \frac{\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}-\frac{34-3}{10^{3}}}{10^{19}}= \\
& \frac{-\frac{31}{1000}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{\left.1 / 2(2 i \pi \operatorname{lag}(2 \pi-x)(2 \pi)]+\log (x)-\sum_{k=1}^{\infty}\left((-1)^{k}(2 \pi-x)^{k} x^{-k}\right) / k\right)}}{10000000000000000000} \text { for } x<0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\frac{1}{5}}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}-\frac{34-3}{10^{3}}} \\
& \frac{10^{19}}{-\frac{31}{1000}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{1 / 2\left(\log \left(z_{0}\right)+\left\lfloor\arg \left(2 \pi-z_{0}\right) /(2 \pi)\right\rfloor\left(\log \left(1 / z_{0}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty}\left((-1)^{k}\left(2 \pi-z_{0}\right)^{k} z_{0}^{-k}\right) / k\right)}} \\
& 10000000000000000000
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}-\frac{34-3}{10^{3}}}{10^{19}}=\frac{-31+25 \times 2^{3+1 / 2} \int_{1}^{2 \pi} 1 / t d t}{} e^{\pi^{2} / 24} \pi^{1 / 2} \int_{1}^{2 \pi} 1 / t d t \\
& \frac{\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}-\frac{34-3}{10^{3}}}{10^{19}}= \\
& \frac{-\frac{31}{1000}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{-i /(4 \pi)} \int_{-i \infty+\gamma}^{i \infty+\gamma}\left((-1+2 \pi)^{-5} \Gamma(-s)^{2} \Gamma(1+s)\right) / \Gamma(1-s) d s}{100000000000000000} \\
& \text { for }-1<\gamma<0
\end{aligned}
$$

Input:

$\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}-(11+4) \times \frac{1}{10^{3}}$
$\log (x)$ is the natural logarithm

Exact result:

$\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{1 / 2 \log (2 \pi)}-\frac{3}{200}$

Decimal approximation:

$1.618445618154831802688816994555934316361079209121948727366 \ldots$
$1.61844561815483 \ldots .$. result that is a very good approximation to the value of the golden ratio 1,618033988749...

Alternate forms:

$\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{1 / 2(\log (2)+\log (\pi))}-\frac{3}{200}$
$\frac{1}{200}\left(5 e^{\pi^{2} / 24} 2^{3+1 / 2 \log (2 \pi)} \pi^{1 / 2 \log (2 \pi)}-3\right)$
$\frac{1}{200}\left(5 e^{\pi^{2} / 24} 2^{3+\log (2) / 2+\log (\pi) / 2} \pi^{\log (2) / 2+\log (\pi) / 2}-3\right)$

Alternative representations:

$\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}-\frac{11+4}{10^{3}}=\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{\log _{e}(2 \pi) / 2}-\frac{15}{10^{3}}$
$\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}-\frac{11+4}{10^{3}}=\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (a) \log _{a}(2 \pi)}-\frac{15}{10^{3}}$
$\log _{b}(x)$ is the base- b logarithm

Series representations:

$$
\begin{aligned}
& \frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}-\frac{11+4}{10^{3}}=-\frac{3}{200}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{1 / 2\left(\log (-1+2 \pi)-\sum_{k=1}^{\infty}\left(\frac{1}{1-2 \pi}\right)^{k} / k\right)} \\
& \frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}-\frac{11+4}{10^{3}}= \\
& \quad-\frac{3}{200}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{\left.1 / 2(2 i \pi \arg (2 \pi-x)(2 \pi)]+\log (x)-\sum_{k=1}^{\infty}\left((-1)^{k}(2 \pi-x)^{k} x^{-k}\right) / k\right)} \text { for } x<0 \\
& \frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}-\frac{11+4}{10^{3}}= \\
& -\frac{3}{200}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{1 / 2\left(\log \left(z_{0}\right)+\arg \left(2 \pi-z_{0}\right)((2 \pi)]\left(\log \left(1 / z_{0}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty}\left((-1)^{k}\left(2 \pi-z_{0}\right)^{k} z_{0}^{k}\right) / k\right)}
\end{aligned}
$$

Integral representations:

$\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}-\frac{11+4}{10^{3}}=-\frac{3}{200}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{1 / 2} \int_{1}^{2 \pi} 1 / t d t$
$\frac{1}{5} \exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}-\frac{11+4}{10^{3}}=$

$$
-\frac{3}{200}+\frac{1}{5} e^{\pi^{2} / 24}(2 \pi)^{-i /(4 \pi) \int_{-i \infty+\gamma}^{i \infty+\gamma}\left((-1+2 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)\right) / \Gamma(1-s) d s} \text { for }-1<\gamma<0
$$

$1010^{*} 1 /\left(\left(\left(\left(\left(\exp \left(\left(\mathrm{Pi}^{\wedge} 2\right) / 24\right)\right)\right)(2 \mathrm{Pi})^{\wedge}(1 / 2 \ln (2 \mathrm{Pi}))\right)\right)\right)+$ sqrt3
where 1010 is in the following Ramanujan expression (Ramanujan taxicab numbers):
$791^{3}+812^{3}=1010^{3}-1$
$1010=\left(1+791^{\wedge} 3+812^{\wedge} 3\right)^{\wedge} 1 / 3$

Thence:
$\left(1+791^{\wedge} 3+812^{\wedge} 3\right)^{\wedge} 1 / 3^{*} 1 /\left(\left(\left(\left(\left(\exp \left(\left(\mathrm{Pi}^{\wedge} 2\right) / 24\right)\right)\right)(2 \mathrm{Pi})^{\wedge}(1 / 2 \ln (2 \mathrm{Pi}))\right)\right)\right)+$ sqrt 3

Input:

$\sqrt[3]{1+791^{3}+812^{3}} \times \frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}+\sqrt{3}$
$\log (x)$ is the natural logarithm

Exact result:

$\sqrt{3}+505 e^{-\pi^{2} / 24} 2^{1-1 / 2 \log (2 \pi)} \pi^{-1 / 2 \log (2 \pi)}$

Decimal approximation:

125.3970187470480415667978421155190314138214151057746339643.
125.397018747..... result very near to the dilator mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Figs boson mass 125.18 GeV

Alternate forms:

$$
\begin{aligned}
& \sqrt{3}+505 e^{-\pi^{2} / 24} 2^{1-\log (2) / 2-\log (\pi) / 2} \pi^{-\log (2) / 2-\log (\pi) / 2} \\
& e^{-\pi^{2} / 24}(2 \pi)^{-1 / 2 \log (2 \pi)}\left(1010+\sqrt{3} e^{\pi^{2} / 24}(2 \pi)^{1 / 2 \log (2 \pi)}\right) \\
& \sqrt{3}+505 e^{-\pi^{2} / 24} 2^{1+1 / 2(-\log (2)-\log (\pi))} \pi^{1 / 2(-\log (2)-\log (\pi))}
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{\sqrt[3]{1+791^{3}+812^{3}}}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}+\sqrt{3}=\frac{\sqrt[3]{1+791^{3}+812^{3}}}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{\log _{e}(2 \pi) / 2}}+\sqrt{3} \\
& \frac{\sqrt[3]{1+791^{3}+812^{3}}}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}+\sqrt{3}=\frac{\sqrt[3]{1+791^{3}+812^{3}}}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (a) \log _{a}(2 \pi)}}+\sqrt{3}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\sqrt[3]{1+791^{3}+812^{3}}}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}+\sqrt{3}=e^{-\pi^{2} / 24}(2 \pi)^{-1 / 2 \log (-1+2 \pi)} \\
& \left(505 \times 2^{1+1 / 2} \sum_{k=1}^{\infty}\left(\frac{1}{1-2 \pi}\right)^{k} / k{ }_{\pi}{ }^{1 / 2} \sum_{k=1}^{\infty}\left(\frac{1}{1-2 \pi}\right)^{k} / k+\sqrt{3} e^{\pi^{2} / 24}(2 \pi)^{1 / 2 \log (-1+2 \pi)}\right) \\
& \frac{\sqrt[3]{1+791^{3}+812^{3}}}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}+\sqrt{3}=e^{-\pi^{2} / 24}(2 \pi)^{-i \pi[\arg (2 \pi-x)(2 \pi)]-\log (x) / 2} \\
& \left(505 \times 2^{1+1 / 2} \sum_{k=1}^{\infty}\left((-1)^{k}(2 \pi-x)^{k} x^{-k}\right) / k \pi^{1 / 2} \sum_{k=1}^{\infty}\left((-1)^{k}(2 \pi-x)^{k} x^{-k}\right) / k+\right. \\
& \left.\sqrt{3} e^{\pi^{2} / 24}(2 \pi)^{i \pi \arg (2 \pi-x)((2 \pi)]+\log (x) / 2}\right) \text { for } x<0 \\
& \begin{array}{c}
\frac{\sqrt[3]{1+791^{3}+812^{3}}}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}+\sqrt{3}=e^{-\pi^{2} / 24}(2 \pi)^{\left.-1 / 2 \log \left(z_{0}\right)-1 / 2 \arg \left(2 \pi-z_{0}\right) /(2 \pi)\right\rfloor\left(\log \left(1 / z_{0}\right)+\log \left(z_{0}\right)\right)} \\
\left(505 \times 2^{1+1 / 2 \sum_{k=1}^{\infty}\left((-1)^{k}\left(2 \pi-z_{0}\right)^{k} z_{0}^{-k}\right) / k} \pi^{1 / 2 \sum_{k=1}^{\infty}\left((-1)^{k}\left(2 \pi-z_{0}\right)^{k} z_{0}^{k}\right) / k}+\right. \\
\left.\sqrt{3} e^{\pi^{2} / 24}(2 \pi)^{\log \left(z_{0}\right) / 2+1 / 2\left\lfloor\arg \left(2 \pi-z_{0}\right) /(2 \pi)\right\rfloor\left(\log \left(1 / z_{0}\right)+\log \left(z_{0}\right)\right)}\right)
\end{array}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{\sqrt[3]{1+791^{3}+812^{3}}}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}+\sqrt{3}= \\
& e^{-\pi^{2} / 24}(2 \pi)^{-1 / 2} \int_{1}^{2 \pi} 1 / t d t \\
& \left(1010+\sqrt{3} e^{\pi^{2} / 24}(2 \pi)^{1 / 2 \int_{1}^{2 \pi} 1 / t d t}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sqrt[3]{1+791^{3}+812^{3}}}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}+\sqrt{3}= \\
& e^{-\pi^{2} / 24}\left(\sqrt{3} e^{\pi^{2} / 24}+505 \times 2^{1+i /(4 \pi) \int_{-i \infty+\gamma}^{i \infty+\gamma}\left((-1+2 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)\right) / \Gamma(1-s) d s}\right. \\
& \left.\pi^{i /(4 \pi) \int_{-i \infty+\gamma}^{i \infty+\gamma}\left((-1+2 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)\right) / \Gamma(1-s) d s}\right) \text { for }-1<\gamma<0
\end{aligned}
$$

$\left(1+791^{\wedge} 3+812^{\wedge} 3\right)^{\wedge} 1 / 3^{*} 1 /\left(\left(\left(((\exp ((\mathrm{Pi} \wedge 2) / 24)))(2 \mathrm{Pi})^{\wedge}(1 / 2 \ln (2 \mathrm{Pi}))\right)\right)\right)^{+s q r t 8+13}$

Input:

$$
\sqrt[3]{1+791^{3}+812^{3}} \times \frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}+\sqrt{8}+13
$$

$\log (x)$ is the natural logarithm

Exact result:

$13+2 \sqrt{2}+505 e^{-\pi^{2} / 24} 2^{1-1 / 2 \log (2 \pi)} \pi^{-1 / 2 \log (2 \pi)}$

Decimal approximation:

139.4933950642253543708737732224325552040179536027181494826 .
139.493395064..... result practically equal to the rest mass of Pion meson 134.9766 MeV

Alternate forms:

$13+2 \sqrt{2}+505 e^{-\pi^{2} / 24} 2^{1-\log (2) / 2-\log (\pi) / 2} \pi^{-\log (2) / 2-\log (\pi) / 2}$
$13+2 \sqrt{2}+505 e^{-\pi^{2} / 24} 2^{1+1 / 2(-\log (2)-\log (\pi))} \pi^{1 / 2(-\log (2)-\log (\pi))}$
$e^{-\pi^{2} / 24}(2 \pi)^{-1 / 2 \log (2 \pi)}\left(1010+e^{\pi^{2} / 24} 2^{3 / 2+1 / 2 \log (2 \pi)} \pi^{1 / 2 \log (2 \pi)}+13 e^{\pi^{2} / 24}(2 \pi)^{1 / 2 \log (2 \pi)}\right)$

Alternative representations:

$$
\frac{\sqrt[3]{1+791^{3}+812^{3}}}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}+\sqrt{8}+13=13+\frac{\sqrt[3]{1+791^{3}+812^{3}}}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{\log _{e}(2 \pi) / 2}}+\sqrt{8}
$$

$$
\frac{\sqrt[3]{1+791^{3}+812^{3}}}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}+\sqrt{8}+13=13+\frac{\sqrt[3]{1+791^{3}+812^{3}}}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (a) \log _{a}(2 \pi)}}+\sqrt{8}
$$

Series representations:

$$
\begin{aligned}
& \frac{\sqrt[3]{1+791^{3}+812^{3}}}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}+\sqrt{8}+13= \\
& e^{-\pi^{2} / 24}(2 \pi)^{-1 / 2 \log (-1+2 \pi)}\left(2^{3 / 2+1 / 2 \log (-1+2 \pi)} e^{\pi^{2} / 24} \pi^{1 / 2 \log (-1+2 \pi)}+\right. \\
& \left.505 \times 2^{1+1 / 2 \sum_{k=1}^{\infty}\left(\frac{1}{1-2 \pi}\right)^{k} / k}{ }_{\pi}^{1 / 2 \sum_{k=1}^{\infty}\left(\frac{1}{1-2 \pi}\right)^{k} / k}+13 e^{\pi^{2} / 24}(2 \pi)^{1 / 2 \log (-1+2 \pi)}\right) \\
& \frac{\sqrt[3]{1+791^{3}+812^{3}}}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}+\sqrt{8}+13=e^{-\pi^{2} / 24}(2 \pi)^{-i \pi \arg (2 \pi-x) /(2 \pi)\rfloor-\log (x) / 2} \\
& \left(2^{3 / 2+i \pi\lfloor\arg (2 \pi-x) /(2 \pi)\rfloor+\log (x) / 2} e^{\pi^{2} / 24} \pi^{i \pi\lfloor\arg (2 \pi-x) /(2 \pi)\rfloor+\log (x) / 2}+\right. \\
& 505 \times 2^{1+1 / 2 \sum_{k=1}^{\infty}\left((-1)^{k}(2 \pi-x)^{k} x^{-k}\right) / k} \pi^{1 / 2 \sum_{k=1}^{\infty}\left((-1)^{k}(2 \pi-x)^{k} x^{-k}\right) / k}+ \\
& \left.13 e^{\pi^{2} / 24}(2 \pi)^{i \pi\lfloor\arg (2 \pi-x) /(2 \pi)\rfloor+\log (x) / 2}\right) \text { for } x<0 \\
& \frac{\sqrt[3]{1+791^{3}+812^{3}}}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}+\sqrt{8}+13= \\
& e^{-\pi^{2} / 24}(2 \pi)^{\left.-1 / 2 \log \left(z_{0}\right)-1 / 2 \arg \left(2 \pi-z_{0}\right) /(2 \pi)\right\rfloor\left(\log \left(1 / z_{0}\right)+\log \left(z_{0}\right)\right)} \\
& \left(2^{3 / 2+\log \left(z_{0}\right) / 2+1 / 2\left\lfloor\arg \left(2 \pi-z_{0}\right) /(2 \pi)\right\rfloor\left(\log \left(1 / z_{0}\right)+\log \left(z_{0}\right)\right)}\right. \\
& e^{\pi^{2} / 24} \pi^{\log \left(z_{0}\right) / 2+1 / 2\left\lfloor\arg \left(2 \pi-z_{0}\right) /(2 \pi)\right\rfloor\left(\log \left(1 / z_{0}\right)+\log \left(z_{0}\right)\right)}+ \\
& 505 \times 2^{1+1 / 2 \sum_{k=1}^{\infty}\left((-1)^{k}\left(2 \pi-z_{0}\right)^{k} z_{0}^{-k}\right) / k} \pi^{1 / 2 \sum_{k=1}^{\infty}\left((-1)^{k}\left(2 \pi-z_{0}\right)^{k} z_{0}^{-k}\right) / k}+ \\
& \left.13 e^{\pi^{2} / 24}(2 \pi)^{\log \left(z_{0}\right) / 2+1 / 2\left\lfloor\arg \left(2 \pi-z_{0}\right) /(2 \pi)\right\rfloor\left(\log \left(1 / z_{0}\right)+\log \left(z_{0}\right)\right)}\right)
\end{aligned}
$$

Integral representations:

$$
\left.\begin{array}{l}
\frac{\sqrt[3]{1+791^{3}+812^{3}}}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}+\sqrt{8}+13=e^{-\pi^{2} / 24}(2 \pi)^{-1 / 2} \int_{1}^{2 \pi} 1 / t d t \\
\quad\left(1010+2^{3 / 2+1 / 2} \int_{1}^{2 \pi} 1 / t d t\right. \\
e^{\pi^{2} / 24} \pi^{1 / 2} \int_{1}^{2 \pi} 1 / t d t \\
\quad 13 e^{\pi^{2} / 24}(2 \pi)^{1 / 2} \int_{1}^{2 \pi} 1 / t d t
\end{array}\right)
$$

$$
\begin{aligned}
& \frac{\sqrt[3]{1+791^{3}+812^{3}}}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}+\sqrt{8}+13= \\
& e^{-\pi^{2} / 24}\left(13 e^{\pi^{2} / 24}+2 \sqrt{2} e^{\pi^{2} / 24}+505 \times 2^{1+i /(4 \pi) \int_{-i \infty+\gamma}^{i \infty+\gamma}\left((-1+2 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)\right) / \Gamma(1-s) d s}\right. \\
& \left.\pi^{i /(4 \pi) \int_{-i \infty+\gamma}^{i \infty+\gamma}\left((-1+2 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)\right) / \Gamma(1-s) d s}\right) \text { for }-1<\gamma<0
\end{aligned}
$$

$\left.6 \ln \left(\left(((\exp ((\mathrm{Pi} \wedge 2) / 24)))(2 \mathrm{Pi})^{\wedge}(1 / 2 \ln (2 \mathrm{Pi}))\right)\right)\right)$

Input:

$6 \log \left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)$

Exact result:

$6 \log \left(e^{\pi^{2} / 24}(2 \pi)^{1 / 2 \log (2 \pi)}\right)$

Decimal approximation:

$12.60077743397260478105221031419608739434580285170838080087 \ldots$
12.60077743 result very near to the black hole entropy 12.5664

Alternate forms:

$6\left(\frac{\pi^{2}}{24}+\frac{1}{2}(\log (2)+\log (\pi))^{2}\right)$
$\frac{\pi^{2}}{4}+3\left(\log ^{2}(2)+\log (\pi) \log (4 \pi)\right)$
$\frac{\pi^{2}}{4}+3 \log ^{2}(2)+\log (\pi)(\log (64)+3 \log (\pi))$

Alternative representations:

$6 \log \left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)=6 \log _{e}\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)$
$6 \log \left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)=6 \log (a) \log _{a}\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)$

Series representations:

$6 \log \left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)=$
$6 \log \left(-1+e^{\pi^{2} / 24}(2 \pi)^{1 / 2 \log (2 \pi)}\right)-6 \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{-1+e^{\pi^{2} / 24}(2 \pi)^{1 / 2 \log (2 \pi)}}\right)^{k}}{k}$
$6 \log \left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)=12 i \pi\left[\frac{\arg \left(e^{\pi^{2} / 24}(2 \pi)^{1 / 2 \log (2 \pi)}-x\right)}{2 \pi}\right]+$

$$
6 \log (x)-6 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(e^{\pi^{2} / 24}(2 \pi)^{1 / 2 \log (2 \pi)}-x\right)^{k} x^{-k}}{k} \text { for } x<0
$$

$6 \log \left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)=$

$$
12 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+6 \log \left(z_{0}\right)-6 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(e^{\pi^{2} / 24}(2 \pi)^{1 / 2 \log (2 \pi)}-z_{0}\right)^{k} z_{0}^{-k}}{k}
$$

Integral representations:

$6 \log \left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)=6 \int_{1}^{e^{\pi^{2} / 24}(2 \pi)^{1 / 2 \log (2 \pi)}} \frac{1}{t} d t$

$$
\begin{aligned}
& 6 \log \left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)= \\
& \quad-\frac{3 i}{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\left(-1+e^{\pi^{2} / 24}(2 \pi)^{1 / 2 \log (2 \pi)}\right)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
\end{aligned}
$$

We note that:

$$
\left.8+((3 \pi) / 2-8 / \pi)\left(\left(\left(\left(\left(\exp \left(\left(\mathrm{Pi}^{\wedge} 2\right) / 24\right)\right)\right)\right)(2 \mathrm{Pi})^{\wedge}(1 / 2 \ln (2 \mathrm{Pi}))\right)\right)\right)^{\wedge}(2 \mathrm{e})
$$

Input:

$$
8+\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)^{2 e}
$$

Exact result:

$8+e^{\left(e \pi^{2}\right) / 12}\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)(2 \pi)^{e \log (2 \pi)}$

Decimal approximation:

196883.8594170949388885780813427654669997355011537993536876
196883.859417.... 196884 is a fundamental number of the following j-invariant

$$
j(\tau)=q^{-1}+744+196884 q+21493760 q^{2}+864299970 q^{3}+20245856256 q^{4}+\cdots
$$

(In mathematics, Felix Klein's j-invariant or j function, regarded as a function of a complex variable τ, is a modular function of weight zero for $\operatorname{SL}(2, Z)$ defined on the upper half plane of complex numbers. Several remarkable properties of j have to do with its q expansion (Fourier series expansion), written as a Laurent series in terms of $q=e^{2 \pi i t}$ (the square of the nome), which begins:

$$
j(\tau)=q^{-1}+744+196884 q+21493760 q^{2}+864299970 q^{3}+20245856256 q^{4}+\cdots
$$

Note that j has a simple pole at the cusp, so its q-expansion has no terms below q^{-1}. All the Fourier coefficients are integers, which results in several almost integers, notably Ramanujan's constant:

$$
e^{\pi \sqrt{163}} \approx 640320^{3}+744
$$

The asymptotic formula for the coefficient of q^{n} is given by

$$
\frac{e^{4 \pi \sqrt{n}}}{\sqrt{2} n^{3 / 4}},
$$

as can be proved by the Hardy-Littlewood circle method)

Alternate forms:

$8+e^{\left(e \pi^{2}\right) / 12}\left(3 \pi^{2}-16\right)(2 \pi)^{e \log (2 \pi)-1}$
$8+e^{\left(e \pi^{2}\right) / 12}\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)(2 \pi)^{e(\log (2)+\log (\pi))}$
$8-e^{\left(e \pi^{2}\right) / 12} 2^{3+e \log (2 \pi)} \pi^{e \log (2 \pi)-1}+3 e^{\left(e \pi^{2}\right) / 12} 2^{e \log (2 \pi)-1} \pi^{1+e \log (2 \pi)}$

Alternative representations:

$$
\begin{aligned}
& 8+\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)^{2 e}=8+\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{\log _{e}(2 \pi) / 2}\right)^{2 e} \\
& 8+\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)^{2 e}=8+\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (a) \log a_{a}(2 \pi)}\right)^{2 e}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 8+\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)^{2 e}= \\
& 8+e^{\left(e \pi^{2}\right) / 12}(2 \pi)^{e\left(\log (-1+2 \pi)-\sum_{k=1}^{\infty}\left(\frac{1}{1-2 \pi}\right)^{k} / k\right)}\left(-\frac{8}{\pi}+\frac{3 \pi}{2}\right) \\
& 8+\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)^{2 e}=8+ \\
& e^{\left(e \pi^{2}\right) / 12}(2 \pi)^{\left.e(2 i \pi \arg (2 \pi-x) /(2 \pi)\rfloor+\log (x)-\sum_{k=1}^{\infty}\left((-1)^{k}(2 \pi-x)^{k} x^{-k}\right) / k\right)}\left(-\frac{8}{\pi}+\frac{3 \pi}{2}\right) \text { for } x<0 \\
& 8+\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)^{2 e}=8+e^{\left(e \pi^{2}\right) / 12} \\
& (2 \pi)^{e\left(\log \left(z_{0}\right)+\left\lfloor\arg \left(2 \pi-z_{0}\right) /(2 \pi)\right\rfloor\left(\log \left(1 / z_{0}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty}\left((-1)^{k}\left(2 \pi-z_{0}\right)^{k} z_{0}^{-k}\right) / k\right)}\left(-\frac{8}{\pi}+\frac{3 \pi}{2}\right)
\end{aligned}
$$

Integral representations:

$8+\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)^{2 e}=8+e^{\left(e \pi^{2}\right) / 12}(2 \pi)^{-1+e \int_{1}^{2 \pi} 1 / t d t}\left(-16+3 \pi^{2}\right)$

$$
\begin{aligned}
& 8+\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)^{2 e}=8+ \\
& \quad e^{\left(e \pi^{2}\right) / 12}(2 \pi)^{-(i e) /(2 \pi) \int_{-i \infty+\gamma}^{i \infty+\gamma}\left((-1+2 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)\right) / \Gamma(1-s) d s}\left(-\frac{8}{\pi}+\frac{3 \pi}{2}\right) \text { for }-1<\gamma<0
\end{aligned}
$$

and:
$\ln \left(\left(\left(\left(8+((3 \pi) / 2-8 / \pi)\left(\left(\left(\left(\left(\exp \left(\left(\mathrm{Pi}^{\wedge} 2\right) / 24\right)\right)\right)(2 \mathrm{Pi})^{\wedge}(1 / 2 \ln (2 \mathrm{Pi}))\right)\right)\right)^{\wedge}(2 \mathrm{e})\right)\right)\right)\right)$

Input:

$\log \left(8+\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)^{2 e}\right)$
$\log (x)$ is the natural logarithm

Exact result:

$\log \left(8+e^{\left(e \pi^{2}\right) / 12}\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)(2 \pi)^{e \log (2 \pi)}\right)$

Decimal approximation:

$12.19036928776337087619295426122724036070286571656595853816 \ldots$
$12.190369287 \ldots$ result practically equal to the black hole entropy 12.1904

Alternate forms:

$$
\begin{aligned}
& \log \left(8+e^{\left(e \pi^{2}\right) / 12}\left(3 \pi^{2}-16\right)(2 \pi)^{e \log (2 \pi)-1}\right) \\
& \log \left(8+e^{\left(e \pi^{2}\right) / 12}\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)(2 \pi)^{e(\log (2)+\log (\pi))}\right) \\
& \log \left(\frac{16 \pi-e^{\left(e \pi^{2}\right) / 12} 2^{4+e \log (2 \pi)} \pi^{e \log (2 \pi)}+3 e^{\left(e \pi^{2}\right) / 12} 2^{e \log (2 \pi)} \pi^{2+e \log (2 \pi)}}{2 \pi}\right)
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \log \left(8+\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)^{2 e}\right)= \\
& \quad \log _{e}\left(8+\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)^{2 e}\right)
\end{aligned}
$$

$\log \left(8+\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)^{2 e}\right)=$
$\log (a) \log _{a}\left(8+\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)^{2 e}\right)$

Series representations:

$$
\begin{aligned}
& \log \left(8+\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)^{2 e}\right)= \\
& \log \left(7+e^{\left(e \pi^{2}\right) / 12}(2 \pi)^{e \log (2 \pi)}\left(-\frac{8}{\pi}+\frac{3 \pi}{2}\right)\right)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{7+e^{\left(e \pi^{2}\right) / 12}(2 \pi)^{e \log (2 \pi)}\left(-\frac{8}{\pi}+\frac{3 \pi}{2}\right)}\right)^{k}}{k} \\
& \log \left(8+\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)^{2 e}\right)=2 i \pi\left\lfloor\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+ \\
& \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(8+e^{\left(e \pi^{2}\right) / 12}(2 \pi)^{e \log (2 \pi)}\left(-\frac{8}{\pi}+\frac{3 \pi}{2}\right)-z_{0}\right)^{k} z_{0}^{k}}{k} \\
& \log \left(8+\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)^{2 e}\right)= \\
& 2 i \pi\left\lfloor\frac{\arg \left(8+e^{\left(e \pi^{2}\right) / 12}(2 \pi)^{e \log (2 \pi)}\left(-\frac{8}{\pi}+\frac{3 \pi}{2}\right)-x\right)}{2 \pi}\right\rfloor+\log (x)- \\
& \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(8+e^{\left(e \pi^{2}\right) / 12}(2 \pi)^{e \log (2 \pi)}\left(-\frac{8}{\pi}+\frac{3 \pi}{2}\right)-x\right)^{k} x^{-k}}{k} \text { for } x<0
\end{aligned}
$$

Integral representations:

$\log \left(8+\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)^{2 e}\right)=\int_{1}^{8+e^{\left(e \pi^{2}\right) / 12}(2 \pi)^{e} \log (2 \pi)\left(-\frac{8}{\pi}+\frac{3 \pi}{2}\right)} \frac{1}{t} d t$

$$
\begin{aligned}
& \log \left(8+\left(\frac{3 \pi}{2}-\frac{8}{\pi}\right)\left(\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)^{2 e}\right)= \\
& \quad-\frac{i}{2 \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\left(7+e^{\left(e \pi^{2}\right) / 12}(2 \pi)^{e \log (2 \pi)}\left(-\frac{8}{\pi}+\frac{3 \pi}{2}\right)\right)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
\end{aligned}
$$

Input:

$\sqrt[64]{\frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}}$

Exact result:

$e^{-\pi^{2} / 1536}(2 \pi)^{-1 / 128 \log (2 \pi)}$

Decimal approximation:

0.967718030864941413992713190507503998528600334220001452837...
$0.96771803086494 \ldots$ result very near to the spectral index n_{s}, to the mesonic Regge slope, to the inflaton value at the end of the inflation 0.9402 and to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

From:
Astronomy \& Astrophysics manuscript no. ms c ESO 2019 - September 24, 2019 Planck 2018 results. VI. Cosmological parameters

The primordial fluctuations are consistent with Gaussian purely adiabatic scalar perturbations characterized by a power spectrum with a spectral index $n_{s}=0.965 \pm$ 0.004, consistent with the predictions of slow-roll, single-field, inflation.

Alternate form:

$e^{-\pi^{2} / 1536}(2 \pi)^{1 / 128(-\log (2)-\log (\pi))}$

All 64th roots of $\mathrm{e}^{\wedge}\left(-\pi^{\wedge} 2 / 24\right)(2 \pi)^{\wedge}(-1 / 2 \log (2 \pi))$:

$$
\begin{aligned}
& e^{-\pi^{2} / 1536} e^{0}(2 \pi)^{-1 / 128 \log (2 \pi)} \approx 0.967718 \text { (real, principal root) } \\
& e^{-\pi^{2} / 1536} e^{(i \pi) / 32}(2 \pi)^{-1 / 128 \log (2 \pi)} \approx 0.96306+0.09485 i \\
& e^{-\pi^{2} / 1536} e^{(i \pi) / 16}(2 \pi)^{-1 / 128 \log (2 \pi)} \approx 0.94912+0.18879 i \\
& e^{-\pi^{2} / 1536} e^{(3 i \pi) / 32}(2 \pi)^{-1 / 128 \log (2 \pi)} \approx 0.92605+0.28091 i \\
& e^{-\pi^{2} / 1536} e^{(i \pi) / 8}(2 \pi)^{-1 / 128 \log (2 \pi)} \approx 0.89405+0.37033 i
\end{aligned}
$$

Alternative representations:

$\sqrt[64]{\frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}}=\sqrt[64]{\frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{\log _{e}(2 \pi) / 2}}}$
$\sqrt[64]{\frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}}=\sqrt[64]{\frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (a) \log _{a}(2 \pi)}}}$
$\log _{b}(x)$ is the base $-b$ logarithm

Series representations:

$\sqrt[64]{\frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}}=e^{-\pi^{2} / 1536}(2 \pi)^{1 / 128\left(-\log (-1+2 \pi)+\sum_{k=1}^{\infty}\left(\frac{1}{1-2 \pi}\right)^{k} / k\right)}$
$\sqrt[64]{\frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}}=$
$e^{-\pi^{2} / 1536}(2 \pi)^{\left.1 / 128(-2 i \pi \arg (2 \pi-x)(2 \pi)]-\log (x)+\sum_{k=1}^{\infty}\left((-1)^{k}(2 \pi-x)^{k} x^{-k}\right) / k\right)}$ for $x<0$

```
\(\sqrt[64]{\frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}}=\)
\(e^{-\pi^{2} / 1536}(2 \pi)^{\left.1 / 128\left(-\log \left(z_{0}\right)-\left\lfloor\arg \left(2 \pi-z_{0}\right)\right)(2 \pi)\right\rfloor\left(\log \left(1 / z_{0}\right)+\log \left(z_{0}\right)\right)+\sum_{k=1}^{\infty}\left((-1)^{k}\left(2 \pi-z_{0}\right)^{k} z_{0}^{-k}\right) / k\right)}\)
```


Integral representations:

$\sqrt[64]{\frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}}=e^{-\pi^{2} / 1536}(2 \pi)^{-1 / 128} \int_{1}^{2 \pi} 1 / t d t$
$\sqrt[64]{\frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}}=e^{-\pi^{2} / 1536}(2 \pi)^{i /(256 \pi)} \int_{-i \infty+\gamma}^{i \infty \infty+\gamma}\left((-1+2 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)\right) / \Gamma(1-s) d s$
for $-1<\gamma<0$
$\Gamma(x)$ is the gamma function
\log base $0.96771803086494141399271319\left(\left(\left(1 /\left(\left(\left(\exp \left(\left(\mathrm{Pi}^{\wedge} 2\right) / 24\right)\right)\right)(2 \mathrm{Pi})^{\wedge}(1 / 2 \ln \right.\right.\right.\right.$ (2Pi))))))

Input interpretation:

$\log _{0.96771803086494141399271319}\left(\frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}\right)$
$\log (x)$ is the natural logarithm
$\log _{b}(x)$ is the base- b logarithm

Result:

64.00000000000000000000000...

64

Alternative representations:

$\log _{0.967718030864941413992713190000}\left(\frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}\right)=$

$$
\log \left(\frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}\right)
$$

$\log (0.967718030864941413992713190000)$
$\log _{0.967718030864941413992713190000}\left(\frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}\right)=$
$\log _{0.967718030864041413992713190000}\left(\frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{\log _{e}(2 \pi) / 2}}\right)$
$\log _{0.967718030864941413992713190000}\left(\frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}\right)=$
$\log _{0.967718030864941413902713190000}\left(\frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log ^{(\alpha)} \log _{a}(2 \pi)}}\right)$

Series representations:

$\log _{0.967718030864941413992713190000}\left(\frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}\right)=$
$-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{2^{-1 / 2 \log (2 \pi)} \pi^{-1 / 2 \log (2 \pi)}}{\exp \left(\frac{\pi^{2}}{24}\right)}\right)^{k}}{k}}{\text { (}}$
$-\overline{\log (0.967718030864941413992713190000)}$
$\log _{0.967718030864941413992713190000}\left(\frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}\right)=$
$\log _{0.967718030864941413992713190000}$

$$
\left.\frac{2^{1 / 2\left(-\log (-1+2 \pi)+\sum_{k=1}^{\infty}\left((-1)^{k}(-1+2 \pi)^{-k}\right) / k\right)} \pi^{1 / 2\left(-\log (-1+2 \pi)+\sum_{k=1}^{\infty}\left((-1)^{k}(-1+2 \pi)^{-k}\right) / k\right)}}{\exp \left(\frac{\pi^{2}}{24}\right)}\right)
$$

Integral representations:

$\log _{0.967718030864941413992713190000}\left(\frac{1}{\left.\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}\right)}\right)=$
$\log _{0.967718030864941413902713190000}\left(\frac{2^{-1 / 2} \int_{1}^{2 \pi} 1 / t d t \pi^{-1 / 2} \int_{1}^{2 \pi} 1 / t d t}{\exp \left(\frac{\pi^{2}}{24}\right)}\right)$
$\log _{0.967718030864941413992713190000}\left(\frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}\right)=$
$\log _{0.067718030864941413992713190000}($
$\frac{1}{\exp \left(\frac{\pi^{2}}{24}\right)} 2^{-1 /(4 i \pi) \int_{-i \infty+\gamma}^{i \infty+\gamma}\left((-1+2 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)\right) / \Gamma(1-s) d s}$
$\left.\pi^{-1 /(4 i \pi) \int_{-i \infty+\gamma}^{i \infty+\gamma}\left((-1+2 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)\right) / \Gamma(1-s) d s}\right)$ for $-1<\gamma<0$
$\Gamma(x)$ is the gamma function
$\left(\left(\left(\left(\log\right.\right.\right.\right.$ base $0.96771803086494141399271319\left(\left(\left(1 /\left(\left(\exp \left(\left(\mathrm{Pi}^{\wedge} 2\right) / 24\right)\right)\right)\right)\left(2 \mathrm{Pi}^{\wedge}\right)^{\wedge}(1 / 2 \ln \right.\right.$ (2Pi)))))))))) $)^{\wedge} 1 / 2$

Input interpretation:

$\sqrt{\log _{0.0677718030864944141390271319}\left(\frac{1}{\exp \left(\frac{\pi}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}}\right)}$
$\log (x)$ is the natural logarithm
$\log _{b}(x)$ is the base- b logarithm

Result:

8.000000000000000000000000...

8

In conclusion, we have that:

$$
\left(\left(\left(\exp \left(\left(\mathrm{x}^{\wedge} 2\right) / 24\right)\right)\right)(2 \mathrm{Pi})^{\wedge}(1 / 2 \ln (2 \mathrm{Pi}))\right)=8.16722809077415901344408
$$

Input interpretation:

$\exp \left(\frac{x^{2}}{24}\right)(2 \pi)^{1 / 2 \log (2 \pi)}=8.16722809077415901344408$

Result:
$e^{x^{2} / 24}(2 \pi)^{1 / 2 \log (2 \pi)}=8.16722809077415901344408$

Plot:

Alternate forms:
$e^{x^{2} / 24}=1.5086776168637665894968$
$e^{x^{2} / 24}(2 \pi)^{1 / 2(\log (2)+\log (\pi))}=8.16722809077415901344408$

Alternate form assuming x is positive:

$1.00000000000000000000000 e^{x^{2} / 24}=1.50867761686376658949680$

Alternate form assuming x is real:

$\sqrt[24]{e^{x^{2}}(2 \pi)^{1 / 2 \log (2 \pi)}=8.16722809077415901344408}$

Real solutions:

$x \approx-3.14159265358979323846264$
$x \approx 3.14159265358979323846264$

Solutions:

```
\(x \approx 4.89897948556635619639457\) , \(n \in \mathbb{Z}\)
    \(\sqrt{6.2831853071795864769253 i n+0.4112335167120566091181}\)
\(x \approx-4.89897948556635619639457\) , \(n \in \mathbb{Z}\)
6.2831853071795864769253 in +0.4112335167120566091181
```


Possible closed forms:

$\pi \approx 3.1415926535897932384626433832=\pi$
$\sqrt{6 \zeta(2)} \approx 3.1415926535897932384626433832$
$\frac{1}{2 \mathcal{P}_{A}} \approx 3.1415926535897932384626433832$
$\frac{1}{2 C_{\text {PTH }}} \approx 3.1415926535897932384626433832$
$\log \left(\mathcal{G}_{\mathrm{Ge}}\right) \approx 3.1415926535897932384626433832$
$\frac{128}{45 \bar{s}_{\mathrm{ld}}} \approx 3.1415926535897932384626433832$
$\frac{3\left(-50-81 e+299 e^{2}\right)}{79-427 e+397 e^{2}} \approx 3.1415926535897932384603988$
$\log \left(\frac{1}{63}\left(23(\sqrt{2}-6)+114 e+303 e^{2}-210 \pi-33 \pi^{2}\right)\right) \approx$
3.141592653589793238424714
root of $108 x^{4}+1717 x^{3}-6952 x^{2}+258 x+4045$ near $x=3.14159 \approx$
3.141592653589793238452342
root of $15134 x^{3}-53597 x^{2}+28993 x-31352$ near $x=3.14159$
3.141592653589793238428911
\qquad
root of $4045 x^{4}+258 x^{3}-6952 x^{2}+1717 x+108$ near $x=0.31831$
3.141592653589793238452342
root of $31352 x^{3}-28993 x^{2}+53597 x-15134$ near $x=0.31831$
3.141592653589793238428911
root of $305 x^{5}-1062 x^{4}+316 x^{3}-159 x^{2}+97 x+1579$ near $x=3.14159 \approx$
3.141592653589793238493361
$\zeta(2)$ is zeta of 2
P_{A} is Plouffe's A-constant
$C_{\text {PTH }}$ is the Pythagorean triple constant for hypotenuses
$\log (x)$ is the natural logarithm
$\mathcal{G}_{\mathrm{Ge}}$ is Gelfond's constant $\bar{s}_{\text {ld }}$ is the mean line-in-disk length
and:
$\left(\left(\left(\exp \left(\left(\mathrm{Pi}^{\wedge} 2\right) / \mathrm{x}\right)\right)\right)(2 \mathrm{Pi})^{\wedge}(1 / 2 \ln (2 \mathrm{Pi}))\right)=8.16722809077415901344408$

Input interpretation:

$\exp \left(\frac{\pi^{2}}{x}\right)(2 \pi)^{1 / 2 \log (2 \pi)}=8.16722809077415901344408$
$\log (x)$ is the natural logarithm
Result:
$e^{\pi^{2} / x}(2 \pi)^{1 / 2 \log (2 \pi)}=8.16722809077415901344408$

Plot:

Alternate forms:

$e^{\pi^{2} / x}=1.5086776168637665894968$
$e^{\pi^{2} / x}(2 \pi)^{1 / 2(\log (2)+\log (\pi))}=8.16722809077415901344408$

Alternate form assuming \mathbf{x} is positive:

$1.00000000000000000000000 e^{\pi^{2} / x}=1.50867761686376658949680$

Real solution:

$x \approx 24.0000000000000000000000$

24

This value is linked to the "Ramanujan function" (an elliptic modular function that satisfies the need for "conformal symmetry") that has 24 "modes" corresponding to the physical vibrations of a bosonic string.

Solution:

$$
\begin{aligned}
x \approx & =-\frac{9.8696044010893586188345 i}{6.2831853071795864769253 n-0.411233516712056609118103 i}, \\
& i(6.2831853071795864769253 n-0.411233516712056609118103 i) \neq 0, \quad n \in \mathbb{Z}
\end{aligned}
$$

Integer solution:

$x=24$
24 as above

Now, we have that
Page 101

For $\mathrm{x}=1 / 2, \mathrm{C}_{0}=0.582879670292435$ and $\mathrm{C}_{1}=0.072815845483680$, we obtain:
$0.072815845483680-\left(\mathrm{Pi}^{\wedge} 2\right) / 24+1 / 2(0.582879670292435+\ln (2 \mathrm{Pi}))$ $(0.582879670292435-\ln (\mathrm{Pi} /(2 \sin (1 / 2 * \mathrm{Pi}))))-(((\ln (1) / 1 \cos (\mathrm{Pi})+\ln (2) / 2 \cos (2 \mathrm{Pi}))))$

Input interpretation:

$0.072815845483680-\frac{\pi^{2}}{24}+$

$$
\begin{aligned}
& \frac{1}{2}(0.582879670292435+\log (2 \pi))\left(0.582879670292435-\log \left(\frac{\pi}{2 \sin \left(\frac{1}{2} \pi\right)}\right)\right)- \\
& \left(\frac{\log (1)}{1} \cos (\pi)+\frac{\log (2)}{2} \cos (2 \pi)\right)
\end{aligned}
$$

Result:

-0.526072255238618...
$-0.526072255 \ldots$

Alternative representations:

$$
\begin{aligned}
& 0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi)) \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)= \\
& 0.0728158454836800000+\frac{1}{2}(0.5828796702924350000+\log (2 \pi)) \\
& \quad\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \cos (0)}\right)\right)- \\
& \frac{1}{2} \log (1)\left(e^{-i \pi}+e^{i \pi}\right)-\frac{1}{4} \log (2)\left(e^{-2 i \pi}+e^{2 i \pi}\right)-\frac{\pi^{2}}{24}
\end{aligned}
$$

$0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))$

$$
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)=
$$

$0.0728158454836800000-\cosh (i \pi) \log (a) \log _{a}(1)-\frac{1}{2} \cosh (2 i \pi) \log (a) \log _{a}(2)+$ $\frac{1}{2}\left(0.5828796702924350000+\log (a) \log _{a}(2 \pi)\right)$

$$
\left(0.5828796702924350000-\log (a) \log _{a}\left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\frac{\pi^{2}}{24}
$$

$0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))$

$$
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)=
$$ $0.0728158454836800000-\cosh (-i \pi) \log (a) \log _{a}(1)-\frac{1}{2} \cosh (-2 i \pi) \log (a) \log _{a}(2)+$ $\frac{1}{2}\left(0.5828796702924350000+\log (a) \log _{a}(2 \pi)\right)$

$$
\left(0.5828796702924350000-\log (a) \log _{a}\left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\frac{\pi^{2}}{24}
$$

Integral representations:

$0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))$

$$
\begin{aligned}
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)= \\
& -0.0416666666666666667\left(-5.82456481209093279+1.00000000000000000 \pi^{2}-\right. \\
& 24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t- \\
& 6.99455604350922000 \log (2 \pi)+6.99455604350922000 \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)+ \\
& \left.12.0000000000000000 \log (2 \pi) \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)\right)
\end{aligned}
$$

$0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))$

$$
\begin{aligned}
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)= \\
& -0.0416666666666666667\left(-5.82456481209093279+1.00000000000000000 \pi^{2}-\right. \\
& 24.0000000000000000 \int_{0}^{1} \pi(\log (1) \sin (\pi t)+\log (2) \sin (2 \pi t)) d t+ \\
& 24.0000000000000000 \log (1)+12.0000000000000000 \log (2)- \\
& 6.99455604350922000 \log (2 \pi)+6.99455604350922000 \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)+ \\
& \left.12.0000000000000000 \log (2 \pi) \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)\right)
\end{aligned}
$$

$0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))$ $\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-$
$\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)=$
$-0.0416666666666666667(-5.82456481209093279+$
$1.000000000000000000 \pi^{2}-24.0000000000000000$
$\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{e^{-\pi^{2} / s+s}\left(2 e^{\left(3 \pi^{2}\right) /(4 s)} \log (1)+\log (2)\right) \sqrt{\pi}}{4 i \pi \sqrt{s}} d s-$
$6.99455604350922000 \log (2 \pi)+$
$6.99455604350922000 \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)+$
$\left.12.0000000000000000 \log (2 \pi) \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)\right)$ for $\gamma>0$

Multiple-argument formulas:

$$
\begin{aligned}
& 0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi)) \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)=0.0728158454836800000-\frac{\pi^{2}}{24}- \\
& 0.5000000000000000000(0.5828796702924350000+\log (2)+\log (\pi)) \\
& \left(-0.5828796702924350000+\log \left(\frac{1}{2}\right)+\log \left(\frac{\pi}{\sin \left(\frac{\pi}{2}\right)}\right)\right)+ \\
& \log (1)\left(-1+2 \sin ^{2}\left(\frac{\pi}{2}\right)\right)+\frac{1}{2} \log (2)\left(-1+2 \sin ^{2}(\pi)\right) \\
& 0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi)) \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)= \\
& 0.0728158454836800000-\frac{\pi^{2}}{24}+\log (1)-2 \cos ^{2}\left(\frac{\pi}{2}\right) \log (1)- \\
& \frac{1}{2}\left(-1+2 \cos ^{2}(\pi)\right) \log (2)- \\
& 0.5000000000000000000(0.5828796702924350000+\log (2)+\log (\pi)) \\
& \left(-0.5828796702924350000+\log \left(\frac{1}{2}\right)+\log \left(\frac{\pi}{\sin \left(\frac{\pi}{2}\right)}\right)\right)
\end{aligned}
$$

$0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))$

$$
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)=
$$

$$
0.0728158454836800000-\frac{\pi^{2}}{24}+\cos \left(\frac{\pi}{3}\right)\left(3-4 \cos ^{2}\left(\frac{\pi}{3}\right)\right) \log (1)+
$$

$$
\frac{1}{2} \cos \left(\frac{2 \pi}{3}\right)\left(3-4 \cos ^{2}\left(\frac{2 \pi}{3}\right)\right) \log (2)-
$$

$$
0.5000000000000000000(0.5828796702924350000+\log (2)+\log (\pi))
$$

$$
\left(-0.5828796702924350000+\log \left(\frac{1}{2}\right)+\log \left(\frac{\pi}{\sin \left(\frac{\pi}{2}\right)}\right)\right)
$$

$-((311431943 \pi) / 1149415279) /\left(\left(\left(\left(0.072815845483680-\left(\mathrm{Pi}^{\wedge} 2\right) / 24+1 / 2\right.\right.\right.\right.$
$(0.582879670292435+\ln (2 \mathrm{Pi}))(0.582879670292435-\ln (\mathrm{Pi} /(2 \sin (1 / 2 * \mathrm{Pi}))))-$ $(((\ln (1) / 1 \cos (\mathrm{Pi})+\ln (2) / 2 \cos (2 \mathrm{Pi}))))))))$

Input interpretation:

$$
\begin{aligned}
& -\left(\frac{311431943 \pi}{1149415279} /\left(0.072815845483680-\frac{\pi^{2}}{24}+\right.\right. \\
& \quad \frac{1}{2}(0.582879670292435+\log (2 \pi))\left(0.582879670292435-\log \left(\frac{\pi}{2 \sin \left(\frac{1}{2} \pi\right)}\right)\right)- \\
& \left.\left.\quad\left(\frac{\log (1)}{1} \cos (\pi)+\frac{\log (2)}{2} \cos (2 \pi)\right)\right)\right)
\end{aligned}
$$

$\log (x)$ is the natural logarithm

Result:

1.61804525500240...
$1.6180452550024 \ldots$ result that is a very good approximation to the value of the golden ratio 1,618033988749...

Alternative representations:

$-(311431943 \pi) /$

$$
\begin{gathered}
\left(\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right) 1149415279\right)\right)= \\
-((311431943 \pi) /(1149415279(0.0728158454836800000+ \\
\frac{1}{2}(0.5828796702924350000+\log (2 \pi)) \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \cos (0)}\right)\right)- \\
\left.\left.\left.\frac{1}{2} \log (1)\left(e^{-i \pi}+e^{i \pi}\right)-\frac{1}{4} \log (2)\left(e^{-2 i \pi}+e^{2 i \pi}\right)-\frac{\pi^{2}}{24}\right)\right)\right)
\end{gathered}
$$

$$
\begin{gathered}
\left(\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right) 1149415279\right)\right)=
\end{gathered}
$$

$$
-\left((311431943 \pi) / / 1149415279\left(0.0728158454836800000-\cosh (-i \pi) \log _{e}(1)-\right.\right.
$$

$$
\frac{1}{2} \cosh (-2 i \pi) \log _{e}(2)+\frac{1}{2}\left(0.5828796702924350000+\log _{e}(2 \pi)\right)
$$

$$
\left.\left.\left.\left(0.5828796702924350000-\log _{e}\left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\frac{\pi^{2}}{24}\right)\right)\right)
$$

$$
-((311431943 \pi) /
$$

$$
\begin{gathered}
\left(\left(\begin{array}{c}
0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi)) \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right) 1149415279\right)\right)= \\
-((311431943 \pi) /(1149415279(0.0728158454836800000- \\
\cosh (i \pi) \log _{(a)} \log _{a}(1)-\frac{1}{2} \cosh (2 i \pi) \log _{(a)} \log _{a}(2)+ \\
\frac{1}{2}\left(0.5828796702924350000+\log (a) \log _{a}(2 \pi)\right) \\
\left.\left.\left.\left.\left(0.5828796702924350000-\log (a) \log _{a}\left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)\right)-\frac{\pi^{2}}{24}\right)\right)\right)
\end{array}\right.\right.
\end{gathered}
$$

Integral representations:

$-(311431943 \pi) /$

$$
\begin{gathered}
\left(\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right) 1149415279\right)\right)=
\end{gathered}
$$

$\left(6.5027555910886756 i \pi^{2}\right) /(-5.8245648120909328 i \pi+$
$1.00000000000000000 i \pi^{3}+1.00000000000000000$

$$
\begin{aligned}
& \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{1}{\sqrt{s}} e^{-\pi^{2} / s+s}\left(12.0000000000000 e^{\left(3 \pi^{2}\right) /(4 s)} \log (1)+\right. \\
& 6.0000000000000 \log (2)) \sqrt{\pi} d s- \\
& 6.9945560435092200 i \pi \log (2 \pi)+6.9945560435092200 \\
& i \pi \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)+
\end{aligned}
$$

$\left.12.0000000000000000 i \pi \log (2 \pi) \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)\right)$ for $\gamma>0$
$-(311431943 \pi) /$

$$
\left(\begin{array}{c}
\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right) 1149415279\right)\right)=
\end{array}\right.
$$

$(6.5027555910886756 \pi) /\left(-5.8245648120909328+1.00000000000000000 \pi^{2}-\right.$ $24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t-$ $6.9945560435092200 \log (2 \pi)+$ $6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)+$
$\left.12.0000000000000000 \log (2 \pi) \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right)$ for $\gamma>0$
$-(311431943 \pi) /$

$$
\left(\begin{array}{c}
\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right) 1149415279\right)\right)=
\end{array}\right.
$$

$(6.5027555910886756 \pi) /(-5.8245648120909328+$
$1.00000000000000000 \pi^{2}+24.0000000000000000 \log (1)-$ $24.0000000000000000 \pi \log (1) \int_{0}^{1} \sin (\pi t) d t+$
$12.0000000000000000 \log (2)-$
$24.0000000000000000 \pi \log (2) \int_{0}^{1} \sin (2 \pi t) d t-$
$6.9945560435092200 \log (2 \pi)+$
$6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)+$
$\left.12.0000000000000000 \log (2 \pi) \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right)$ for $\gamma>0$

$$
\left(\begin{array}{c}
\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right) 1149415279\right)\right)=
\end{array}\right.
$$

$(6.5027555910886756 \pi) /\left[-5.8245648120909328+1.00000000000000000 \pi^{2}-\right.$ $24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t-$ $6.9945560435092200 \log (2 \pi)+$ $6.9945560435092200 \log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)+$
$12.0000000000000000 \log (2 \pi)$

$$
\left.\log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)\right) \text { for } 0<\gamma<1
$$

$-16 /\left(\left(\left(0.072815845483680-\left(\mathrm{Pi}^{\wedge} 2\right) / 24+1 / 2(0.582879670292435+\ln (2 \mathrm{Pi}))\right.\right.\right.$ $(0.582879670292435-\ln (\mathrm{Pi} /(2 \sin (1 / 2 * \mathrm{Pi}))))-(((\ln (1) / 1 \cos (\mathrm{Pi})+\ln (2) / 2$ $\cos (2 \mathrm{Pi}))$))))))

Input interpretation:

$$
\begin{aligned}
&-\left(16 /\left(0.072815845483680-\frac{\pi^{2}}{24}+\right.\right. \\
& \frac{1}{2}(0.582879670292435+\log (2 \pi))\left(0.582879670292435-\log \left(\frac{\pi}{2 \sin \left(\frac{1}{2} \pi\right)}\right)\right)- \\
&\left.\left.\left(\frac{\log (1)}{1} \cos (\pi)+\frac{\log (2)}{2} \cos (2 \pi)\right)\right)\right)
\end{aligned}
$$

Result:

30.4140730492290...
$30.41407304 \ldots$ result very near to the black hole entropy 30.4615

Alternative representations:

$$
\begin{aligned}
& -\left(16 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)\right)= \\
& -\left(16 /\left(0.0728158454836800000+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \cos (0)}\right)\right)- \\
& \left.\left.\frac{1}{2} \log (1)\left(e^{-i \pi}+e^{i \pi}\right)-\frac{1}{4} \log (2)\left(e^{-2 i \pi}+e^{2 i \pi}\right)-\frac{\pi^{2}}{24}\right)\right)
\end{aligned}
$$

$$
-\left(16 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right.
$$

$$
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-
$$

$$
\left.\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)\right)=
$$

$$
\begin{gathered}
-\left(16 /\left(0.0728158454836800000-\cosh (-i \pi) \log _{e}(1)-\frac{1}{2} \cosh (-2 i \pi) \log _{e}(2)+\right.\right. \\
\frac{1}{2}\left(0.5828796702924350000+\log _{e}(2 \pi)\right)
\end{gathered}
$$

$$
\left.\left.\left(0.5828796702924350000-\log _{e}\left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\frac{\pi^{2}}{24}\right)\right)
$$

$$
\begin{aligned}
& -\left(16 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)\right)= \\
& -\left(16 /\left(0.0728158454836800000-\cosh (i \pi) \log (a) \log _{a}(1)-\frac{1}{2} \cosh (2 i \pi)\right.\right. \\
& \log (a) \log _{a}(2)+\frac{1}{2}\left(0.5828796702924350000+\log (a) \log _{a}(2 \pi)\right) \\
& \left.\left.\left(0.5828796702924350000-\log (a) \log _{a}\left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\frac{\pi^{2}}{24}\right)\right)
\end{aligned}
$$

Integral representations:

$$
\begin{gathered}
-\left(16 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)\right)=
\end{gathered}
$$

$$
\begin{aligned}
& (384.00000000000000 i \pi) /(-5.8245648120909328 i \pi+ \\
& 1.00000000000000000 i \pi^{3}+1.00000000000000000 \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{1}{\sqrt{s}} e^{-\pi^{2} / s+s}\left(12.0000000000000 e^{\left(3 \pi^{2}\right) /(4 s)} \log (1)+\right. \\
& 6.0000000000000 \log (2)) \sqrt{\pi} d s-6.9945560435092200 \\
& i \pi \log (2 \pi)+6.9945560435092200 i \pi \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)+ \\
& \left.12.0000000000000000 i \pi \log (2 \pi) \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)\right) \text { for } \gamma>0
\end{aligned}
$$

$$
\begin{gathered}
-\left(16 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)\right)=
\end{gathered}
$$

$384.00000000000000 /\left(-5.8245648120909328+1.00000000000000000 \pi^{2}-\right.$ $24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t-$ $6.9945560435092200 \log (2 \pi)+$ $6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma+\gamma}} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s\right)+$
$\left.12.0000000000000000 \log (2 \pi) \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right)$ for $\gamma>0$

$$
\begin{aligned}
& -\left(16 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)\right)= \\
& 384.00000000000000 /(-5.8245648120909328+
\end{aligned}
$$

$1.00000000000000000 \pi^{2}+24.0000000000000000 \log (1)-$
$24.0000000000000000 \pi \log (1) \int_{0}^{1} \sin (\pi t) d t+$
$12.0000000000000000 \log (2)-24.0000000000000000 \pi \log (2)$
$\int_{0}^{1} \sin (2 \pi t) d t-6.9945560435092200 \log (2 \pi)+$
$6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)+$
$\left.12.0000000000000000 \log (2 \pi) \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty \infty \gamma+\gamma} \frac{e^{-\pi^{2} /(16 s)+\mathrm{s}}}{s^{3 / 2}} d s}\right)\right)$ for $\gamma>0$

$$
\begin{gathered}
-\left(16 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)\right)=
\end{gathered}
$$

$384.00000000000000 /\left(-5.8245648120909328+1.00000000000000000 \pi^{2}-\right.$ $24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t-$
$6.9945560435092200 \log (2 \pi)+6.9945560435092200$
$\log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)+12.0000000000000000$
$\left.\log (2 \pi) \log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)\right)$ for $0<\gamma<1$
$10^{\wedge} 39 *\left(\left(\left(-7 /\left(()\left(0.072815845483680-\left(\mathrm{Pi}^{\wedge} 2\right) / 24+1 / 2(0.582879670292435+\right.\right.\right.\right.\right.$ $\ln (2 \mathrm{Pi}))(0.582879670292435-\ln (\mathrm{Pi} /(2 \sin (1 / 2 * \mathrm{Pi}))))-(((\ln (1) / 1 \cos (\mathrm{Pi})+\ln (2) / 2$ $\cos (2 \mathrm{Pi})))))$))) $\left.\left.-18^{*} 1 / 10^{\wedge} 2\right)\right)$)

Input interpretation:

$$
\begin{gathered}
10^{39}\left(-\left(7 /\left(0.072815845483680-\frac{\pi^{2}}{24}+\frac{1}{2}(0.582879670292435+\log (2 \pi))\right.\right.\right. \\
\left(0.582879670292435-\log \left(\frac{\pi}{2 \sin \left(\frac{1}{2} \pi\right)}\right)\right)- \\
\left.\left.\left.\left(\frac{\log (1)}{1} \cos (\pi)+\frac{\log (2)}{2} \cos (2 \pi)\right)\right)\right)-18 \times \frac{1}{10^{2}}\right)
\end{gathered}
$$

Result:

$1.31261569590377 \ldots \times 10^{40}$
$1.31261569590377 \ldots * 10^{40}$ result practically equal to the SMBH87 mass $1.312806^{*} 10^{40}$

Alternative representations:

$$
\begin{aligned}
& 10^{39}\left(-\left(7 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right.\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)\right)-\frac{18}{10^{2}}\right)=10^{39} \\
& \left(-\frac{18}{10^{2}}-7 /\left(0.0728158454836800000+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \cos (0)}\right)\right)- \\
& \left.\left.\frac{1}{2} \log (1)\left(e^{-i \pi}+e^{i \pi}\right)-\frac{1}{4} \log (2)\left(e^{-2 i \pi}+e^{2 i \pi}\right)-\frac{\pi^{2}}{24}\right)\right) \\
& 10^{39}\left(-\left(7 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right.\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)\right)-\frac{18}{10^{2}}\right)= \\
& 10^{39}\left(-\frac{18}{10^{2}}-7 /\left(0.0728158454836800000-\cosh (-i \pi) \log _{e}(1)-\right.\right. \\
& \frac{1}{2} \cosh (-2 i \pi) \log (2)+\frac{1}{2}\left(0.5828796702924350000+\log _{e}(2 \pi)\right) \\
& \left.\left.\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\frac{\pi^{2}}{24}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& 10^{39}\left(-\left(7 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right.\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)\right)-\frac{18}{10^{2}}\right)= \\
& 10^{39}\left(-\frac{18}{10^{2}}-7 /\left(0.0728158454836800000-\cosh (i \pi) \log (a) \log _{a}(1)-\frac{1}{2} \cosh (2 i \pi)\right.\right. \\
& \log (a) \log _{a}(2)+\frac{1}{2}\left(0.5828796702924350000+\log (a) \log _{a}(2 \pi)\right) \\
& \left.\left.\left(0.5828796702924350000-\log (a) \log _{a}\left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\frac{\pi^{2}}{24}\right)\right)
\end{aligned}
$$

Integral representations:

$$
\begin{gathered}
10^{39}\left(-\left(7 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right.\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)\right)-\frac{18}{10^{2}}\right)= \\
-\left(\left(\begin{array}{r}
1.8000000000000000 \times 10^{38}(-939.15789814542427+ \\
1.00000000000000000 \pi^{2}-24.0000000000000000 \\
\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{e^{-\pi^{2} / s+s}\left(2 e^{\left(3 \pi^{2}\right) /(4 s)} \log (1)+\log (2)\right) \sqrt{\pi}}{4 i \pi \sqrt{s}} d s- \\
6.9945560435092200 \log (2 \pi)+ \\
6.9945560435092200 \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)+ \\
\left.\left.12.0000000000000000 \log (2 \pi) \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)\right)\right)
\end{array}\right.\right.
\end{gathered}
$$

$$
\left(-5.8245648120909328+1.00000000000000000 \pi^{2}-\right.
$$

24.0000000000000000

$$
\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{e^{-\pi^{2} / s+s}\left(2 e^{\left(3 \pi^{2}\right) /(4 s)} \log (1)+\log (2)\right) \sqrt{\pi}}{4 i \pi \sqrt{s}} d s-
$$

$$
6.9945560435092200 \log (2 \pi)+
$$

$$
6.9945560435092200 \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)+
$$

$\left.12.0000000000000000 \log (2 \pi) \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)\right)$ for $\gamma>0$

$$
\begin{aligned}
& 10^{39}\left(-\left(7 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right.\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)\right)-\frac{18}{10^{2}}\right)= \\
& -\left(\int 1.8000000000000000 \times 10^{38}(-939.15789814542427+\right. \\
& 1.00000000000000000 \pi^{2}-24.0000000000000000 \\
& \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t- \\
& 6.9945560435092200 \log (2 \pi)+ \\
& 6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)+ \\
& \left.\left.12.0000000000000000 \log (2 \pi) \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right)\right) / \\
& \left(\begin{array}{l}
-5.8245648120909328+1.00000000000000000 \pi^{2}- \\
24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t-
\end{array}\right. \\
& 6.9945560435092200 \log (2 \pi)+ \\
& 6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)+ \\
& 12.0000000000000000 \log (2 \pi) \\
& \left.\log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right) \text {) for } \gamma>0
\end{aligned}
$$

$$
\begin{aligned}
& 10^{39}\left(-\left(7 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right.\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)-\frac{18}{10^{2}}\right)= \\
& -\left(\int 1.8000000000000000 \times 10^{38}(-939.15789814542427+\right. \\
& 1.00000000000000000 \pi^{2}-24.0000000000000000 \\
& \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t- \\
& 6.9945560435092200 \log (2 \pi)+6.9945560435092200 \\
& \log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)+12.0000000000000000 \\
& \left.\log (2 \pi) \log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)\right) / \\
& \left(-5.8245648120909328+1.00000000000000000 \pi^{2}-\right. \\
& 24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t- \\
& 6.9945560435092200 \log (2 \pi)+ \\
& 6.9945560435092200 \log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)+ \\
& 12.0000000000000000 \log (2 \pi) \\
& \left.\log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)\right) \text { for } 0<\gamma<1
\end{aligned}
$$

$$
\begin{aligned}
& 10^{39}\left(-\left(7 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right.\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)\right)-\frac{18}{10^{2}}\right)= \\
& -\int\left(1.8000000000000000 \times 10^{38}(-939.15789814542427+\right. \\
& 1.00000000000000000 \pi^{2}+24.0000000000000000 \log (1)- \\
& 24.0000000000000000 \pi \log (1) \int_{0}^{1} \sin (\pi t) d t+ \\
& 12.0000000000000000 \log (2)-24.0000000000000000 \pi \log (2) \\
& \int_{0}^{1} \sin (2 \pi t) d t-6.9945560435092200 \log (2 \pi)+ \\
& 6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)+ \\
& \left.\left.12.0000000000000000 \log (2 \pi) \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right)\right) \\
& \left(-5.8245648120909328+1.00000000000000000 \pi^{2}+\right. \\
& 24.0000000000000000 \log (1)- \\
& 24.0000000000000000 \pi \log (1) \int_{0}^{1} \sin (\pi t) d t+ \\
& 12.0000000000000000 \log (2)- \\
& 24.0000000000000000 \pi \log (2) \int_{0}^{1} \sin (2 \pi t) d t- \\
& 6.9945560435092200 \log (2 \pi)+ \\
& 6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)+ \\
& 12.0000000000000000 \log (2 \pi) \\
& \left.\left.\log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right)\right) \text { for } \gamma>0
\end{aligned}
$$

We note that:
$1.31261569 \mathrm{e}+40 \div 1989100000000000000000000000000=$
6.599.043.235,634206425 and the Supermassive Black Hole of M87 is about 6,6 billion of M_{\odot} (solar masses), with a mass of $13.12806 \mathrm{e}+39$. We have obtained:
$(1.31261569 \mathrm{e}+40) /(1.9891 \mathrm{e}+30)$

Input interpretation:

$\frac{1.31261569 \times 10^{40}}{1.9891 \times 10^{30}}$

Result:

$6.59904323563420642501633904781056759338394248655170680 \ldots \times 10^{9}$
$6.599043235634 \ldots * 10^{9} \approx 6.6 * 10^{9}$ solar masses

The Schwarzschild radius, obtained from the Hawking radiation calculator, is: $1.94973 * 10^{13}$

From the Ramanujan expression, we obtain also:
$10^{\wedge} 13 *\left[1-\left(\left(\left(\left(1 / 2 * 1 /\left(\left(() 0.072815845483680-\left(\mathrm{Pi}^{\wedge} 2\right) / 24+1 / 2(0.582879670292435+\right.\right.\right.\right.\right.\right.\right.$ $\ln (2 \mathrm{Pi}))(0.582879670292435-\ln (\mathrm{Pi} /(2 \sin (1 / 2 * \mathrm{Pi}))))-(((\ln (1) / 1 \cos (\mathrm{Pi})+\ln (2) / 2$ $\cos (2 \mathrm{Pi}))$)))))))))))]

Input interpretation:

$$
\begin{gathered}
10^{13}\left(1-\frac{1}{2} \times 1 /\left(0.072815845483680-\frac{\pi^{2}}{24}+\frac{1}{2}(0.582879670292435+\log (2 \pi))\right.\right. \\
\left(0.582879670292435-\log \left(\frac{\pi}{2 \sin \left(\frac{1}{2} \pi\right)}\right)\right)- \\
\left.\left.\left(\frac{\log (1)}{1} \cos (\pi)+\frac{\log (2)}{2} \cos (2 \pi)\right)\right)\right)
\end{gathered}
$$

Result:

$1.95043978278841 \ldots \times 10^{13}$
$1.9504397 \ldots * 10^{13}$ result practically equal to the SMBH 87 radius $1.94973 * 10^{13}$

Alternative representations:

10^{13}

$$
\begin{aligned}
& \left(1-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2\right.\right.\right. \\
& \pi))\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)=10^{13} \\
& \left(1-1 /\left(2 \left(0.0728158454836800000+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right.\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \cos (0)}\right)\right)- \\
& \left.\left.\left.\frac{1}{2} \log (1)\left(e^{-i \pi}+e^{i \pi}\right)-\frac{1}{4} \log (2)\left(e^{-2 i \pi}+e^{2 i \pi}\right)-\frac{\pi^{2}}{24}\right)\right)\right)
\end{aligned}
$$

10^{13}

$$
\begin{gathered}
\left(1-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2\right.\right.\right. \\
\pi))\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)= \\
\left.10^{13}\left(1-1 /\left(2\left(\begin{array}{l}
0.0728158454836800000-\cosh (-i \pi) \log _{e}(1)- \\
\frac{1}{2} \cosh (-2 i \pi) \log _{e}(2)+\frac{1}{2}\left(0.5828796702924350000+\log _{e}(2 \pi)\right) \\
\left(0.5828796702924350000-\log _{e}\left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)
\end{array}\right)-\frac{\pi^{2}}{24}\right)\right)\right)
\end{gathered}
$$

10^{13}

$$
\begin{aligned}
& \left(1-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2\right.\right.\right. \\
& \pi))\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)=10^{13} \\
& \left(1-1 /\left(2 \left(0.0728158454836800000-\cosh (i \pi) \log (a) \log _{a}(1)-\frac{1}{2} \cosh (2 i \pi)\right.\right.\right. \\
& \log (a) \log _{a}(2)+\frac{1}{2}\left(0.5828796702924350000+\log (a) \log _{a}(2 \pi)\right) \\
& \left.\left.\left.\left(0.5828796702924350000-\log (a) \log _{a}\left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\frac{\pi^{2}}{24}\right)\right)\right)
\end{aligned}
$$

Integral representations:

$$
\begin{gathered}
10^{13}\left(1-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\right.\right.\right. \\
\log (2 \pi))\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)=
\end{gathered}
$$

$$
\left(1.00000000000000000 \times 10^{13}(6.1754351879090672+\right.
$$

$$
1.00000000000000000 \pi^{2}-24.0000000000000000
$$

$$
\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{e^{-\pi^{2} / s+s}\left(2 e^{\left(3 \pi^{2}\right) /(4 s)} \log (1)+\log (2)\right) \sqrt{\pi}}{4 i \pi \sqrt{s}} d s-
$$

$$
6.9945560435092200 \log (2 \pi)+
$$

$$
6.9945560435092200 \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)+
$$

$\left.\left.12.0000000000000000 \log (2 \pi) \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)\right)\right) /$

$$
\left(-5.8245648120909328+1.00000000000000000 \pi^{2}-\right.
$$

24.0000000000000000

$$
\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{e^{-\pi^{2} / s+s}\left(2 e^{\left(3 \pi^{2}\right) /(4 s)} \log (1)+\log (2)\right) \sqrt{\pi}}{4 i \pi \sqrt{s}} d s-
$$

$6.9945560435092200 \log (2 \pi)+$
$6.9945560435092200 \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)+$
$\left.12.0000000000000000 \log (2 \pi) \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)\right)$ for $\gamma>0$

$$
\begin{aligned}
& 10^{13}\left(1-1 / / 2\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\right.\right. \\
& \log (2 \pi))\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)= \\
& \left(1.00000000000000000 \times 10^{13}(6.1754351879090672+\right. \\
& 1.00000000000000000 \pi^{2}- \\
& 24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t- \\
& 6.9945560435092200 \log (2 \pi)+ \\
& 6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)+ \\
& \left.12.0000000000000000 \log (2 \pi) \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right) / \\
& \left(\begin{array}{l}
-5.8245648120909328+1.00000000000000000 \pi^{2}- \\
24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t-
\end{array}\right. \\
& 6.9945560435092200 \log (2 \pi)+ \\
& 6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)+ \\
& \left.12.0000000000000000 \log (2 \pi) \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& 10^{13}\left(1-1 / / 2\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\right.\right. \\
& \log (2 \pi))\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)= \\
& \left(1.00000000000000000 \times 10^{13}(6.1754351879090672+\right. \\
& 1.00000000000000000 \pi^{2}- \\
& 24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t- \\
& 6.9945560435092200 \log (2 \pi)+ \\
& 6.9945560435092200 \log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)+ \\
& \left.12.0000000000000000 \log (2 \pi) \log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)\right) / \\
& \left(-5.8245648120909328+1.00000000000000000 \pi^{2}-\right. \\
& 24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t- \\
& 6.9945560435092200 \log (2 \pi)+ \\
& 6.9945560435092200 \log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)+ \\
& 12.0000000000000000 \log (2 \pi) \\
& \left.\log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)\right) \text { for } 0<\gamma<1
\end{aligned}
$$

$$
\begin{aligned}
& 10^{13}\left(1-1 / \int 2\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\right.\right. \\
& \log (2 \pi))\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)= \\
& \left(1.00000000000000000 \times 10^{13}(6.1754351879090672+\right. \\
& 1.00000000000000000 \pi^{2}+24.0000000000000000 \log (1)- \\
& 24.0000000000000000 \pi \log (1) \int_{0}^{1} \sin (\pi t) d t+ \\
& 12.0000000000000000 \log (2)-24.0000000000000000 \pi \log (2) \\
& \int_{0}^{1} \sin (2 \pi t) d t-6.9945560435092200 \log (2 \pi)+ \\
& 6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)+ \\
& \left.12.0000000000000000 \log (2 \pi) \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right) / \\
& \left(-5.8245648120909328+1.00000000000000000 \pi^{2}+\right. \\
& 24.0000000000000000 \log (1)- \\
& 24.0000000000000000 \pi \log (1) \int_{0}^{1} \sin (\pi t) d t+ \\
& 12.0000000000000000 \log (2)- \\
& 24.0000000000000000 \pi \log (2) \int_{0}^{1} \sin (2 \pi t) d t- \\
& 6.9945560435092200 \log (2 \pi)+ \\
& 6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)+ \\
& \left.12.0000000000000000 \log (2 \pi) \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right) \text { for } \gamma>0
\end{aligned}
$$

Multiple-argument formulas:

10^{13}

$$
\begin{array}{r}
1-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2\right.\right. \\
\pi))\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)=10000000000000
\end{array}
$$

$$
\left(1-1 / / 2\left(0.0728158454836800000-\frac{\pi^{2}}{24}-0.5000000000000000000\right.\right.
$$

$$
(0.5828796702924350000+\log (2)+\log (\pi))
$$

$$
\left(-0.5828796702924350000+\log \left(\frac{1}{2}\right)+\log \left(\frac{\pi}{\sin \left(\frac{\pi}{2}\right)}\right)\right)+
$$

$$
\left.\left.\log (1)\left(-1+2 \sin ^{2}\left(\frac{\pi}{2}\right)\right)+\frac{1}{2} \log (2)\left(-1+2 \sin ^{2}(\pi)\right)\right)\right)^{2}
$$

10^{13}

$$
\begin{array}{r}
1-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2\right.\right. \\
\pi))\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)=10000000000000
\end{array}
$$

$$
\left(1-1 / / 2\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\log (1)-2 \cos ^{2}\left(\frac{\pi}{2}\right) \log (1)-\right.\right.
$$

$$
\frac{1}{2}\left(-1+2 \cos ^{2}(\pi)\right) \log (2)-0.5000000000000000000
$$

$$
(0.5828796702924350000+\log (2)+\log (\pi))
$$

$$
\left.\left.\left.\left(-0.5828796702924350000+\log \left(\frac{1}{2}\right)+\log \left(\frac{\pi}{\sin \left(\frac{\pi}{2}\right)}\right)\right)\right)\right)\right)
$$

10^{13}

$$
\begin{aligned}
& \left(1-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2\right.\right.\right. \\
& \pi))\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)=10000000000000 \\
& \left(1-1 /\left(2 \left(\begin{array}{c}
0.0728158454836800000-\frac{\pi^{2}}{24}+\cos \left(\frac{\pi}{3}\right)\left(3-4 \cos ^{2}\left(\frac{\pi}{3}\right)\right) \log (1)+ \\
\frac{1}{2} \cos \left(\frac{2 \pi}{3}\right)\left(3-4 \cos ^{2}\left(\frac{2 \pi}{3}\right)\right) \log (2)-0.5000000000000000000 \\
(0.5828796702924350000+\log (2)+\log (\pi)) \\
\left.\left.\left.\left(-0.5828796702924350000+\log \left(\frac{1}{2}\right)+\log \left(\frac{\pi}{\sin \left(\frac{\pi}{2}\right)}\right)\right)\right)\right)\right)
\end{array}\right.\right.\right.
\end{aligned}
$$

We note that:
$10^{\wedge} 13 *[1-((((1 / 2 * 1 /(()(0.072815845483680-(\mathrm{x} / 4)+1 / 2(0.582879670292435+$ $\ln (2 \mathrm{Pi}))(0.582879670292435-\ln (\mathrm{Pi} /(2 \sin (1 / 2 * \mathrm{Pi}))))-(((\ln (1) / 1 \cos (\mathrm{Pi})+\ln (2) / 2$ $\cos (2 \mathrm{Pi}))))))))$)))) $)]=1.9504397827 \mathrm{e}+13$

Input interpretation:

$$
\begin{array}{r}
10^{13}\left(1-\frac{1}{2} \times 1 /\left(0.072815845483680-\frac{x}{4}+\frac{1}{2}(0.582879670292435+\log (2 \pi))\right.\right. \\
\left(0.582879670292435-\log \left(\frac{\pi}{2 \sin \left(\frac{1}{2} \pi\right)}\right)\right)- \\
\left.\left.\left(\frac{\log (1)}{1} \cos (\pi)+\frac{\log (2)}{2} \cos (2 \pi)\right)\right)\right)=1.9504397827 \times 10^{13}
\end{array}
$$

$\log (x)$ is the natural logarithm

Result:

$10000000000000\left(1-\frac{1}{2\left(-\frac{x}{4}-0.11483873852656\right)}\right)=1.9504397827 \times 10^{13}$

Plot:

Alternate form assuming x is real:
$\frac{2.000000 \times 10^{13}}{1.0000000 x+0.4593550}=9.50440 \times 10^{12}$

Alternate forms:

$\frac{1.0000000000000 \times 10^{13}(x+2.4593549541062)}{x+0.45935495410625}=1.9504397827 \times 10^{13}$
$\frac{1.0000000000000 \times 10^{13}(1.0000000000000 x+2.459354954106)}{1.0000000000000 x+0.4593549541062}=$
$1.9504397827 \times 10^{13}$
Alternate form assuming \mathbf{x} is positive:
$9.504397827 \times 10^{12} x=1.5634107772 \times 10^{13}$ (for $x \neq-0.4593549541062$)

Expanded form:

$10000000000000-\frac{5000000000000}{-\frac{x}{4}-0.11483873852656}=19504397827000$

Solution:

$x \approx 1.644934067$
$1.644934067=\zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

From:
$\frac{1.0000000000000 \times 10^{13}(x+2.4593549541062)}{x+0.45935495410625}=1.9504397827 \times 10^{13}$
We have also:
$\left(1.0000000000000 \times 10^{\wedge} 13(\mathrm{x}+2.4593549541062+0.027)\right) /(\mathrm{x}+$ $0.45935495410625+0.027)=1.9504397827 \times 10^{\wedge} 13$

Input interpretation:

$$
\frac{1.0000000000000 \times 10^{13}(x+2.4593549541062+0.027)}{x+0.45935495410625+0.027}=1.9504397827 \times 10^{13}
$$

Result:

$\frac{1.0000000000000 \times 10^{13}(x+2.48635)}{x+0.486355}=1.9504397827 \times 10^{13}$
Plot:

Alternate form assuming x is real:

$\frac{2 . \times 10^{13}}{x+0.486355}=9.5044 \times 10^{12}$

Alternate form:

$\frac{1 \times 10^{13} x+2.48635 \times 10^{13}}{x+0.486355}=1.9504397827 \times 10^{13}$

Alternate form assuming x is positive:

$9.5044 \times 10^{12} x=1.53775 \times 10^{13}$

Expanded form:

$\frac{10000000000000 x}{x+0.486355}+\frac{2.48635 \times 10^{13}}{x+0.486355}=19504397827000$

Alternate form assuming $\mathbf{x}>0$:

$\frac{1 \times 10^{13} x+2.48635 \times 10^{13}}{x+0.486355}=1.9504397827 \times 10^{13}$

Solution:

$x \approx 1.61793$
$1.61793 \approx 1.61803398 \ldots=$ golden ratio

The surface area of the SMBH87 is $4.77706 * 10^{27}$. From the previous expression, we have:
$10^{\wedge} 27 *\left[-(728)^{\wedge} 1 / 3 *\left(\left(\left(\left(0.072815845483680-\left(\mathrm{Pi}^{\wedge} 2\right) / 24+1 / 2(0.582879670292435+\right.\right.\right.\right.\right.$ $\ln (2 \mathrm{Pi}))(0.582879670292435-\ln (\mathrm{Pi} /(2 \sin (1 / 2 * \mathrm{Pi}))))-(((\ln (1) / 1 \cos (\mathrm{Pi})+\ln (2) / 2$ $\left.\cos (2 \mathrm{Pi}))))))))+(47-2)^{*} 1 / 10^{\wedge} 3\right]$

Input interpretation:

$$
\begin{gathered}
10^{27}\left(-\sqrt[3]{728}\left(0.072815845483680-\frac{\pi^{2}}{24}+\frac{1}{2}(0.582879670292435+\log (2 \pi))\right.\right. \\
\\
\left(0.582879670292435-\log \left(\frac{\pi}{2 \sin \left(\frac{1}{2} \pi\right)}\right)\right)- \\
\left.\left.\left(\frac{\log (1)}{1} \cos (\pi)+\frac{\log (2)}{2} \cos (2 \pi)\right)\right)+(47-2) \times \frac{1}{10^{3}}\right)
\end{gathered}
$$

$\log (x)$ is the natural logarithm

Result:

$4.77748440009457 \ldots \times 10^{27}$
$4.77748440009457 \ldots * 10^{27}$

Alternative representations:

$$
\begin{aligned}
& 10^{27}(-\sqrt[3]{728} \\
& \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)+\frac{47-2}{10^{3}}\right)= \\
& 10^{27}\left(-\sqrt[3]{728}\left(0.0728158454836800000+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \cos (0)}\right)\right)- \\
& \left.\left.\frac{1}{2} \log (1)\left(e^{-i \pi}+e^{i \pi}\right)-\frac{1}{4} \log (2)\left(e^{-2 i \pi}+e^{2 i \pi}\right)-\frac{\pi^{2}}{24}\right)+\frac{45}{10^{3}}\right)
\end{aligned}
$$

$10^{27}(-\sqrt[3]{728}$

$$
\begin{gathered}
\left(\begin{array}{c}
0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi)) \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)+\frac{47-2}{10^{3}}\right)= \\
10^{27}\left(-\sqrt[3]{728}\left(0.0728158454836800000-\cosh (i \pi) \log (a) \log _{a}(1)-\frac{1}{2} \cosh (2 i \pi)\right.\right. \\
\\
\\
\log (a) \log _{a}(2)+\frac{1}{2}\left(0.5828796702924350000+\log (a) \log _{a}(2 \pi)\right) \\
\left.\left.\left(0.5828796702924350000-\log (a) \log _{a}\left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\frac{\pi^{2}}{24}\right)+\frac{45}{10^{3}}\right)
\end{array}\right.
\end{gathered}
$$

$10^{27}(-\sqrt[3]{728}$

$$
\begin{gathered}
\begin{array}{r}
0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi)) \\
\\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)+\frac{47-2}{10^{3}}\right)= \\
10^{27}\left(-\sqrt[3]{728}\left(0.0728158454836800000-\cosh (-i \pi) \log (a) \log _{a}(1)-\frac{1}{2} \cosh (-2 i \pi)\right.\right. \\
\\
\\
\\
\log (a) \log _{a}(2)+\frac{1}{2}\left(0.5828796702924350000+\log (a) \log _{a}(2 \pi)\right) \\
\\
\left.\left.\left(0.5828796702924350000-\log (a) \log _{a}\left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\frac{\pi^{2}}{24}\right)+\frac{45}{10^{3}}\right)
\end{array}
\end{gathered}
$$

Integral representations:

$\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.$ $\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-$ $\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)+\frac{47-2}{10^{3}}\right)=$
$-2.13821262241638459 \times 10^{27}+3.74828453772951233 \times 10^{26} \pi^{2}+$
1.00000000000000000

$$
\begin{gathered}
\int_{\frac{\pi}{2}}^{\pi}\left(-8.9958828905508296 \times 10^{27} \log (1) \sin (t)-\right. \\
\left.1.34938243358262444 \times 10^{28} \log (2) \sin (-\pi+3 t)\right) d t- \\
2.62175862661681234 \times 10^{27} \log (2 \pi)+2.62175862661681234 \times 10^{27}
\end{gathered}
$$

$$
\log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)+
$$

$4.49794144527541480 \times 10^{27} \log (2 \pi) \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)$

$$
\begin{aligned}
& 10^{27}(-\sqrt[3]{728} \\
& \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)+\frac{47-2}{10^{3}}\right)= \\
& -2.13821262241638459 \times 10^{27}+3.74828453772951233 \times 10^{26} \pi^{2}+ \\
& 1.00000000000000000 \\
& \int_{0}^{1} \pi\left(-8.9958828905508296 \times 10^{27} \log (1) \sin (\pi t)-\right. \\
& \left.8.9958828905508296 \times 10^{27} \log (2) \sin (2 \pi t)\right) d t+ \\
& 8.9958828905508296 \times 10^{27} \log (1)+4.49794144527541480 \times 10^{27} \log (2)- \\
& 2.62175862661681234 \times 10^{27} \log (2 \pi)+ \\
& 2.62175862661681234 \times 10^{27} \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)+ \\
& 4.49794144527541480 \times 10^{27} \log (2 \pi) \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right) \\
& 10^{27}\left(-\sqrt[3]{728}\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\right.\right. \\
& \frac{1}{2}(0.5828796702924350000+\log (2 \pi))(0.5828796702924350000- \\
& \left.\left.\left.\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)+\frac{47-2}{10^{3}}\right)= \\
& -2.13821262241638459 \times 10^{27}+3.74828453772951233 \times 10^{26} \pi^{2}+ \\
& 1.00000000000000000 \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{1}{i \pi \sqrt{s}} e^{-\pi^{2} / s+s}\left(4.49794144527541480 \times 10^{27} e^{\left(3 \pi^{2}\right) /(4 s)} \log (1)+\right. \\
& \left.2.24897072263770740 \times 10^{27} \log (2)\right) \sqrt{\pi} d s- \\
& 2.62175862661681234 \times 10^{27} \log (2 \pi)+2.62175862661681234 \times 10^{27} \\
& \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)+ \\
& 4.49794144527541480 \times 10^{27} \log (2 \pi) \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right) \text { for } \gamma>0
\end{aligned}
$$

Multiple-argument formulas:

$10^{27}(-\sqrt[3]{728}$

$$
\begin{aligned}
& \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)+\frac{47-2}{10^{3}}\right)=
\end{aligned}
$$

1000000000000000000000000000

$$
\left(\frac{9}{200}-2 \sqrt[3]{91}\left(0.0728158454836800000-\frac{\pi^{2}}{24}-\right.\right.
$$

$$
0.5000000000000000000(0.5828796702924350000+\log (2)+\log (\pi))
$$

$$
\left(-0.5828796702924350000+\log \left(\frac{1}{2}\right)+\log \left(\frac{\pi}{\sin \left(\frac{\pi}{2}\right)}\right)\right)+
$$

$$
\left.\log (1)\left(-1+2 \sin ^{2}\left(\frac{\pi}{2}\right)\right)+\frac{1}{2} \log (2)\left(-1+2 \sin ^{2}(\pi)\right)\right)
$$

$10^{27}(-\sqrt[3]{728}$

$$
\begin{aligned}
& \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)+\frac{47-2}{10^{3}}\right)=
\end{aligned}
$$

1000000000000000000000000000

$$
\begin{aligned}
&\left(\frac{9}{200}-2 \sqrt[3]{91}\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\right.\right. \\
& \frac{1}{2}(0.5828796702924350000+\log (2)+\log (\pi)) \\
&\left(0.5828796702924350000-\log \left(\frac{1}{2}\right)-\log \left(\frac{\pi}{\sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
&\left(\log (1)\left(1-2 \sin ^{2}\left(\frac{\pi}{2}\right)\right)-\frac{1}{2} \log (2)\left(1-2 \sin ^{2}(\pi)\right)\right)
\end{aligned}
$$

$10^{27}(-\sqrt[3]{728}$

$$
\begin{gathered}
\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)+\frac{47-2}{10^{3}}\right)=
\end{gathered}
$$

1000000000000000000000000000

$$
\begin{aligned}
&\left(\frac{9}{200}-2 \sqrt[3]{91}\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\right.\right. \\
& \log (1)-2 \cos ^{2}\left(\frac{\pi}{2}\right) \log (1)-\frac{1}{2}\left(-1+2 \cos ^{2}(\pi)\right) \log (2)- \\
& 0.5000000000000000000(0.5828796702924350000+\log (2)+\log (\pi)) \\
&\left.\left.\left(-0.5828796702924350000+\log \left(\frac{1}{2}\right)+\log \left(\frac{\pi}{\sin \left(\frac{\pi}{2}\right)}\right)\right)\right)\right)
\end{aligned}
$$

Now, we have that:
From
Traversable wormholes in $f(\mathrm{R}, \mathrm{T})$ gravity with conformal motions Ayan Banerjee, Ksh. Newton Singh, M. K. Jasim, 4 and Farook Rahaman arXiv:1908.04754v1 [gr-qc] 10 Aug 2019

Our aim here is to restrict the dimensions of these wormholes not to arbitrarily large. For this, the exterior Schwarzschild is given by

$$
\begin{equation*}
d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{2}+\frac{d r^{2}}{\left(1-\frac{2 M}{r}\right)}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right), \tag{28}
\end{equation*}
$$

FIG. 3: Vaviation of $b(r)-r$ with $A=1.23$, $\chi=-2, \omega=-2, c_{3}=7.74$ (WH1) and
$B=-0.44, \quad \chi=-2, n=-0.4, c_{3}=-10($ WH2 $)$.

FIG. 6: Variation all the physical quantities and energy conditions with $B=-0.44, \chi=-2, n=-0.4, c_{3}=-10$ for WH2.

The case of a isotropic wormhole i.e. when $p_{r}=p_{t}$ is particularly simple one, yet it provides enough interesting results [30]. In order to analyze solutions we shall now on take into consideration Eqs. (24) and (25), which yield

$$
\begin{align*}
\psi(r)= & \frac{1}{\sqrt{2 \chi+2 \pi(\omega+3)}}\{\exp [4\{\chi+\pi(\omega+3)\}(A+ \\
& \left.\left.\left.\frac{2 \log r}{\chi-3 \chi \omega-8 \pi \omega}\right)\right]+C_{3}^{2}(\chi+2 \pi)(\omega+1)\right\}^{\frac{1}{2}},(36 \tag{36}
\end{align*}
$$

for $\mathrm{A}=1.23, \chi=-2, \omega=-2, \mathrm{r}=1.94973 \mathrm{e}+13, \mathrm{c}_{3}=7.74$ or $-10, \mathrm{~B}=-0.44, \mathrm{n}=-0.4$
The Supermassive Black Hole of M87 is about 6,6 billion of M_{\odot} (solar masses), with a mass of $13.12806 \mathrm{e}+39$
$6.59904323563420642501633904781056759338394248655170680 \ldots \times 10^{9}$
$6.599043235634 \ldots * 10^{9} \approx 6.6 * 10^{9}$ solar masses
The Schwarzschild radius is: $1.94973 * 10^{13}$
$1 /(-4+2 \mathrm{Pi})^{\wedge} 1 / 2 *[\exp ((((((4(-2+\mathrm{Pi}))) *(1.23+((2 \ln (1.94973 \mathrm{e}+13) /((-2-3(4)-8 \mathrm{Pi}(-$ $\left.2)))()))))))+7.74 \wedge 2(-2+2 \mathrm{Pi})^{*}-1\right]^{\wedge} 1 / 2$

Input interpretation:

$$
\frac{1}{\sqrt{-4+2 \pi}} \sqrt{\exp \left((4(-2+\pi))\left(1.23+2 \times \frac{\log \left(1.94973 \times 10^{13}\right)}{-2-3 \times 4-8 \pi \times(-2)}\right)\right)+7.74^{2}(-2+2 \pi) \times(-1)}
$$

Result:

517.229...
517.229...

From the previous Ramanujan expression
$0.072815845483680-\frac{\pi^{2}}{24}+$

$$
\begin{aligned}
& \frac{1}{2}(0.582879670292435+\log (2 \pi))\left(0.582879670292435-\log \left(\frac{\pi}{2 \sin \left(\frac{1}{2} \pi\right)}\right)\right)- \\
& \left(\frac{\log (1)}{1} \cos (\pi)+\frac{\log (2)}{2} \cos (2 \pi)\right)
\end{aligned}
$$

We have also:
$-\mathrm{Pi}^{\wedge} 2^{*} 10^{\wedge} 2^{*}\left(\left(\left(\left(0.072815845483680-\left(\mathrm{Pi}^{\wedge} 2\right) / 24+1 / 2(0.582879670292435+\right.\right.\right.\right.$ $\ln (2 \mathrm{Pi}))(0.582879670292435-\ln (\mathrm{Pi} /(2 \sin (1 / 2 * \mathrm{Pi}))))-(((\ln (1) / 1 \cos (\mathrm{Pi})+\ln (2) / 2$ $\cos (2 \mathrm{Pi})))))$))) -2

Input interpretation:

$$
\begin{gathered}
-\pi^{2}\left(1 0 ^ { 2 } \left(0.072815845483680-\frac{\pi^{2}}{24}+\frac{1}{2}(0.582879670292435+\log (2 \pi))\right.\right. \\
\left(0.582879670292435-\log \left(\frac{\pi}{2 \sin \left(\frac{1}{2} \pi\right)}\right)\right)- \\
\left.\left.\left(\frac{\log (1)}{1} \cos (\pi)+\frac{\log (2)}{2} \cos (2 \pi)\right)\right)\right)-2
\end{gathered}
$$

Result:

517.212504559407...
517.212504559407...

Alternative representations:

$$
\begin{gathered}
-\pi^{2} 10^{2}\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)-2= \\
-2-10^{2} \pi^{2}\left(0.0728158454836800000+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \cos (0)}\right)\right)- \\
\left.\frac{1}{2} \log (1)\left(e^{-i \pi}+e^{i \pi}\right)-\frac{1}{4} \log (2)\left(e^{-2 i \pi}+e^{2 i \pi}\right)-\frac{\pi^{2}}{24}\right)
\end{gathered}
$$

$$
\begin{aligned}
& -\pi^{2} 10^{2}\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)-2= \\
& -2-10^{2} \pi^{2}\left(0.0728158454836800000-\cosh (i \pi) \log (a) \log _{a}(1)-\right. \\
& \frac{1}{2} \cosh (2 i \pi) \log (a) \log _{a}(2)+\frac{1}{2}\left(0.5828796702924350000+\log (a) \log _{a}(2 \pi)\right) \\
& \left.\left(0.5828796702924350000-\log (a) \log _{a}\left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\frac{\pi^{2}}{24}\right) \\
& -\pi^{2} 10^{2}\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)-2= \\
& -2-10^{2} \pi^{2}\left(0.0728158454836800000-\cosh (-i \pi) \log (a) \log _{a}(1)-\frac{1}{2} \cosh (-2 i \pi)\right. \\
& \log (a) \log _{a}(2)+\frac{1}{2}\left(0.5828796702924350000+\log (a) \log _{a}(2 \pi)\right) \\
& \left.\left(0.5828796702924350000-\log (a) \log _{a}\left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\frac{\pi^{2}}{24}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{gathered}
-\pi^{2} 10^{2}\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)-2=
\end{gathered}
$$

$4.16666666666666667(-0.480000000000000000-$ $5.82456481209093279 \pi^{2}+1.00000000000000000 \pi^{4}+$
$0.240000000000000000 \int_{\frac{\pi}{2}}^{\pi}-50 \pi^{2}(2 \log (1) \sin (t)+3 \log (2) \sin (-\pi+3 t)) d t-$
$6.99455604350922000 \pi^{2} \log (2 \pi)+$
$6.99455604350922000 \pi^{2} \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)+$
$\left.12.0000000000000000 \pi^{2} \log (2 \pi) \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)\right)$

$$
-\pi^{2} 10^{2}\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.
$$

$$
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-
$$

$$
\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)-2=
$$

$4.16666666666666667(-0.480000000000000000-$
$5.82456481209093279 \pi^{2}+1.00000000000000000 \pi^{4}+$
$0.240000000000000000 \int_{0}^{1}-100 \pi^{3}(\log (1) \sin (\pi t)+\log (2) \sin (2 \pi t)) d t+$
$24.0000000000000000 \pi^{2} \log (1)+12.0000000000000000 \pi^{2} \log (2)-$
$6.99455604350922000 \pi^{2} \log (2 \pi)+$
$6.99455604350922000 \pi^{2} \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)+$
$\left.12.0000000000000000 \pi^{2} \log (2 \pi) \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)\right)$

$$
\begin{aligned}
& -\pi^{2} 10^{2}\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)-2= \\
& 4.16666666666666667\left(-0.480000000000000000-5.82456481209093279 \pi^{2}+\right. \\
& 1.000000000000000000 \pi^{4}+0.240000000000000000 \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma} 25 e^{-\pi^{2} / s+s} \pi\left(2 e^{\left(3 \pi^{2}\right) /(4 s)} \log (1)+\log (2)\right) \sqrt{\pi} \\
& 6.99455604350922000 \pi^{2} \log (2 \pi)+ \\
& 6.99455604350922000 \pi^{2} \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)+ \\
& \left.12.0000000000000000 \pi^{2} \log (2 \pi) \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)\right) \text { for } \gamma>0
\end{aligned}
$$

Multiple-argument formulas:

$$
\begin{aligned}
& -\pi^{2} 10^{2}\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)-2= \\
& -2-100 \pi^{2}\left(0.0728158454836800000-\frac{\pi^{2}}{24}-\right. \\
& 0.5000000000000000000(0.5828796702924350000+\log (2)+\log (\pi)) \\
& \left(-0.5828796702924350000+\log \left(\frac{1}{2}\right)+\log \left(\frac{\pi}{\sin \left(\frac{\pi}{2}\right)}\right)\right)+ \\
& \left(\log (1)\left(-1+2 \sin ^{2}\left(\frac{\pi}{2}\right)\right)+\frac{1}{2} \log (2)\left(-1+2 \sin ^{2}(\pi)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\pi^{2} 10^{2}\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)-2= \\
& -2-100 \pi^{2}\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\log (1)-\right. \\
& \\
& 2 \cos ^{2}\left(\frac{\pi}{2}\right) \log (1)-\frac{1}{2}\left(-1+2 \cos ^{2}(\pi)\right) \log (2)- \\
& 0.5000000000000000000(0.5828796702924350000+\log (2)+\log (\pi)) \\
& \left.\left.\left(-0.5828796702924350000+\log \left(\frac{1}{2}\right)+\log \left(\frac{\pi}{\sin \left(\frac{\pi}{2}\right)}\right)\right)\right)\right)
\end{aligned}
$$

$-\pi^{2} 10^{2}\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.$ $\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-$

$$
\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)-2=
$$

$$
-2-100 \pi^{2}\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\cos \left(\frac{\pi}{3}\right)\left(3-4 \cos ^{2}\left(\frac{\pi}{3}\right)\right) \log (1)+\right.
$$

$$
\frac{1}{2} \cos \left(\frac{2 \pi}{3}\right)\left(3-4 \cos ^{2}\left(\frac{2 \pi}{3}\right)\right) \log (2)-
$$

$$
0.5000000000000000000(0.5828796702924350000+\log (2)+\log (\pi))
$$

$$
\left.\left(-0.5828796702924350000+\log \left(\frac{1}{2}\right)+\log \left(\frac{\pi}{\sin \left(\frac{\pi}{2}\right)}\right)\right)\right)
$$

Here, we investigate the wormhole solution for a particularly interesting anisotropy, already explored in [15, 33], given by

$$
\begin{equation*}
p_{t}=n p_{r}, \tag{44}
\end{equation*}
$$

where the state parameter n is a constant. With this assumption and solving the differential equations (33)(35), as the same procedure for WH1, the function $\psi(r)$ takes the form

$$
\begin{align*}
\psi(r)= & \frac{1}{\sqrt{2 n \chi+\pi(6 n-2)}}\left[e^{4 B \Omega} r^{\Lambda}((n+3) \chi+8 \pi)^{\Lambda}+\right. \\
& \left.C_{3}^{2} n(\chi+2 \pi)\right]^{1 / 2} \tag{45}
\end{align*}
$$

where $\Lambda=\frac{8(n \chi+\pi(3 n-1))}{(n+3) \chi+8 \pi}$ and $\Omega=n \chi+\pi(3 n-1)$.
for $\mathrm{A}=1.23, \chi=-2, \omega=-2, \mathrm{r}=1.94973 \mathrm{e}+13, \mathrm{c}_{3}=7.74$ or $-10, \mathrm{~B}=-0.44, \mathrm{n}=-0.4$
$-0.4(-2)+\operatorname{Pi}\left(\left(3^{*}(-0.4)-1\right)\right)$

Input:

$-0.4 \times(-2)+\pi(3 \times(-0.4)-1)$

Result:

-6.11150..
$\Omega=-6.11150 \ldots$
$\left(\left(\left(8\left(-0.4^{*}-2+\operatorname{Pi}\left(\left(3^{*}-0.4\right)-1\right)\right)\right)\right) /(((-0.4+3) *-2+8 \mathrm{Pi}))\right)$

Input:

$\frac{8(-0.4 \times(-2)+\pi(3 \times(-0.4)-1))}{(-0.4+3) \times(-2)+8 \pi}$

Result:

-2.45285.
$\Lambda=-2.45285 \ldots$

Alternative representations:

$\frac{8(-0.4(-2)+\pi(3(-0.4)-1))}{(-0.4+3)(-2)+8 \pi}=\frac{8\left(0.8-396 .^{\circ}\right)}{-5.2+1440^{\circ}}$
$\frac{8(-0.4(-2)+\pi(3(-0.4)-1))}{(-0.4+3)(-2)+8 \pi}=\frac{8(0.8+2.2 i \log (-1))}{-5.2-8 i \log (-1)}$
$\frac{8(-0.4(-2)+\pi(3(-0.4)-1))}{(-0.4+3)(-2)+8 \pi}=\frac{8\left(0.8-2.2 \cos ^{-1}(-1)\right)}{-5.2+8 \cos ^{-1}(-1)}$

Series representations:

$\frac{8(-0.4(-2)+\pi(3(-0.4)-1))}{(-0.4+3)(-2)+8 \pi}=-\frac{2.2\left(-0.0909091+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)}{-0.1625+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}$
$\frac{8(-0.4(-2)+\pi(3(-0.4)-1))}{(-0.4+3)(-2)+8 \pi}=-\frac{2.2\left(-1.18182+\sum_{k=1}^{\infty} \frac{2^{k}}{\binom{k k}{k}}\right)}{\left.-1.325+\sum_{k=1}^{\infty} \frac{2^{k}}{(2 k} \begin{array}{c} \\ k\end{array}\right)}$
$\frac{8(-0.4(-2)+\pi(3(-0.4)-1))}{(-0.4+3)(-2)+8 \pi}=-\frac{2.2\left(-0.363636+x+2 \sum_{k=1}^{\infty} \frac{\sin (k x)}{k}\right)}{-0.65+x+2 \sum_{k=1}^{\infty} \frac{\sin (k x)}{k}}$
for ($x \in \mathbb{R}$ and $x>0$)

Now, we have:
$1 /\left(\left(\left(\left(2^{*}(-0.4)(-2)+\operatorname{Pi}((6(-0.4)-2))\right)\right)\right)\right)^{\wedge} 1 / 2$

Input:

$\frac{1}{\sqrt{2 \times(-0.4) \times(-2)+\pi(6 \times(-0.4)-2)}}$

Result:

- 0.286030... i

Polar coordinates:

$r=0.28603$ (radius), $\theta=-90^{\circ}$ (angle)
0.28603

$$
\begin{align*}
\psi(r)= & \frac{1}{\sqrt{2 n \chi+\pi(6 n-2)}}\left[e^{4 B \Omega} r^{\Lambda}((n+3) \chi+8 \pi)^{\Lambda}+\right. \\
& \left.C_{3}^{2} n(\chi+2 \pi)\right]^{1 / 2} \tag{45}
\end{align*}
$$

for $\mathrm{A}=1.23, \chi=-2, \omega=-2, \mathrm{r}=1.94973 \mathrm{e}+13, \mathrm{c}_{3}=7.74$ or $-10, \mathrm{~B}=-0.44, \mathrm{n}=-0.4$ $\Omega=-6.11150 \ldots \quad \Lambda=-2.45285 \ldots$
$0.28603 *\left[\mathrm{e}^{\wedge}\left(4^{*}-0.44^{*}-6.11150\right) *(1.94973 \mathrm{e}+13)^{\wedge}(-2.45285) *(((-0.4+3) *(-\right.$ $\left.\left.\left.2)+8 \mathrm{Pi}))^{\wedge}(-2.45285)\right)\right)+7.74^{\wedge} 2^{*}-0.4(-2+2 \mathrm{Pi})\right]$

Input interpretation:

0.28603

$$
\left(\frac{e^{4 \times(-0.44) \times(-6.11150)}}{\left(1.94973 \times 10^{13}\right)^{2.45285}((-0.4+3) \times(-2)+8 \pi)^{2.45285}}+7.74^{2} \times(-0.4)(-2+2 \pi)\right)
$$

Result:

-29.3576..
-29.3576...

From the previous Ramanujan expression

$$
\begin{aligned}
& 0.072815845483680-\frac{\pi^{2}}{24}+ \\
& \frac{1}{2}(0.582879670292435+\log (2 \pi))\left(0.582879670292435-\log \left(\frac{\pi}{2 \sin \left(\frac{1}{2} \pi\right)}\right)\right)- \\
& \left(\frac{\log (1)}{1} \cos (\pi)+\frac{\log (2)}{2} \cos (2 \pi)\right)
\end{aligned}
$$

We have also:
$18 /\left(\left(\left(\left(0.072815845483680-\left(\mathrm{Pi}^{\wedge} 2\right) / 24+1 / 2(0.582879670292435+\ln (2 \mathrm{Pi}))\right.\right.\right.\right.$ $(0.582879670292435-\ln (\mathrm{Pi} /(2 \sin (1 / 2 * \mathrm{Pi}))))-(((\ln (1) / 1 \cos (\mathrm{Pi})+\ln (2) / 2$ $\cos (2 \mathrm{Pi})))))$))) +5

Input interpretation:

$18 /\left(0.072815845483680-\frac{\pi^{2}}{24}+\right.$

$$
\begin{aligned}
& \frac{1}{2}(0.582879670292435+\log (2 \pi))\left(0.582879670292435-\log \left(\frac{\pi}{2 \sin \left(\frac{1}{2} \pi\right)}\right)\right)- \\
& \left.\left(\frac{\log (1)}{1} \cos (\pi)+\frac{\log (2)}{2} \cos (2 \pi)\right)\right)+5
\end{aligned}
$$

Result:

-29.215832180383...
-29.215832180383

Alternative representations:

$$
\begin{gathered}
18 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)+5= \\
5+18 /\left(0.0728158454836800000+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \cos (0)}\right)\right)- \\
\left.\frac{1}{2} \log (1)\left(e^{-i \pi}+e^{i \pi}\right)-\frac{1}{4} \log (2)\left(e^{-2 i \pi}+e^{2 i \pi}\right)-\frac{\pi^{2}}{24}\right)
\end{gathered}
$$

$$
\begin{aligned}
& 18 /\left(\begin{array}{l}
0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi)) \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)+5= \\
5+18 /\left(0.0728158454836800000-\cosh (-i \pi) \log _{e}(1)-\right. \\
\frac{1}{2} \cosh (-2 i \pi) \log _{e}(2)+\frac{1}{2}\left(0.5828796702924350000+\log _{e}(2 \pi)\right) \\
\left.\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\frac{\pi^{2}}{24}\right)
\end{array}\right) \\
& 18 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)+5= \\
& 5+18 /\left(0.0728158454836800000-\cosh (i \pi) \log (a) \log _{a}(1)-\right. \\
& \frac{1}{2} \cosh (2 i \pi) \log (a) \log g_{a}(2)+\frac{1}{2}\left(0.5828796702924350000+\log (a) \log a g_{a}(2 \pi)\right) \\
& \left.\left(0.5828796702924350000-\log (a) \log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\frac{\pi^{2}}{24}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{gathered}
18 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)+5= \\
(5.0000000000000000(-92.224564812090933 i \pi+ \\
1.0000000000000000 i \pi^{3}+1.00000000000000000 \\
\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{1}{\sqrt{s}} e^{-\pi^{2} / s+5}\left(12.0000000000000 e^{\left(3 \pi^{2}\right) /(4 s)} \log (1)+\right. \\
6.0000000000000 \log (2)) \sqrt{\pi} d s-6.9945560435092200 \\
i \pi \log (2 \pi)+6.9945560435092200 i \pi \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)+ \\
12.0000000000000000 i \pi \log (2 \pi) \log \left(\frac{1}{\left.\left.\left.\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t\right)\right)\right) /}\right. \\
\left(-5.8245648120909328 i \pi+1.00000000000000000 i \pi^{3}+\right. \\
1.00000000000000000 \\
\int_{-i \infty+\gamma}^{i \infty} \frac{1}{\sqrt{s}} e^{-\pi^{2} / s+s}\left(12.0000000000000 e^{\left(3 \pi^{2}\right) /(4 s)} \log (1)+\right. \\
6.0000000000000 \log (2)) \sqrt{\pi} d s- \\
6.9945560435092200 i \pi \log (2 \pi)+6.9945560435092200 \\
i \pi \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)+ \\
\left.12.0000000000000000 i \pi \log (2 \pi) \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)\right)
\end{gathered}
$$

$18 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.$

$$
\begin{aligned}
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)+5= \\
& 55.0000000000000000\left(-92.224564812090933+1.00000000000000000 \pi^{2}-\right. \\
& 24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t- \\
& 6.9945560435092200 \log (2 \pi)+ \\
& 6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)+ \\
& \left.\left.12.0000000000000000 \log (2 \pi) \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right)\right) /
\end{aligned}
$$

$$
\left(\begin{array}{l}
-5.8245648120909328+1.00000000000000000 \pi^{2}- \\
\quad 24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t-
\end{array}\right.
$$

$6.9945560435092200 \log (2 \pi)+$ $6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma+\gamma}} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s\right)+$
$\left.12.0000000000000000 \log (2 \pi) \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right)$ for $\gamma>0$
$18 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.$

$$
\begin{gathered}
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)+5= \\
\left(5 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \left(-92.224564812090933+1.00000000000000000 \pi^{2}-\right.\right. \\
\\
24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t- \\
\\
6.9945560435092200 \log (2 \pi)+ \\
\\
6.9945560435092200 \log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)+ \\
\left.12.0000000000000000 \log (2 \pi) \log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty \infty+\gamma}^{i i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)\right) /
\end{gathered}
$$ $\left(-5.8245648120909328+1.00000000000000000 \pi^{2}-\right.$ $24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t-$ $6.9945560435092200 \log (2 \pi)+$ $6.9945560435092200 \log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)+$

$12.0000000000000000 \log (2 \pi)$

$$
\left.\log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)\right) \text { for } 0<\gamma<1
$$

$18 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.$

$$
\begin{gathered}
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)+5= \\
5.0000000000000000\left(-92.224564812090933+1.00000000000000000 \pi^{2}+\right. \\
24.0000000000000000 \log (1)-24.0000000000000000 \pi \log (1) \\
\int_{0}^{1} \sin (\pi t) d t+12.0000000000000000 \log (2)- \\
24.0000000000000000 \pi \log (2) \int_{0}^{1} \sin (2 \pi t) d t-6.9945560435092200 \\
\log (2 \pi)+6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty}^{i \infty+\gamma} e^{2} \frac{e^{-\pi^{2} /(16 s)+5}}{s^{3 / 2}} d s}\right)+ \\
\left.\left.12.0000000000000000 \log (2 \pi) \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right)\right) /
\end{gathered}
$$

$$
\left(-5.8245648120909328+1.00000000000000000 \pi^{2}+\right.
$$

$24.0000000000000000 \log (1)-$
$24.0000000000000000 \pi \log (1) \int_{0}^{1} \sin (\pi t) d t+$
$12.0000000000000000 \log (2)$ -
$24.0000000000000000 \pi \log (2) \int_{0}^{1} \sin (2 \pi t) d t-$
$6.9945560435092200 \log (2 \pi)+$
$6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)+$
$\left.12.0000000000000000 \log (2 \pi) \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty \alpha+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right)$ for $\gamma>0$

Multiple-argument formulas:

$$
\begin{gathered}
18 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)+5= \\
5+18 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}-\right. \\
0.5000000000000000000(0.5828796702924350000+\log (2)+\log (\pi)) \\
\left(-0.5828796702924350000+\log \left(\frac{1}{2}\right)+\log \left(\frac{\pi}{\sin \left(\frac{\pi}{2}\right)}\right)\right)+ \\
\left.\quad \log (1)\left(-1+2 \sin ^{2}\left(\frac{\pi}{2}\right)\right)+\frac{1}{2} \log (2)\left(-1+2 \sin ^{2}(\pi)\right)\right)
\end{gathered}
$$

$18 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.$ $\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-$

$$
\left.\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)\right)+5=
$$

$$
5+18 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\log (1)-\right.
$$

$$
2 \cos ^{2}\left(\frac{\pi}{2}\right) \log (1)-\frac{1}{2}\left(-1+2 \cos ^{2}(\pi)\right) \log (2)-
$$

$$
0.5000000000000000000(0.5828796702924350000+\log (2)+\log (\pi))
$$

$$
\left.\left(-0.5828796702924350000+\log \left(\frac{1}{2}\right)+\log \left(\frac{\pi}{\sin \left(\frac{\pi}{2}\right)}\right)\right)\right)
$$

$18 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.$ $\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-$ $\left(\cos (\pi) \log (1)+\frac{1}{2} \cos (2 \pi) \log (2)\right)+5=$
$5+18 /\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\cos \left(\frac{\pi}{3}\right)\left(3-4 \cos ^{2}\left(\frac{\pi}{3}\right)\right) \log (1)+\right.$
$\frac{1}{2} \cos \left(\frac{2 \pi}{3}\right)\left(3-4 \cos ^{2}\left(\frac{2 \pi}{3}\right)\right) \log (2)-$
$0.5000000000000000000(0.5828796702924350000+\log (2)+\log (\pi))$
$\left.\left(-0.5828796702924350000+\log \left(\frac{1}{2}\right)+\log \left(\frac{\pi}{\sin \left(\frac{\pi}{2}\right)}\right)\right)\right)$

Now, we have that:

$$
\begin{align*}
I_{V}(\boldsymbol{W H} 1)= & {\left[a\left(1-\frac{b(a)}{a}\right) \ln \left(\frac{e^{\nu(a)}}{1-b / a}\right)\right]-} \\
& {\left[\frac{r(\chi+2 \pi)(\omega+1)}{\zeta}-\frac{(\chi+4 \pi)(\omega+1) e^{4 A \zeta}}{C_{3}^{2} \zeta[8 \pi-\chi(\omega-3)]}\right.} \\
& r^{q / p}-\frac{r\left[e^{4 A \zeta} r^{-\sigma}+C_{3}^{2}(\chi+2 \pi)(\omega+1)\right]}{2 C_{3}^{2} \zeta} \\
& \left.\log \left(\frac{2 C_{2}^{2} C_{3}^{2} \zeta r^{2}}{e^{4 A \zeta} r^{-\sigma}+C_{3}^{2}(\chi+2 \pi)(\omega+1)}\right)\right]_{r_{0}}^{a} \\
I_{V}(\boldsymbol{W H})= & {\left[a\left(1-\frac{b(a)}{a}\right) \ln \left(\frac{e^{\nu(a)}}{1-b / a}\right)\right]-} \\
& {\left[\left\{\frac{2(n-1)(\chi+4 \pi) e^{4 B \Omega} r^{\Sigma}}{(3 n \chi+8 \pi n+\chi)[(n+3) \chi+8 \pi]-\Sigma}\right.\right.} \\
& \left(e^{4 B C_{3}^{2} n r(\chi+2 \pi)[(n+3) \chi+8 \pi]+}\right. \\
\log [& \left.\left.\frac{2 C_{2}^{2} C_{3}^{2} r^{2}\{n \chi+\pi(3 n-1) \chi}{e^{4 B \Omega_{r} \Lambda}[(n+3) \chi+8 \pi]^{\Lambda}+C_{3}^{2} n(\chi+2 \pi)}\right]\right\} \\
& {\left.\left[\frac{2 C_{3}^{2}\{n \chi+\pi(3 n-1)\}}{\{(n+3) \chi+8 \pi\}^{-1}}\right]^{-1}\right]_{r_{0}}^{a}, }
\end{align*}
$$

where $\tau=\frac{8 \Omega}{(n+3) \chi+8 \pi}$. It is interesting to note that when

For
$\mathrm{A}=1.23, \chi=-2, \omega=-2, \mathrm{r}=1.94973 \mathrm{e}+13, \mathrm{c}_{3}=7.74$ or $-10, \mathrm{~B}=-0.44, \mathrm{n}=-0.4$
$\Omega=-6.11150 \ldots \quad \Lambda=-2.45285 \ldots$

We have also:

$$
\begin{aligned}
& \zeta=\chi+\pi(\omega+3) ; \sigma=\frac{8 \zeta}{\chi(3 \omega-1)+8 \pi \omega} \\
& \eta=C_{3}^{2}(\chi+2 \pi)(\omega+1) ; p=-3 \chi \omega+\chi-8 \pi \omega \\
& q=3[8 \pi-\chi(\omega-3)] .
\end{aligned}
$$

$-2+\operatorname{Pi}(-2+3)$

Input:

$-2+\pi$

Decimal approximation:

1.141592653589793238462643383279502884197169399375105820974...

Property:

$-2+\pi$ is a transcendental number
$\zeta=1.141592653589$.
$-3(-2)(-2)+(-2)-(-2 * 8 \mathrm{Pi})$

Input:

$-3 \times(-2) \times(-2)-2--2 \times 8 \pi$

Result:

$16 \pi-14$

Decimal approximation:

$36.26548245743669181540229413247204614715471039000169313559 \ldots$
$p=36.265482457 \ldots$.
$3((((8 \mathrm{Pi}-(-2)(-2-3)))))$
Input:
$3(8 \pi--2(-2-3))$

Result:

3 ($8 \pi-10$)

Decimal approximation:

45.39822368615503772310344119870806922073206558500253970339 .
$q=45.398223686 \ldots$

Property:

$3(-10+8 \pi)$ is a transcendental number
$\left(\left(8^{*} 1.141592653589\right)\right) /\left(\left(\left(-2\left(3^{*}(-2)-1\right)+\left(8 \mathrm{Pi}^{*}(-2)\right)\right)\right)\right)$
Input interpretation:
$\frac{8 \times 1.141592653589}{-2(3 \times(-2)-1)+8 \pi \times(-2)}$

Result:

-0.2518301318459...
$\sigma=-0.2518301318459 \ldots$

Alternative representations:

$\frac{8 \times 1.1415926535890000}{-2(3(-2)-1)+8 \pi(-2)}=\frac{9.1327412287120000}{14-2880^{\circ}}$
$\frac{8 \times 1.1415926535890000}{-2(3(-2)-1)+8 \pi(-2)}=\frac{9.1327412287120000}{14+16 i \log (-1)}$
$\frac{8 \times 1.1415926535890000}{-2(3(-2)-1)+8 \pi(-2)}=\frac{9.1327412287120000}{14-16 \cos ^{-1}(-1)}$

Series representations:

$\frac{8 \times 1.1415926535890000}{-2(3(-2)-1)+8 \pi(-2)}=$
$-\frac{0.1426990816986250}{-0.2187500000000000+1.000000000000000 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}$
$\frac{8 \times 1.1415926535890000}{-2(3(-2)-1)+8 \pi(-2)}=$
0.2853981633972500
$-1.437500000000000+1.000000000000000 \sum_{k=1}^{\infty} \frac{2^{k}}{\binom{k k}{k}}$

$$
\begin{aligned}
& \frac{8 \times 1.1415926535890000}{-2(3(-2)-1)+8 \pi(-2)}= \\
& -(0.5707963267945000 /(-0.875000000000000+1.000000000000000 x+ \\
& \left.\left.2.000000000000000 \sum_{k=1}^{\infty} \frac{\sin (k x)}{k}\right)\right) \text { for }(x \in \mathbb{R} \text { and } x>0)
\end{aligned}
$$

For $\mathrm{A}=1.23, \chi=-2, \omega=-2, \mathrm{r}=1.94973 \mathrm{e}+13, \mathrm{c}_{3}=7.74$ or $-10, \mathrm{~B}=-0.44, \mathrm{n}=-0.4$ $\zeta=1.141592653589 . . \mathrm{p}=36.265482457 \ldots . \quad \mathrm{q}=45.398223686 \ldots \mathrm{a}=2, \mathrm{~b}=3$,

$$
b(a)=5, v(a)=8
$$

$$
\begin{align*}
I_{V}(W H 1)= & {\left[a\left(1-\frac{b(a)}{a}\right) \ln \left(\frac{e^{\nu(a)}}{1-b / a}\right)\right]-} \\
& {\left[\frac{r(\chi+2 \pi)(\omega+1)}{\zeta}-\frac{(\chi+4 \pi)(\omega+1) e^{4 A \zeta}}{C_{3}^{2} \zeta[8 \pi-\chi(\omega-3)]}\right.} \\
& r^{q / p}-\frac{r\left[e^{4 A \zeta} r^{-\sigma}+C_{3}^{2}(\chi+2 \pi)(\omega+1)\right]}{2 C_{3}^{2} \zeta} \\
& \left.\log \left(\frac{2 C_{2}^{2} C_{3}^{2} \zeta r^{2}}{e^{4 A \zeta} r^{-\sigma}+C_{3}^{2}(\chi+2 \pi)(\omega+1)}\right)\right]_{r_{0}}^{a} \tag{53}
\end{align*}
$$

Input interpretation:

$$
\begin{aligned}
& \left(2\left(1-\frac{5}{2}\right)\right) \log \left(\frac{e^{8}}{1-1.5}\right)-\frac{1.94973 \times 10^{13}(-2+2 \pi) \times(-1)}{1.141592653589}- \\
& \frac{(-2+4 \pi)(-2+1) \exp (4 \times 1.23 \times 1.141592653589)}{7.74^{2} \times 1.141592653589(8 \pi--2(-2-3))}
\end{aligned}
$$

Result:

7.31527... $\times 10^{13}$ -
9.42478...

Polar coordinates:

$r=7.31527 \times 10^{13}$ (radius), $\theta=-7.38182 \times 10^{-12}$ 。 (angle)
$7.31527 * 10^{13}$
$(1.94973 \mathrm{e}+13)^{\wedge}(1.25183)-$
$1.94973 \mathrm{e}+13\left(\left(\left(\exp \left(4^{*} 1.23 * 1.141592653589\right) *\left((1.94973 \mathrm{e}+13)^{\wedge}(-0.25183)\right)+7.74^{\wedge} 2(-\right.\right.\right.$ $2+2 \mathrm{Pi})(-1)))) * 1 /(2 * 7.74 \wedge 2 * 1.141592653589)$

Input interpretation:

```
(1.94973 1 10 13 )}\mp@subsup{)}{}{1.25183
    1.94973 }101\mp@subsup{0}{}{13}(\frac{\operatorname{exp(4\times1.23\times1.141592653589)}}{(1.94973\times1\mp@subsup{0}{}{13}\mp@subsup{)}{}{0.25183}}+7.7\mp@subsup{4}{}{2}(-2+2\pi)\times(-1))
    1
```


Result:

$4.33666 \ldots \times 10^{16}$
4.33666 ... $* 10^{16}$
$\ln \left(\left(\left(\left(\left(\left(2^{*}(-10)^{\wedge} 2^{*}(7.74)^{\wedge} 2^{*} 1.141592653589 *(1.94973 \mathrm{e}+13)^{\wedge} 2\right)\right)\right) /\right.\right.\right.$ $\left(\left(\left(\exp \left(4^{*} 1.23^{*} 1.141592653589\right)^{*}\left((1.94973 \mathrm{e}+13)^{\wedge}(-0.25183)\right)\right)+7.74^{\wedge} 2(-2+2 \mathrm{Pi})(-\right.\right.$ $1))$)))))

Input interpretation:

$\log \left(\frac{2(-10)^{2} \times 7.74^{2} \times 1.141592653589\left(1.94973 \times 10^{13}\right)^{2}}{\frac{\exp (4 \times 1.23 \times 1.141592653589)}{\left(1.94973 \times 10^{13}\right)^{0.25183}}+7.74^{2}(-2+2 \pi) \times(-1)}\right)$

Result:

65.17912... +
3.141593... i

Polar coordinates:

$r=65.2548$ (radius), $\theta=2.75948^{\circ}$ (angle)
65.2548

In conclusion:
$[(((1.94973 \mathrm{e}+13(-2+2 \mathrm{Pi})(-1) /(1.14159265))))-(((-2+4 \mathrm{Pi})(-$
$2+1) * \exp (4 * 1.23 * 1.14159265))) 1 /\left(\left(7.74^{\wedge} 2^{*} 1.14159265^{*}(((8 \operatorname{Pi}-(-2)((-2-3)))))\right)\right) *$ $(((4.33666 \mathrm{e}+16 * 65.2548)))]$

Input interpretation:

$$
\frac{\frac{1.94973 \times 10^{13}(-2+2 \pi) \times(-1)}{1.14159265}-((-2+4 \pi)(-2+1) \exp (4 \times 1.23 \times 1.14159265))}{\left(\frac{1}{7.74^{2} \times 1.14159265(8 \pi--2(-2-3))}\left(4.33666 \times 10^{16} \times 65.2548\right)\right)}
$$

Result:

$7.94425 \ldots \times 10^{18}$
7.94425...*10 ${ }^{18}$
$\left(\left(2(1-(5 / 2)) \ln \left(\left(e^{\wedge} 8\right) /(1-1.5)\right)\right)\right)-7.94425 \times 10^{\wedge} 18$

Input interpretation:

$2\left(1-\frac{5}{2}\right) \log \left(\frac{e^{8}}{1-1.5}\right)-7.94425 \times 10^{18}$
$\log (x)$ is the natural logarithm

Result:

- $7.94425 \ldots \times 10^{18}$ -
9.42478... i

Polar coordinates:

$r=7.94425 \times 10^{18}$ (radius), $\theta=-180^{\circ}$ (angle)
$7.94425^{*} 10^{18}$

Or:
$\left(\left(2(1-(5 / 2)) \ln \left(\left(\mathrm{e}^{\wedge} 8\right) /(1-1.5)\right)\right)\right)-[((1.94973 \mathrm{e}+13(-2+2 \mathrm{Pi})(-1) /(1.14159265)))-(((-$ $2+4 \mathrm{Pi})(-2+1) * \exp (4 * 1.23 * 1.14159265))) 1 /(((7.74 \wedge 2 * 1.14159265 *(((8 \mathrm{Pi}-(-2)((-2-$ $3)))$))))) $* 4.33666 \mathrm{e}+16 * 65.2548]$

Input interpretation:

$$
\begin{aligned}
& 2\left(1-\frac{5}{2}\right) \log \left(\frac{e^{8}}{1-1.5}\right)- \\
& \left(\frac{1.94973 \times 10^{13}(-2+2 \pi) \times(-1)}{1.14159265}-((-2+4 \pi)(-2+1) \exp (4 \times 1.23 \times 1.14159265))\right. \\
& \left.\quad\left(\frac{1}{7.74^{2} \times 1.14159265(8 \pi--2(-2-3))} \times 4.33666 \times 10^{16} \times 65.2548\right)\right)
\end{aligned}
$$

$\log (x)$ is the natural logarithm

Result:

$-7.94425 \ldots \times 10^{18}$ -
9.42478... i

Alternate form:

-7.94425×10^{18}
$-7.94425^{*} 10^{18}$

From which:
$\left(-\left(-7.94425 \times 10^{\wedge} 18\right)\right)^{\wedge} 1 / 64$

Input interpretation:

$\sqrt[64]{-\left(-7.94425 \times 10^{18}\right)}$

Result:

1.973846275977010227120406460768144245828246545838693070676...
1.973846275977...

From the Ramanujan expression

$$
\begin{aligned}
& 0.072815845483680-\frac{\pi^{2}}{24}+ \\
& \frac{1}{2}(0.582879670292435+\log (2 \pi))\left(0.582879670292435-\log \left(\frac{\pi}{2 \sin \left(\frac{1}{2} \pi\right)}\right)\right)- \\
& \left(\frac{\log (1)}{1} \cos (\pi)+\frac{\log (2)}{2} \cos (2 \pi)\right)
\end{aligned}
$$

we obtain also:
[1-((((1/2*1/(()(0.072815845483680-(Pi^2)/24+1/2(0.582879670292435+ $\ln (2 \mathrm{Pi}))(0.582879670292435-\ln (\mathrm{Pi} /(2 \sin (1 / 2 * \mathrm{Pi}))))-(((\ln (1) / 1 \cos (\mathrm{Pi})+\ln (2) / 2$ $\cos (2 \mathrm{Pi}))))))$))))))) $]+(21+2)^{*} 1 / 10^{\wedge} 3$

Input interpretation:

$$
\begin{gathered}
\left(1-\frac{1}{2} \times 1 /\left(0.072815845483680-\frac{\pi^{2}}{24}+\frac{1}{2}(0.582879670292435+\log (2 \pi))\right.\right. \\
\left(0.582879670292435-\log \left(\frac{\pi}{2 \sin \left(\frac{1}{2} \pi\right)}\right)\right)- \\
\left.\left.\left(\frac{\log (1)}{1} \cos (\pi)+\frac{\log (2)}{2} \cos (2 \pi)\right)\right)\right)+(21+2) \times \frac{1}{10^{3}}
\end{gathered}
$$

Result:

1.97343978278841...
1.97343978278841...

Alternative representations:

$$
\begin{gathered}
\left(1-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right.\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)+\frac{21+2}{10^{3}}=1+\frac{23}{10^{3}}- \\
1 /\left(2 \left(0.0728158454836800000+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \cos (0)}\right)\right)- \\
\left.\left.\frac{1}{2} \log (1)\left(e^{-i \pi}+e^{i \pi}\right)-\frac{1}{4} \log (2)\left(e^{-2 i \pi}+e^{2 i \pi}\right)-\frac{\pi^{2}}{24}\right)\right)
\end{gathered}
$$

$$
\left(1-1 / / 2\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right.
$$

$$
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-
$$

$$
\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)+\frac{21+2}{10^{3}}=
$$

$1+\frac{23}{10^{3}}-1 / 2\left(0.0728158454836800000-\cosh (-i \pi) \log _{e}(1)-\right.$

$$
\frac{1}{2} \cosh (-2 i \pi) \log _{e}(2)+\frac{1}{2}\left(0.5828796702924350000+\log _{e}(2 \pi)\right)
$$

$$
\left.\left.\left(0.5828796702924350000-\log _{e}\left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\frac{\pi^{2}}{24}\right)\right)
$$

$$
\begin{array}{r}
1-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)+\frac{21+2}{10^{3}}=
\end{array}
$$

$1+\frac{23}{10^{3}}-1 / 2\left(0.0728158454836800000-\cosh (i \pi) \log (a) \log _{a}(1)-\frac{1}{2} \cosh (2 i \pi)\right.$
$\log (a) \log _{a}(2)+\frac{1}{2}\left(0.5828796702924350000+\log (a) \log _{a}(2 \pi)\right)$
$\left.\left.\left(0.5828796702924350000-\log (a) \log _{a}\left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\frac{\pi^{2}}{24}\right)\right)$

Integral representations:

$$
\begin{gathered}
\left(1-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right.\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)+\frac{21+2}{10^{3}}= \\
\left(1 . 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 \left(5.9056404665014426 i \pi+1.0000000000000000 i \pi^{3}+\right.\right. \\
1.0000000000000000 \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{1}{\sqrt{s}} e^{-\pi^{2} / s+s}(12.0000000000000 \\
\left.e^{\left(3 \pi^{2}\right) /(4 s)} \log (1)+6.0000000000000 \log (2)\right) \sqrt{\pi} d s- \\
6.9945560435092200 i \pi \log (2 \pi)+6.9945560435092200 \\
i \pi \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)+ \\
\left.\left.12.000000000000000 i \pi \log (2 \pi) \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)\right)\right) / \\
\left(\begin{array}{c}
-5.8245648120909328 i \pi+1.00000000000000000 i \pi^{3}+ \\
1.00000000000000000 \\
\int_{-i \infty+\gamma} \frac{1}{\sqrt{s}} e^{-\pi^{2} / s+s}\left(12.0000000000000 e^{\left(3 \pi^{2}\right) /(4 s)} \log (1)+\right. \\
6.0000000000000 \log (2)) \sqrt{\pi} d s- \\
6.9945560435092200 i \pi \log (2 \pi)+6.9945560435092200 \\
i \pi \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)+ \\
\left.12.0000000000000000 i \pi \log (2 \pi) \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)\right)
\end{array}\right.
\end{gathered}
$$

$$
\begin{array}{r}
\left(1-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right.\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)+\frac{21+2}{10^{3}}=
\end{array}
$$

$$
1.02300000000000000\left(5.9056404665014426+1.00000000000000000 \pi^{2}-\right.
$$

$$
24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t-
$$

$$
6.9945560435092200 \log (2 \pi)+
$$

$$
6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)+
$$

$\left.12.0000000000000000 \log (2 \pi) \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right) \mid$

$$
\begin{aligned}
& -5.8245648120909328+1.00000000000000000 \pi^{2}- \\
& 24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t-
\end{aligned}
$$

$6.9945560435092200 \log (2 \pi)+$ $6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)+$
$\left.12.0000000000000000 \log (2 \pi) \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right)$ for $\gamma>0$

$$
\begin{array}{r}
\left(1-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right.\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)+\frac{21+2}{10^{3}}=
\end{array}
$$

$$
1.02300000000000000\left(5.9056404665014426+1.00000000000000000 \pi^{2}-\right.
$$

$$
24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t-
$$

$$
6.9945560435092200 \log (2 \pi)+
$$

$$
6.9945560435092200 \log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s^{1-2 s} \Gamma(s)}}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)+
$$

$$
\left.12.0000000000000000 \log (2 \pi) \log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)\right) /
$$

$$
\left(-5.8245648120909328+1.00000000000000000 \pi^{2}-\right.
$$

$$
24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t-
$$

$6.9945560435092200 \log (2 \pi)+$ $6.9945560435092200 \log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)+$
$12.0000000000000000 \log (2 \pi)$

$$
\left.\log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)\right) \text { for } 0<\gamma<1
$$

$$
\begin{aligned}
& \left(1-1 / / 2\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right. \\
& \left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)+\frac{21+2}{10^{3}}= \\
& \left(1 . 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \left(5.9056404665014426+1.00000000000000000 \pi^{2}+\right.\right. \\
& 24.0000000000000000 \log (1)- \\
& 24.0000000000000000 \pi \log (1) \int_{0}^{1} \sin (\pi t) d t+ \\
& 12.0000000000000000 \log (2)-24.0000000000000000 \pi \log (2) \\
& \int_{0}^{1} \sin (2 \pi t) d t-6.9945560435092200 \log (2 \pi)+ \\
& 6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)+ \\
& \left.12.0000000000000000 \log (2 \pi) \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right) / \\
& \left(-5.8245648120909328+1.00000000000000000 \pi^{2}+\right. \\
& 24.0000000000000000 \log (1)- \\
& 24.0000000000000000 \pi \log (1) \int_{0}^{1} \sin (\pi t) d t+ \\
& 12.0000000000000000 \log (2)- \\
& 24.0000000000000000 \pi \log (2) \int_{0}^{1} \sin (2 \pi t) d t- \\
& 6.9945560435092200 \log (2 \pi)+ \\
& 6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)+ \\
& \left.12.0000000000000000 \log (2 \pi) \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right) \text { for } \gamma>0
\end{aligned}
$$

Multiple-argument formulas:

$$
\begin{array}{r}
\left(1-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right.\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)+\frac{21+2}{10^{3}}=
\end{array}
$$

$$
\frac{1023}{1000}-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}-0.5000000000000000000\right.\right.
$$

$$
(0.5828796702924350000+\log (2)+\log (\pi))
$$

$$
\left(-0.5828796702924350000+\log \left(\frac{1}{2}\right)+\log \left(\frac{\pi}{\sin \left(\frac{\pi}{2}\right)}\right)\right)+
$$

$$
\left.\log (1)\left(-1+2 \sin ^{2}\left(\frac{\pi}{2}\right)\right)+\frac{1}{2} \log (2)\left(-1+2 \sin ^{2}(\pi)\right)\right)
$$

$$
\begin{array}{r}
1-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)+\frac{21+2}{10^{3}}=
\end{array}
$$

$$
\begin{aligned}
& \frac{1023}{1000}-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\log (1)-\right.\right. \\
& 2 \cos ^{2}\left(\frac{\pi}{2}\right) \log (1)-\frac{1}{2}\left(-1+2 \cos ^{2}(\pi)\right) \log (2)- \\
& 0.5000000000000000000(0.5828796702924350000+\log (2)+\log (\pi)) \\
&\left.\left.\left(-0.5828796702924350000+\log \left(\frac{1}{2}\right)+\log \left(\frac{\pi}{\sin \left(\frac{\pi}{2}\right)}\right)\right)\right)\right)
\end{aligned}
$$

$$
\begin{gathered}
\left(1-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right.\right. \\
\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)+\frac{21+2}{10^{3}}= \\
\frac{1023}{1000}-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\cos \left(\frac{\pi}{3}\right)\left(3-4 \cos ^{2}\left(\frac{\pi}{3}\right)\right) \log (1)+\right.\right. \\
\frac{1}{2} \cos \left(\frac{2 \pi}{3}\right)\left(3-4 \cos ^{2}\left(\frac{2 \pi}{3}\right)\right) \log (2)- \\
0.5000000000000000000(0.5828796702924350000+\log (2)+\log (\pi)) \\
\left.\left.\left(-0.5828796702924350000+\log \left(\frac{1}{2}\right)+\log \left(\frac{\pi}{\sin \left(\frac{\pi}{2}\right)}\right)\right)\right)\right)
\end{gathered}
$$

Now, we have that:

$$
\begin{align*}
& I_{V}(W H 2)= {\left[a\left(1-\frac{b(a)}{a}\right) \ln \left(\frac{e^{\nu(a)}}{1-b / a}\right)\right]-} \\
& {\left[\left\{\frac{2(n-1)(\chi+4 \pi) e^{4 B \Omega} r^{\Sigma}}{(3 n \chi+8 \pi n+\chi)[(n+3) \chi+8 \pi]^{-\Sigma}}\right.\right.} \\
&-2 C_{3}^{2} n r(\chi+2 \pi)[(n+3) \chi+8 \pi]+ \\
&\left(e^{4 B \Omega}[(n+3) \chi+8 \pi]^{\Lambda} r^{\tau}+C_{3}^{2} n(\chi+2 \pi)\right) \\
&\left.\log \left[\frac{2 C_{2}^{2} C_{3}^{2} r^{2}\{n \chi+\pi(3 n-1)\}}{e^{4 B \Omega} r^{\Lambda}[(n+3) \chi+8 \pi]^{\Lambda}+C_{3}^{2} n(\chi+2 \pi)}\right]\right\} \\
& {\left.\left[\frac{2 C_{3}^{2}\{n \chi+\pi(3 n-1)\}}{\{(n+3) \chi+8 \pi\}^{-1}}\right]^{-1}\right]_{r_{0}}^{a} } \tag{54}
\end{align*}
$$

where $\tau=\frac{8 \Omega}{(n+3) \chi+8 \pi}$

For $\mathrm{A}=1.23, \chi=-2, \omega=-2, \mathrm{r}=1.94973 \mathrm{e}+13, \mathrm{c}_{3}=7.74$ or $-10, \mathrm{~B}=-0.44, \mathrm{n}=-0.4$ $\Omega=-6.11150 \ldots \quad \Lambda=-2.45285 \ldots \quad \tau=-2.45285$
$((8 *(-6.11150))) /(((-0.4+3) *(-2)+8 \mathrm{Pi}))$

Input interpretation:

$\frac{8 \times(-6.11150)}{(-0.4+3) \times(-2)+8 \pi}$

Result:

-2.45285...
$-2.45285 \ldots$

Alternative representations:

$\frac{8(-6.1115)}{(-0.4+3)(-2)+8 \pi}=-\frac{48.892}{-5.2+1440^{\circ}}$
$\frac{8(-6.1115)}{(-0.4+3)(-2)+8 \pi}=-\frac{48.892}{-5.2-8 i \log (-1)}$
$\frac{8(-6.1115)}{(-0.4+3)(-2)+8 \pi}=-\frac{48.892}{-5.2+8 \cos ^{-1}(-1)}$

Series representations:

$\frac{8(-6.1115)}{(-0.4+3)(-2)+8 \pi}=-\frac{1.52788}{-0.1625+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}$
$\frac{8(-6.1115)}{(-0.4+3)(-2)+8 \pi}=-\frac{3.05575}{-1.325+\sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}}$
$\frac{8(-6.1115)}{(-0.4+3)(-2)+8 \pi}=-\frac{6.1115}{-0.65+x+2 \sum_{k=1}^{\infty} \frac{\sin (k x)}{k}}$ for $(x \in \mathbb{R}$ and $x>0)$

Integral representations:

$\frac{8(-6.1115)}{(-0.4+3)(-2)+8 \pi}=-\frac{3.05575}{-0.325+\int_{0}^{\infty} \frac{1}{1+t^{2}} d t}$
$\frac{8(-6.1115)}{(-0.4+3)(-2)+8 \pi}=-\frac{1.52788}{-0.1625+\int_{0}^{1} \sqrt{1-t^{2}} d t}$
$\frac{8(-6.1115)}{(-0.4+3)(-2)+8 \pi}=-\frac{3.05575}{-0.325+\int_{0}^{\infty} \frac{\sin (t)}{t} d t}$

From

$$
\begin{align*}
& I_{V}(W H 2)= {\left[a\left(1-\frac{b(a)}{a}\right) \ln \left(\frac{e^{\nu(a)}}{1-b / a}\right)\right]-} \\
& {\left[\left\{\frac{2(n-1)(\chi+4 \pi) e^{4 B \Omega} r^{\Sigma}}{(3 n \chi+8 \pi n+\chi)[(n+3) \chi+8 \pi]^{-\Sigma}}\right.\right.} \\
&-2 C_{3}^{2} n r(\chi+2 \pi)[(n+3) \chi+8 \pi]+ \\
&\left(e^{4 B \Omega}[(n+3) \chi+8 \pi]^{\Lambda} r^{\tau}+C_{3}^{2} n(\chi+2 \pi)\right) \\
&\left.\log \left[\frac{2 C_{2}^{2} C_{3}^{2} r^{2}\{n \chi+\pi(3 n-1)\}}{e^{4 B \Omega} r^{\Lambda}[(n+3) \chi+8 \pi]^{\Lambda}+C_{3}^{2} n(\chi+2 \pi)}\right]\right\} \\
& {\left.\left[\frac{2 C_{3}^{2}\{n \chi+\pi(3 n-1)\}}{\{(n+3) \chi+8 \pi\}^{-1}}\right]^{-1}\right]_{r_{0}}^{a}, } \tag{54}
\end{align*}
$$

For $\mathrm{A}=1.23, \chi=-2, \omega=-2, \mathrm{r}=1.94973 \mathrm{e}+13, \mathrm{c}_{3}=7.74$ or $-10, \mathrm{~B}=-0.44, \mathrm{n}=-0.4$ $\Omega=-6.11150 \ldots \quad \Lambda=-2.45285 \ldots \quad \tau=-2.45285$

$$
\zeta=1.141592653589 \ldots \mathrm{p}=36.265482457 \ldots \quad \mathrm{q}=45.398223686 \ldots \mathrm{a}=2, \quad \mathrm{~b}=3,
$$

$$
\mathrm{b}(\mathrm{a})=5, \quad v(\mathrm{a})=8 \quad \sigma \text { or } \Sigma=-0.2518301318459
$$

$$
\left[a\left(1-\frac{b(a)}{a}\right) \ln \left(\frac{e^{\nu(a)}}{1-b / a}\right)\right]
$$

$$
\left(\left(2\left(1-(5 / 2) \ln \left(\left(\mathrm{e}^{\wedge} 8\right) /(1-1.5)\right)\right)\right)\right.
$$

Input:

$2\left(1-\frac{5}{2}\right) \log \left(\frac{e^{8}}{1-1.5}\right)$

Result:

- 26.0794... -
9.42478... i

Polar coordinates:

```
r=27.7302 (radius), }0=-160.13\mp@subsup{1}{}{\circ}\mathrm{ (angle)
```

27.7302

$$
\begin{aligned}
& {\left[\left\{\frac{2(n-1)(\chi+4 \pi) e^{4 B \Omega} r^{\Sigma}}{(3 n \chi+8 \pi n+\chi)[(n+3) \chi+8 \pi]^{-\Sigma}}\right.\right.} \\
& -2 C_{3}^{2} n r(\chi+2 \pi)[(n+3) \chi+8 \pi]+
\end{aligned}
$$

$2(-0.4-1)(-2+4 \mathrm{Pi}) * \exp \left(4^{*}-0.44^{*}-6.11150\right) *(1.94973 \mathrm{e}+13)^{\wedge}(-0.25183)^{*} 1 /\left(\left(\left(3\left(-0.4^{*}-\right.\right.\right.\right.$
$\left.\left.\left.2)+8 \mathrm{Pi}^{*}-0.4-2\right)\right)\right)^{*} 1 /((((-0.4+3) *(-2)+8 \mathrm{Pi})))^{\wedge}-(-0.25183)-2 * 7.74 \wedge 2 *(-$
$0.4)^{*}(1.94973 \mathrm{e}+13) *(-2+2 \mathrm{Pi}) *((-0.4+3) *(-2)+8 \mathrm{Pi})$

Input interpretation:

$$
\begin{gathered}
2(-0.4-1) \times\left((-2+4 \pi) \exp (4 \times(-0.44) \times(-6.11150)) \times \frac{1}{3(-0.4 \times(-2))+8 \pi \times(-0.4)-2} \times\right. \\
\left.\frac{1}{((-0.4+3) \times(-2)+8 \pi)^{-(-0.25183)}}\right) /\left(1.94973 \times 10^{13}\right)^{0.25183}- \\
2 \times 7.74^{2} \times(-0.4) \times 1.94973 \times 10^{13}(-2+2 \pi)((-0.4+3) \times(-2)+8 \pi)
\end{gathered}
$$

Result:

$7.97775 \ldots \times 10^{16}$
$7.97775 * 10^{16}$

$$
\left(e^{4 B \Omega}[(n+3) \chi+8 \pi]^{\Lambda} r^{\tau}+C_{3}^{2} n(\chi+2 \pi)\right)
$$

$\left.\exp \left(\left(\left(\left(\left(4^{*}-0.44^{*}-6.11150\right)\right)\right)\right)\right)\right)^{*}\left(\left(\left((((-0.4+3) *(-2)+8 \mathrm{Pi}))^{\wedge}(-2.45285)\right)\right)\right){ }^{*}$ $(1.94973 \mathrm{e}+13)^{\wedge}(-2.45285)+7.74^{\wedge} 2^{*}(-0.4)^{*}(-2+2 \mathrm{Pi})$

Input interpretation:
$\frac{\exp (4 \times(-0.44) \times(-6.11150))}{((-0.4+3) \times(-2)+8 \pi)^{2.45285}\left(1.94973 \times 10^{13}\right)^{2.45285}}+7.74^{2} \times(-0.4)(-2+2 \pi)$

Result:

-102.638.
-102.638...

$$
\begin{gather*}
\left.\log \left[\frac{2 C_{2}^{2} C_{3}^{2} r^{2}\{n \chi+\pi(3 n-1)\}}{e^{4 B \Omega} r^{\Lambda}[(n+3) \chi+8 \pi]^{\Lambda}+C_{3}^{2} n(\chi+2 \pi)}\right]\right\} \\
 \tag{54}\\
\left.\left[\frac{2 C_{3}^{2}\{n \chi+\pi(3 n-1)\}}{\{(n+3) \chi+8 \pi\}^{-1}}\right]^{-1}\right]_{r_{0}}^{a}
\end{gather*}
$$

$\ln \left(\left(\left(\left(\left(2^{*} 100^{*} 7.74^{\wedge} 2^{*}(1.94973 \mathrm{e}+13) \wedge 2\left(\left(-0.4^{*}-2+\operatorname{Pi}\left(3^{*}(-0.4)-1\right)\right)\right)\right) /\left(\left(\left(\left(\left(\left(\left(\left(\exp \left(4^{*}-\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.0.44^{*}-6.11150\right)^{*}(1.94973 \mathrm{e}+13)^{\wedge}(-2.45285)\right)\right)\right)^{*}\left(\left(\left(\left((-0.4+3)^{*}(-2)+8 \mathrm{Pi}\right)\right)\right)\right)\right)^{\wedge}(-$ $\left.\left.\left.\left.\left.\left.\left.\left.2.45285)+7.74 \wedge 2 *(-0.4)^{*}(-2+2 \mathrm{Pi})\right)\right)\right)\right)\right)\right)\right)\right)$

Input interpretation:

$\log \left(\frac{2 \times 100 \times 7.74^{2}\left(1.94973 \times 10^{13}\right)^{2}(-0.4 \times(-2)+\pi(3 \times(-0.4)-1))}{1} \frac{\left(\frac{\exp (4 \times(-0.44) \times-6.111501)}{\left.\left.\left(1.94973 \times 10^{13}\right)^{2.45255}(1-0.4+3) \times(-2)+8 \pi\right)\right)^{2.45285}}+7.74^{2} \times(-0.4)(-2+2 \pi)\right.}{)}\right.$
$\log (x)$ is the natural logarithm

Result:

- 77.9847... +
3.14159... i

Polar coordinates:

$r=78.048$ (radius), $\theta=177.693^{\circ}$ (angle)
78.048
$\left(\left(\left(\left(2^{*} 7.74^{\wedge} 2\left(\left(\left(-0.4^{*}-2+\operatorname{Pi}\left(3^{*}(-0.4)-1\right)\right)\right) /(((-0.4+3) *(-2)+8 \mathrm{Pi}))\right)^{\wedge}(-1)\right)\right)\right)\right)^{\wedge}-1$

Input:

$\frac{1}{\frac{2 \times 7.74^{2}}{\frac{-0.4 \times(-2)+\pi(3 \times(-0.4)-1)}{(-0.4+3) \times(-2)+8 \pi}}}$

Result:

-0.00255899...
-0.00255899...

$$
\begin{align*}
& I_{V}(W H 2)= {\left[a\left(1-\frac{b(a)}{a}\right) \ln \left(\frac{e^{\nu(a)}}{1-b / a}\right)\right]-} \\
& {\left[\left\{\frac{2(n-1)(\chi+4 \pi) e^{4 B \Omega} r^{\Sigma}}{(3 n \chi+8 \pi n+\chi)[(n+3) \chi+8 \pi]^{-\Sigma}}\right.\right.} \\
&-2 C_{3}^{2} n r(\chi+2 \pi)[(n+3) \chi+8 \pi]+ \\
&\left(e^{4 B \Omega}[(n+3) \chi+8 \pi]^{\Lambda} r^{\tau}+C_{3}^{2} n(\chi+2 \pi)\right) \\
&\left.\log \left[\frac{2 C_{2}^{2} C_{3}^{2} r^{2}\{n \chi+\pi(3 n-1)\}}{e^{4 B \Omega} r^{\Lambda}[(n+3) \chi+8 \pi]^{\Lambda}+C_{3}^{2} n(\chi+2 \pi)}\right]\right\} \\
& {\left.\left[\frac{2 C_{3}^{2}\{n \chi+\pi(3 n-1)\}}{\{(n+3) \chi+8 \pi\}^{-1}}\right]^{-1}\right]_{r_{0}}^{a}, } \tag{54}
\end{align*}
$$

$27.7302-\left(\left(\left(7.97775 * 10^{\wedge} 16+(-102.638) * 78.048 *(-0.00255899)\right)\right)\right)$

Input interpretation:

$27.7302-\left(7.97775 \times 10^{16}-102.638 \times 78.048 \times(-0.00255899)\right)$

Result:

$-7.977749999999999276907719990976 \times 10^{16}$

Repeating decimal:

$-7.977749999999999276907719990976 \times 10^{16}$
$-7.97774999 \ldots * 10^{16}$

From which:
$\left.-\left(-\left(\left(\left(\left(27.7302-\left(\left(\left(7.97775^{*} 10^{\wedge} 16+(-102.638) * 78.048 *(-0.00255899)\right)\right)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 64$

Input interpretation:

$-\sqrt[64]{-\left(27.7302-\left(7.97775 \times 10^{16}-102.638 \times 78.048 \times(-0.00255899)\right)\right)}$

Result:

-1.8369269...
-1.8369269...

From the previous Ramanujan expression

$$
\begin{aligned}
& 0.072815845483680-\frac{\pi^{2}}{24}+ \\
& \frac{1}{2}(0.582879670292435+\log (2 \pi))\left(0.582879670292435-\log \left(\frac{\pi}{2 \sin \left(\frac{1}{2} \pi\right)}\right)\right)- \\
& \left(\frac{\log (1)}{1} \cos (\pi)+\frac{\log (2)}{2} \cos (2 \pi)\right)
\end{aligned}
$$

we obtain:
$-\left(\left(\left[1-\left(\left(\left(\left(1 / 2 * 1 /\left(()\left(0.072815845483680-\left(\mathrm{Pi}^{\wedge} 2\right) / 24+1 / 2(0.582879670292435+\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\ln (2 \mathrm{Pi}))(0.582879670292435-\ln (\mathrm{Pi} /(2 \sin (1 / 2 * \mathrm{Pi}))))-(((\ln (1) / 1 \cos (\mathrm{Pi})+\ln (2) / 2$ $\cos (2 \mathrm{Pi})))))$)))))))) $\left.\left.-(76+76 / 2)^{*} 1 / 10^{\wedge} 3\right)\right)$

Input interpretation:

$$
\begin{aligned}
& -\left(\left(1-\frac{1}{2} \times 1 /\left(0.072815845483680-\frac{\pi^{2}}{24}+\frac{1}{2}(0.582879670292435+\log (2 \pi))\right.\right.\right. \\
& \left(0.582879670292435-\log \left(\frac{\pi}{2 \sin \left(\frac{1}{2} \pi\right)}\right)\right)- \\
& \left.\left.\left.\left(\frac{\log (1)}{1} \cos (\pi)+\frac{\log (2)}{2} \cos (2 \pi)\right)\right)\right)-\left(76+\frac{76}{2}\right) \times \frac{1}{10^{3}}\right)
\end{aligned}
$$

Result:

-1.83643978278841...
$-1.83643978278841 \ldots$

Alternative representations:

$$
\begin{array}{r}
-\left(\left(1-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\right.\right.\right.\right. \\
\log (2 \pi))\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)-\frac{76+\frac{76}{2}}{10^{3}}\right)=-1+\frac{114}{10^{3}}+
\end{array}
$$

$1 /\left[2\left(0.0728158454836800000+\frac{1}{2}(0.5828796702924350000+\log (2 \pi))\right.\right.$ $\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \cos (0)}\right)\right)-$

$$
\left.\left.\frac{1}{2} \log (1)\left(e^{-i \pi}+e^{i \pi}\right)-\frac{1}{4} \log (2)\left(e^{-2 i \pi}+e^{2 i \pi}\right)-\frac{\pi^{2}}{24}\right)\right)
$$

$$
\begin{array}{r}
-\left(\left(1-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\right.\right.\right.\right. \\
\log (2 \pi))\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)-\frac{76+\frac{76}{2}}{10^{3}}\right)=
\end{array}
$$

$$
-1+\frac{114}{10^{3}}+1 /\left(2 \left(0.0728158454836800000-\cosh (-i \pi) \log _{e}(1)-\right.\right.
$$

$$
\frac{1}{2} \cosh (-2 i \pi) \log _{e}(2)+\frac{1}{2}\left(0.5828796702924350000+\log _{e}(2 \pi)\right)
$$

$$
\left.\left.\left(0.5828796702924350000-\log _{e}\left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\frac{\pi^{2}}{24}\right)\right)
$$

$$
\begin{aligned}
& -\left(\left(1-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\right.\right.\right.\right. \\
& \log (2 \pi))\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)-\frac{76+\frac{76}{2}}{10^{3}}\right)= \\
& -1+\frac{114}{10^{3}}+1 /\left(2 \left(0.0728158454836800000-\cosh (i \pi) \log (a) \log _{a}(1)-\right.\right. \\
& \frac{1}{2} \cosh (2 i \pi) \log (a) \log _{a}(2)+ \\
& \frac{1}{2}\left(0.5828796702924350000+\log (a) \log _{a}(2 \pi)\right) \\
& \left.\left.\left(0.5828796702924350000-\log (a) \log _{a}\left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)-\frac{\pi^{2}}{24}\right)\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& -\left(\left(1-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (\right.\right.\right.\right. \\
& 2 \pi))\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)-\frac{76+\frac{76}{2}}{10^{3}}\right)= \\
& -\left(\left(0 . 8 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \left(7.7194532465998121+1.00000000000000000 \pi^{2}-\right.\right.\right. \\
& 24.0000000000000000 \\
& \int_{-i \infty+\gamma}^{i \infty \infty+\gamma}-\frac{e^{-\pi^{2} / s+s}\left(2 e^{\left(3 \pi^{2}\right) /(4 s)} \log (1)+\log (2)\right) \sqrt{\pi}}{6.994560435092200 \log (2 \pi)+} d s- \\
& 6.9945560435092200 \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)+ \\
& \left.\left.12.0000000000000000 \log (2 \pi) \log \left(\frac{1}{\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t}\right)\right)\right) / \\
& 24.0000000000000000 \\
& \int_{-i \infty+y}^{i \infty+\gamma}-\frac{e^{-\pi^{2} / s+s}\left(2 e^{\left(3 \pi^{2}\right) /(4 s)} \log (1)+\log (2)\right) \sqrt{\pi}}{4 i \pi \sqrt{s}} d s- \\
& 6.994560435092200 \log (2 \pi)+ \\
& 6.9945560435092200 \log \left(\frac{1}{\left.\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t\right)}\right)+ \\
& \left.12.0000000000000000 \log (2 \pi) \log \left(\frac{1}{\left.\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) d t\right)}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\int\left(1-1 /\left[2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (\right.\right.\right. \\
& 2 \pi))\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)-\frac{76+\frac{76}{2}}{10^{3}}\right)= \\
& -\left(\int 0 . 8 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \left(7.7194532465998121+1.00000000000000000 \pi^{2}-\right.\right. \\
& 24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) \\
& d t-6.9945560435092200 \log (2 \pi)+ \\
& 6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)+ \\
& \left.\left.12.0000000000000000 \log (2 \pi) \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right)\right) / \\
& \begin{array}{l}
-5.8245648120909328+1.00000000000000000 \pi^{2}- \\
24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t-
\end{array} \\
& 6.9945560435092200 \log (2 \pi)+ \\
& 6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)+ \\
& 12.0000000000000000 \log (2 \pi) \\
& \left.\left.\log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right)\right) \text { for } \gamma>0
\end{aligned}
$$

$$
\begin{aligned}
& -\int\left(1-1 /\left[2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (\right.\right.\right. \\
& 2 \pi)\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)-\frac{76+\frac{76}{2}}{10^{3}}\right)= \\
& -\left(\int 0 . 8 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \left(7.7194532465998121+1.00000000000000000 \pi^{2}-\right.\right. \\
& 24.0000000000000000 \\
& \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t- \\
& 6.9945560435092200 \log (2 \pi)+6.9945560435092200 \\
& \log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s^{1-2 s} \Gamma(s)}}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)+12.0000000000000000 \\
& \left.\left.\log (2 \pi) \log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)\right)\right) / \\
& \left(-5.8245648120909328+1.00000000000000000 \pi^{2}-\right. \\
& 24.0000000000000000 \int_{\frac{\pi}{2}}^{\pi}\left(\log (1) \sin (t)+\frac{3}{2} \log (2) \sin (-\pi+3 t)\right) d t- \\
& 6.9945560435092200 \log (2 \pi)+ \\
& 6.9945560435092200 \log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)+ \\
& 12.0000000000000000 \log (2 \pi) \\
& \left.\log \left(\frac{i \pi^{2}}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{-1+2 s} \pi^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}\right)\right) \text { for } 0<\gamma<1
\end{aligned}
$$

$$
\begin{aligned}
& -\int\left(1-1 /\left[2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\log (\right.\right.\right. \\
& 2 \pi)\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
& \left.\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)-\frac{76+\frac{76}{2}}{10^{3}}\right)= \\
& -\int\left(\int_{2.8} \quad \int^{24.0000000000000000 \log (1)-} 7.7194532465998121+1.000000000000000000 \pi^{2}+\right. \\
& 24.0000000000000000 \log (1)- \\
& 24.0000000000000000 \pi \log (1) \int_{0}^{1} \sin (\pi t) d t+ \\
& 12.0000000000000000 \log (2)-24.0000000000000000 \pi \log (2) \\
& \int_{0}^{1} \sin (2 \pi t) d t-6.9945560435092200 \log (2 \pi)+ \\
& 6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)+ \\
& \left.12.0000000000000000 \log (2 \pi) \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right) / \\
& \left(-5.8245648120909328+1.00000000000000000 \pi^{2}+\right. \\
& 24.0000000000000000 \log (1)- \\
& 24.0000000000000000 \pi \log (1) \int_{0}^{1} \sin (\pi t) d t+ \\
& 12.0000000000000000 \log (2) \text { - } \\
& 24.0000000000000000 \pi \log (2) \int_{0}^{1} \sin (2 \pi t) d t- \\
& 6.9945560435092200 \log (2 \pi)+ \\
& 6.9945560435092200 \log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)+ \\
& 12.0000000000000000 \log (2 \pi) \\
& \left.\log \left(\frac{4 i \pi}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\pi^{2} /(16 s)+s}}{s^{3 / 2}} d s}\right)\right) \text { for } \gamma>0
\end{aligned}
$$

Multiple-argument formulas:

$$
\begin{array}{r}
-\left(\left(1-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\right.\right.\right.\right. \\
\log (2 \pi))\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)-\frac{76+\frac{76}{2}}{10^{3}}\right)=
\end{array}
$$

$-\frac{443}{500}+1 / 2\left(0.0728158454836800000-\frac{\pi^{2}}{24}-0.5000000000000000000\right.$ $(0.5828796702924350000+\log (2)+\log (\pi))$
$\left(-0.5828796702924350000+\log \left(\frac{1}{2}\right)+\log \left(\frac{\pi}{\sin \left(\frac{\pi}{2}\right)}\right)\right)+$ $\left.\log (1)\left(-1+2 \sin ^{2}\left(\frac{\pi}{2}\right)\right)+\frac{1}{2} \log (2)\left(-1+2 \sin ^{2}(\pi)\right)\right)$

$$
\begin{array}{r}
-\left(\left(1-1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\right.\right.\right.\right. \\
\log (2 \pi))\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)\right)-\frac{76+\frac{76}{2}}{10^{3}}\right)=
\end{array}
$$

$$
-\frac{443}{500}+1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\log (1)-2 \cos ^{2}\left(\frac{\pi}{2}\right) \log (1)-\right.\right.
$$

$$
\frac{1}{2}\left(-1+2 \cos ^{2}(\pi)\right) \log (2)-
$$

$$
0.5000000000000000000(0.5828796702924350000+\log (2)+\log (\pi))
$$

$$
\left.\left.\left(-0.5828796702924350000+\log \left(\frac{1}{2}\right)+\log \left(\frac{\pi}{\sin \left(\frac{\pi}{2}\right)}\right)\right)\right)\right)
$$

$$
\begin{gathered}
-\left(\left(1-1 / / 2\left(0.0728158454836800000-\frac{\pi^{2}}{24}+\frac{1}{2}(0.5828796702924350000+\right.\right.\right. \\
\log (2 \pi))\left(0.5828796702924350000-\log \left(\frac{\pi}{2 \sin \left(\frac{\pi}{2}\right)}\right)\right)- \\
\left.\left.\left.\left(\log (1) \cos (\pi)+\frac{1}{2} \log (2) \cos (2 \pi)\right)\right)\right)-\frac{76+\frac{76}{2}}{10^{3}}\right)= \\
-\frac{443}{500}+1 /\left(2 \left(0.0728158454836800000-\frac{\pi^{2}}{24}+\cos \left(\frac{\pi}{3}\right)\left(3-4 \cos ^{2}\left(\frac{\pi}{3}\right)\right) \log (1)+\right.\right. \\
\frac{1}{2} \cos \left(\frac{2 \pi}{3}\right)\left(3-4 \cos ^{2}\left(\frac{2 \pi}{3}\right)\right) \log (2)- \\
0.50000000000000000(0.5828796702924350000+\log (2)+\log (\pi)) \\
\left.\left.\left(-0.5828796702924350000+\log \left(\frac{1}{2}\right)+\log \left(\frac{\pi}{\sin \left(\frac{\pi}{2}\right)}\right)\right)\right)\right)
\end{gathered}
$$

Appendix

Three-dimensional AdS gravity and extremal CFTs at $\mathbf{c}=\mathbf{8 m}$

Spyros D. Avramis, Alex Kehagiasb and Constantina Mattheopoulou
Received: September 7, 2007 -Accepted: October 28, 2007 - Published: November 9, 2007

m	L_{0}	d	S	$S_{B H}$
	1	196883	12.1904	12.5664
3	2	21296876	16.8741	17.7715
	3	842609326	20.5520	21.7656
	$2 / 3$	139503	11.8458	11.8477
4	$5 / 3$	69193488	18.0524	18.7328
	$8 / 3$	6928824200	22.6589	23.6954
	$1 / 3$	20619	9.9340	9.3664
5	$4 / 3$	86645620	18.2773	18.7328
	$7 / 3$	24157197490	23.9078	24.7812

m	L_{0}	d	S	$S_{B H}$
	1	42987519	17.5764	17.7715
6	2	40448921875	24.4233	25.1327
	3	8463511703277	29.7668	30.7812
	$2 / 3$	7402775	15.8174	15.6730
7	$5 / 3$	33934039437	24.2477	24.7812
	$8 / 3$	16953652012291	30.4615	31.3460
	$1 / 3$	278511	12.5372	11.8477
8	$4 / 3$	13996384631	23.3621	23.6954
	$7 / 3$	19400406113385	30.5963	31.3460

Table 1: Degeneracies, microscopic entropies and semiclassical entropies for the first few values of m and L_{0}.

Observations

Note that:

$$
g_{22}=\sqrt{(1+\sqrt{2})}
$$

Hence

$$
\begin{array}{rlr}
64 g_{22}^{24} & = & e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}-\cdots \\
64 g_{22}^{-24} & = & 4096 e^{-\pi \sqrt{22}}+\cdots
\end{array}
$$

so that

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

Hence

$$
e^{\pi \sqrt{22}}=2508951.9982 \ldots
$$

Thence:

$$
64 g_{22}^{-24}=\quad 4096 e^{-\pi \sqrt{22}}+\cdots
$$

And

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

That are connected with $64,128,256,512,1024$ and $4096=64^{2}$
(Modular equations and approximations to $\boldsymbol{\pi}-S$. Ramanujan - Quarterly Journal of Mathematics, XLV, 1914, 350-372)

All the results of the most important connections are signed in blue throughout the drafting of the paper. We highlight as in the development of the various equations we use always the constants $\pi, \phi, 1 / \phi$, the Fibonacci and Lucas numbers, linked to the golden ratio, that play a fundamental role in the development, and therefore, in the final results of the analyzed expressions.

In mathematics, the Fibonacci numbers, commonly denoted F_{n}, form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. Fibonacci numbers are strongly related to the golden ratio: Binet's formula expresses the nth Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases.

Fibonacci numbers are also closely related to Lucas numbers, in that the Fibonacci and Lucas numbers form a complementary pair of Lucas sequences

The beginning of the sequence is thus:
$0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946$, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155...

The Lucas numbers or Lucas series are an integer sequence named after the mathematician François Édouard Anatole Lucas (1842-91), who studied both that sequence and the closely related Fibonacci numbers. Lucas numbers and Fibonacci numbers form complementary instances of Lucas sequences.

The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values. This produces a sequence where the ratios of successive terms approach the golden ratio, and in fact the terms themselves are roundings of integer powers of the golden ratio. ${ }^{[1]}$ The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between.
The sequence of Lucas numbers is:
$2,1,3,4,7,11,18,29,47,76,123,199,322,521,843,1364,2207,3571,5778,9349,15127$, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498, 3010349, 4870847, 7881196, 12752043, 20633239, 33385282, 54018521, 87403803.....

All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff array; the Fibonacci sequence itself is the first row and the Lucas sequence is the second row. Also like all Fibonacci-like integer sequences, the ratio between two consecutive Lucas numbers converges to the golden ratio.

A Lucas prime is a Lucas number that is prime. The first few Lucas primes are:
$2,3,7,11,29,47,199,521,2207,3571,9349,3010349,54018521,370248451,6643838879, \ldots$ (sequence A005479 in the OEIS).

In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden ratio. ${ }^{[1]}$ That is, a golden spiral gets wider (or further from its origin) by a factor of φ for every quarter turn it makes. Approximate logarithmic spirals can occur in nature, for example the arms of spiral galaxies ${ }^{[3]}$ - golden spirals are one special case of these logarithmic spirals

References

Manuscript Book 2 of Srinivasa Ramanujan

Traversable wormholes in $f(\mathrm{R}, \mathrm{T})$ gravity with conformal motions Ayan Banerjee, Ksh. Newton Singh, M. K. Jasim, 4 and Farook Rahaman arXiv:1908.04754v1 [gr-qc] 10 Aug 2019

[^0]: ${ }^{1}$ M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

