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Abstract

Viewing gravity as a spacetime bending force instead of just a spacetime curva-
ture, we come to the conclusion of inertial mass relativity since it yields equiva-
lent equations as General Relativity. A close analysis of the Schwarzschild metric
leads us naturally to the Vacuum Energy Invariance principle from which we
derive the metric equation. Applying this theory to cosmology, we can explain
the acceleration of the universe expansion in a way that doesn’t require Dark
Energy. This theory has the same predictive power as General Relativity for ev-
ery local experimental tests of the latter since it’s based on a slight modification
of the Schwarzschild metric.

INTRODUCTION

This theory is a new take on gravity that deserves further investigations. It
shows the mathematical consistency of seeing gravity as a spacetime bending
force and provides sort of a framework for a consistent theory of gravity even
for violations of the weak equivalence principle and non-newtonian gravitational
potentials. Seeing gravity as a spacetime bending force has two main advantages:
gravity can be easily quantized and explains the acceleration of the universe
expansion with no need for Dark Energy.

For every classical test of General Relativity, this theory gives the same mea-
surable results since it uses a slightly modified Schwarzschild metric. Some other
tests are possible where General Relativity and this theory would give different
results. Many such tests are presented in this paper and are a way to either
falsify this theory or to ascertain its physical consistency.

We should keep in mind that the overall implications of it could lead to
paradoxes as it was the case for Special Relativity and General Relativity whose
paradoxes have sometimes been resolved decades after their publication, so only
the mathematical consistency is of relevance in this paper.
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In this paper, Greek letters range from 0 to 3 (representing spacetime) while
Roman letters range from 1 to 3 (representing space), the metric signature is
(+−−−) and we use Einstein’s summation convention. The Greek capital letter
Φ is the gravitational potential.

I - A Light-Speed-Invariance-like Principle

Most tests of General Relativity are based on the Schwarzschild metric [1]

below. Let’s see if we can give a physical meaning to it.

ds2 = (1 + 2Φ/c2)c2dt2 − (1 + 2Φ/c2)−1dr2 − r2(dθ2 + sin2θdψ2)

First let’s consider the following equivalent metric in weak-fields:

ds2 = (1 + Φ/c2)2c2dt2 − (1 + Φ/c2)−2dr2 − r2(dθ2 + sin2θdψ2)

Space and time being disjoint, we can define the space metric:

ds2
Space = (1 + Φ/c2)−2dr2 + r2(dθ2 + sin2θdψ2)

The volume element of a riemannian manifold is the square root of the deter-
minant of the metric in absolute value times the coordinate elements. For the
Schwarzschild space metric it yields:

dV =
√

(1 + Φ/c2)−2 · r2 · r2sin2θ · drdθdψ = (1 + Φ/c2)−1 · r2|sinθ|drdθdψ

It comes:

(1 + Φ/c2) · dV = r2|sinθ|drdθdψ

This doesn’t depend on Φ which is an invariance principle. Let’s mulitply by
ρc2 where ρ is a hypothetical mass density of vacuum, we get:

(ρc2 + ρΦ) · dV = ρc2 · r2|sinθ|drdθdψ

In other words, analogous to the invariance of the speed of light, we have the
following principle:

”The energy of vacuum is invariant”.
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It seems like the same way speed of light invariance induces time dilation,
vacuum energy invariance induces space dilation. It is therefore a strong incen-
tive to search for a consistent theory of gravity as a spacetime bending force
instead of just a spacetime curvature.

II - A Spacetime Bending Force

Describing gravity as a spacetime bending force has to produce the same
tested predictions as General Relativity which are: Mercury’s Orbit Preces-
sion, Time Dilation, Light Bending, Shapiro Delay, Lens-Thirring and geodetic
effects.

We know Lens-Thirring and geodetic effets are both well discribed by Gravi-
toelectromagnetism [2] which is a theory of gravity in a flat spacetime analoguous
to Maxwell’s theory of electromagnetism. So including spacetime curvature in
Gravitoelectromagnetism would still make those predictions.

Analogous to electromagnetism in General Relativity, we can consider grav-
ity as some kind of gravitoelectromagnetism in a curved spacetime and see if it
makes the same predictions as General Relativity. The lagrangian of an electri-
cally charged body in General Relativity is:

L = −mc
√
gµν ẋµẋν − qẋµAµ

where Aµ is the electromagnetic four-vector potential, m the rest mass and
q the electric charge of the body. The idea is to consider a gravitational four-
vector potential Gµ analogous to the electromagnetic four-vector potential Aµ
and consider the following lagrangian:

L = −minertialc
√
gµν ẋµẋν −mgravitationalẋ

µGµ

where minertial is the inertial mass of the body and mgravitational is its gravi-
tational mass. We will see, that under the hypothesis of inertial mass relativity,
this lagrangian gives equivalent results as General Relativity.

For some reason that will become clear in Section III, we define the gravita-
tional mass as:

mgravitational = γ−1minertial

where γ is defined as γ−1 =

√
gµν

dxµ

dx0

dxν

dx0
similar to Lorentz factor.

We hypothesize that the inertial mass is relative such that:

minertial = α(Φ)m0
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where m0 is the rest mass, defined as the inertial mass if the gravitational
potential is null: α(0) = 1. The lagrangian becomes:

L = −α(Φ)m0c
√
gµν ẋµẋν − γ−1α(Φ)m0ẋ

µGµ (1)

How the Gravitational four-vector potential Gµ is calculated is not of rele-
vance in this paper since gravity is not postulated to be newtonian. It should
then be subject to further investigations. It depends on the type of gravitational
potential. If newtonian, it would be the exact analogous of electromagnetism
in curved spacetime as we would just have to replace ε0 by −1/4πG where G is
Newton’s constant.

In electromagnetism, the four-vector potential is of the form Aµ = (V/c, ~A)

where V is the electrical potential and ~A is the potential vector . Even though
Gµ remains to be calculated depending on the gravitational potential theory
used (not necessarily newtonian), we now that, analogously to electromagnetism

it is of the form Gµ = (Φ/c, ~G) where Φ is the gravitational potential.

In electromagnetism, the magnetic field is derived as the curl of ~A. Analo-
gously, defining the gravitational tensor as:

Fµν = ∂µGν − ∂νGµ =


0 − 1

cE
x
G − 1

cE
y
G − 1

cE
z
G

1
cE

x
G 0 BzG −ByG

1
cE

y
G −BzG 0 BxG

1
cE

z
G ByG −BxG 0


provides a good description of Lens-Thirring and geodetic effects.

Another prediction of General Relativity is Gravitational Waves. It is not
mentioned in the tests because it is in fact due to a gauge choice. Whereas
viewing gravity as a spacetime bending force, gravitational waves would not be
due to a gauge choice since Gµ is lorenzian by definition. Indeed, Lorentz gauge
induces a wave equation of the potential.

III - First Order Non-Relativistic Dynamics

As we said in the previous section, we consider the following lagrangian:

L = −α(Φ)m0c
√
gµν ẋµẋν − γ−1α(Φ)m0ẋ

µGµ [i]

Let’s demonstrate that this lagrangian gives equivalent equations of motion
as General Relativity for a certain choice of α when Lens-Thirring and geodetic
effects can be neglected in case of non-relativistic speeds and in weak-fields.
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Let’s first simplify the lagrangian by neglecting second order terms. If Lens-
Thirring and geodetic effects can be neglected, then cross-terms between space
and time can be neglected. Parametrizing with the body’s proper time, we have
c2 = g00(ẋ0)2 + gij ẋ

iẋj which yields for non-relativistic fields:

ẋ0 · √g00 = c · (1− 1/2 · gij ẋiẋj/c2) [ii]

Similarly, with γ−1 =

√
gµν

dxµ

dx0

dxν

dx0
, we have:

γ−1/
√
g00 =

√
gµν/g00 ·

dxµ

dx0

dxν

dx0
=

√
1 + gij/g00 ·

dxi

dx0

dxj

dx0
[iii]

Since dx0

dτ = ẋ0 and for non-relativistic speeds ẋ0 ≈ c, neglecting second order
terms it comes:

γ−1/
√
g00 =

√
1 + gij/g00 · ẋiẋj/(ẋ0)2 = 1 + 1/2 · gij/g00 · ẋiẋj/c2 [iv]

Since in weak-fields 1/g00 ≈ 1− 2Φ/c2, neglecting second order terms yields:

γ−1/
√
g00 = (1 + 1/2 · gij ẋiẋj/c2) [v]

Multiplying [ii] and [v] we get:

γ−1ẋ0 = c · (1 + 1/2 · gij ẋiẋj/c2 − 1/2 · gij ẋiẋj/c2 − (1/2 · gij ẋiẋj/c2)2) [vi]

Neglecting second order terms again it comes: γ−1ẋ0 = c [vii]

Lens-Thirring and Geodetic effects being neglected, we also have G0 = Φ/c
and Gi = 0 we get:

ẋµGµ = ẋ0G0 = ẋ0Φ/c [viii]

Recasting [vii] yields: γ−1ẋµGµ = γ−1ẋ0Φ/c = Φ [ix]

Introducing Lorentz factor in the definition of the gravitational mass is convie-
nient as it suppresses perturbative terms. Its physical meaning is quite intuitive
though: the faster a body, the more massive it gets in term of relativistic mass,
and the less the influence of a force on it. Taking this into account implies the
introduction of Lorentz factor in the definition of the gravitational mass.

The lagrangian [i] becomes:
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L = −α(Φ)m0c
√
gµν ẋµẋν − α(Φ)m0Φ (2) [x]

For more clarity, let’s also write: ṡ0 =
√
gµν ẋµẋν

We then have: L = −α(Φ)m0cṡ0 − α(Φ)m0Φ [xi]

The Lagrangian’s variables are xµ and ẋµ but parametrizing with the body’s
proper time, we have c2 = g00(ẋ0)2 +gij ẋ

iẋj which shows that the variables are
not independant. We then have to choose a set of independant variables. Since
space and time are disjoint by hypothesis, it is really convenient to choose xi

and ẋi as a set of independant variables.

The lagrangian equation is:
∂L

∂xi
− d

dτ

∂L

∂ẋi
= 0 [xii]

Since Φ doesn’t depend explicitly on ẋi, we have:

−∂α(Φ)m0cṡ0

∂xi
− ∂α(Φ)m0Φ

∂xi
+

d

dτ

∂α(Φ)m0cṡ0

∂ẋi
= 0 [xiii]

Leading to: −∂α(Φ)cṡ0

∂xi
− ∂α(Φ)Φ

∂xi
+

d

dτ
(α(Φ)

∂cṡ0

∂ẋi
) = 0 [xiv]

It comes:

−α(Φ)
∂cṡ0

∂xi
− ∂α(Φ)

∂xi
cṡ0 −

∂α(Φ)Φ

∂xi
+
dα(Φ)

dτ

∂cṡ0

∂ẋi
+ α(Φ)

d

dτ

∂cṡ0

∂ẋi
= 0 [xv]

We see the lagrangian equation of General Relativity in the first and last
terms of the equation [xv]. Let L0 = −m0cṡ0 , it comes:

−∂α(Φ)

∂xi
cṡ0 −

∂α(Φ)Φ

∂xi
+
dα(Φ)

dτ

∂cṡ0

∂ẋi
+ α(Φ)(

∂L0

∂xi
− d

dτ

∂L0

∂ẋi
)/m0 = 0 [xvi]

Parametrizing with the body’s proper time, we have: ṡ0 = c. Thus:

−∂(α(Φ)c2 + α(Φ)Φ)

∂xi
+
dα(Φ)

dτ

∂cṡ0

∂ẋi
+ α(Φ)(

∂L0

∂xi
− d

dτ

∂L0

∂ẋi
)/m0 = 0 [xvii]

Notations can be misleading. We cannot replace ṡ0 by c in the expression
∂cṡ0

∂ẋi
since it’s a partial derivative. We have in fact:

∂cṡ0

∂ẋi
= c ·

∂
√
gµν ẋµẋν

∂ẋi
= c · 2 · gµiẋµ

2 ·
√
gµν ẋµẋν

= c · 2 · ẋi
2 · c

= ẋi [xviii]
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Hence:
dα(Φ)

dτ

∂cṡ0

∂ẋi
=
∂α(Φ)

∂Φ
· ∂Φ

∂xµ
ẋµ · ẋi [xix]

And calculating (
∂L0

∂xi
− d

dτ

∂L0

∂ẋi
)/m0 gives a known standard result of General

Relativity [3][4][5][6]:

(
∂L0

∂xi
− d

dτ

∂L0

∂ẋi
)/m0 = gµiẍ

µ + 1/2 · (−∂igµν + ∂µgνi + ∂νgµi)ẋ
µẋν [xx]

Thus, after multiplying [xvii] by gik (which is the inverse of the restriction of
the metric to space), defining Christoffel symbols as:

Γkµν = gik/2 · (−∂igµν + ∂µgνi + ∂νgµi)ẋ
µẋν

(as said in the introduction, Roman letters span from 1 to 3 whereas Greek
letters span from 0 to 3) we get:

−gik ∂(α(Φ)c2 + α(Φ)Φ)

∂xi
+
∂α(Φ)

∂Φ

∂Φ

∂xµ
ẋµẋk + α(Φ)(ẍk + Γkµν ẋ

µẋν) = 0 [xxi]

We see that, for it to give correct equations of motion in the newtonian limit,
we necessarily have:

∂(α(Φ)c2 + α(Φ)Φ)

∂xi
= 0 [xxii]

That yields: α(Φ) = (1 + Φ/c2)−1 [xxiii]

Then:
∂α(Φ)

∂Φ
= −1/c2 · (1 + Φ/c2)−2 [xxiv]

Hence, recasting in [xxi] we get:

−(1 + Φ/c2)−2 · ∂Φ

∂xµ
ẋµẋk/c2 + (1 + Φ/c2)−1(ẍk + Γkµν ẋ

µẋν) = 0 [xxv]

After neglecting second order terms, that yields:

ẍk + Γkµν ẋ
µẋν =

∂Φ

∂xµ
ẋµẋk/c2 (3) [xxvi]

These equations of motion look like the geodesic equations of General Rela-
tivity. For weak-fields and low speeds, we trivially get the newtonian limit.
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Hence, if the inertial mass is relative such that:

minertial = (1 + Φ/c2)−1m0 (4)

gravity described as a spacetime bending force instead of a spacetime curva-
ture yields similar results. The small deviation from General Relativity induced
by ∂µΦẋµẋk/c2 would be a test of the theory.

For more clarity, let’s write: m0
∂Φ

∂xµ
ẋµẋk/c2 = −(~F · ~v) · ~v/c2

where ~F is the gravitational force and ~v the speed of the body. We can
interpret it as an anomalous thrust unexpected from General Relativity. Such
an anomaly is to be expected in the recently lauched Parker Solar Probe if solar
wind and radiation pressure can be neglected so close to the Sun and would be
a test of this theory.

In case of an orbital motion, we see that for a circular trajectory, this force is
null. Thus, it can be neglected for low eccentricities yielding the same predic-
tions of orbital precession as General Relativity.

However, it can be shown that the influence of this force over a revolution
period is a resulting force parallel to the great axis and directed towards the
aphelion of the trajectory that increases in magnitude with the eccentricity.
Thus, it contributes to increasing the eccentricity of the trajectory over time.
That might be the main reason why Mercury’s eccentricity is high compared to
other planets although tidal circularization would tend to make it null.

That is a good argument in favor of gravity as a spacetime bending force
instead of just a spacetime curvature, even though it is not a test the theory in
itself.

IV - Physical Implications

The hypothesis of inertial mass relativity yields equivalent results as General
Relativity in weak fields and non-relativistic speeds, therefore it gives equivalent
results for every experimental tests if the Schwarzschild metric is a solution of
this theory. This hypothesis has physical implications and interpretations as we
will see.

Mathematically, a natural physical interpretation arises. Indeed, we can give
a physical meaning to EΦ = minertialc

2 thanks to inertial mass relativity:

EΦ = m0c
2/(1 + Φ/c2)
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Generalized to a Relativistic body, we have:

EΦ = γmc2/(1 + Φ/c2) where γ = 1/
√

1− v2/c2 is Lorentz factor [8].

Let’s rewrite it as: EΦ =
√
m2

0c
4 + p2

0c
2(1 + Φ/c2)

Or rather, for brevity : EΦ = E0/(1 + Φ/c2) (5)

Applied to photons of energy E0 = hν0, with EΦ = hνΦ we have:

νΦ = ν0/(1 + Φ/c2)

That looks a lot like General Relativity’s formula of gravitational redshift.
Thus we define EΦ as the Apparent Energy of the body.

Writing it as EΦ = E0
√
g00, it’s as if the energy of a body could be redshifted.

It’s as if a body was also a wave which we know accurate since De Broglie’s
hypothesis of wave-particle duality.

Apparent Energy is nothing new. When a wave is Doppler-shifted for a
moving observer, the shifted frequency is said to be apparent frequency. Anal-
ogously, the energy of a photon for a moving observer doesn’t change, but since
its frequency is Doppler-shifted, the change in energy is in fact Apparent Energy.

This physical meaning implies the time dilation factor be: g00 = (1 + Φ/c2)2

This provides another testable deviation from General Relativity. Indeed in
General Relativity we have:

g00,schwarzschild =
√

1 + Φ/c2 ≈ 1 + 2Φ/c2

The second order difference is (Φ/c2)2 . It’s really small but measurable so
this theory is falsifiable.

V - Vacuum Energy Invariance

In Section I, we saw that the Schwarzschild metric could be interpreted in
weak fields as the invariance of the energy of a vacuum with a virtual matter
density. That was the incentive to consider gravity as a spacetime bending force
instead of just a spacetime curvature.
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Just as the Strong Equivalence principle is a postulate of General Relativity,
Vaccum Energy Invariance (VEI) is the fundemental postulate of this theory.
We will see that it yields the Schwarzschild metric in weak-fields and therefore
provides the same predictions as General Relativity.

In Section VI and VII, we derive the metric thanks to this principle.

VI - Metric Derivation (part I)

We showed in Section II and III that gravity can be coherently described as
a spacetime bending force if the rest mass is relative. We are left with how the
metric can be derived such that the Schwarzschild metric is a particular case.

We naturally postulate that the metric gµν is of the form:

g =

(
g00(Φ) 0

0 −gs(Φ)

)
Indeed, in General Relativity, cross terms between space and time are re-

sponsible for Lens-Thirring and geodetic effects but since these are already ac-
counted for by considering gravity as spacetime bending force, we can postulate
that space and time curvature are disjoint.

We then consider that space and time are independently dilated by VEI.

Let’s derive both det(gs) and g00 thanks to VEI principle.

At a given point in time t, in a volume element dx1dx2dx3, under zero gravity
(flat space) with vacuum energy density E0, we have:

dE0 = E0dx1dx2dx3

and under Φ-gravity potential, we have:

dEΦ = E0(1 + Φ/c2)
√
det(gs)dx1dx2dx3

Applying VEI, we have: dE0 = dEΦ.

It comes:

det(gs) = (1 + Φ/c2)−2 (6)

Let’s apply VEI in time domain to have a more rigorous way to find g00.
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The reasoning is a bit similar to the one for the derivation of the gravitational
redshift. We reason in terms of observational events.

Let E0 be the total vacuum energy and N be the number of observationnal
events.

The total vacuum energy by time unit for an observer under a global 0-
potential is:

P0 =
d(NE0)

dt

The total vacuum energy by time unit for the same observer under a global
Φ-potential is:

PΦ =
d(NE0(1 + Φ/c2))

dτ

Applying VEI, we have: P0 = PΦ

It comes: E0dNdτ = E0(1 + Φ/c2)dNdt

With dτ2 = g00dt
2 it eventually comes:

g00 = (1 + Φ/c2)2 (7)

The equation of motion [xxvii] of Section III, for non-relativistic speeds be-
comes:

ẍk + Γk00ẋ
0ẋ0 = 0

In weak-fields, standard result of linearized General Relativity yields :

ẍk = −1/2 · ∂kh00c
2

where hµν = gµν − ηµν is the perturbation of the metric.

From VEI we have h00 = 2Φ/c2 which yields Newton’s law [9].
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VII - Metric Derivation (part 2)

We still don’t fully know gs. Any gs formula predicting a correct Light Deflec-
tion and reproducing the Schwarzschild metric for the Sun’s mass distribution
works to account for every experimental tests.

Considering gravity as a spacetime bending force would give us a space
metric gs different from General Relativity. It doesn’t change anything to the
newtonian limit since in that case only g00 is relevant for the equations of motion.
The idea is to aggregate the contributions of every mass of the distribution to
the space deformation. In case of a compact spherical distribution, far from the
sphere, space dilation would be purely radial just as in the Schwarzshild metric
whereas it wouldn’t be the case close to the mass distribution. This provides
another test.

Space deformations induced by a single punctual mass must be radial for
trivial physical reasons. Then in a local orthonormal basis (~er, ~eu, ~ev) where ~er
is radial, space metric is −gs,ruv of the form:

gs,ruv =

β−2 0 0
0 1 0
0 0 1

 = I + (β−2 − 1)

1 0 0
0 0 0
0 0 0


Applying VEI yields: β = 1 + Φ/c2.

LetMT be the change of basis orthonormal matrix from (~er, ~eu, ~ev) to (~e1, ~e2, ~e3).
So with ~er = ri~ei , ~eu = ui~ei and ~ev = vi~ei , changing coordinates we have:

gs = MT gs,ruvM with MT =

r1 u1 v1

r2 u2 v2

r3 u3 v3



Since MTM = I, it comes: gs = I + (β−2 − 1)MT

1 0 0
0 0 0
0 0 0

M

Eventually:

gs = I + (β−2 − 1)

 r2
1 r1r2 r1r3

r2r1 r2
2 r2r3

r3r1 r3r2 r2
3

 or gs,ij = δij + (β−2 − 1)rirj

In weak-fields, this is equivalent to the Schwarzschild metric written in carte-
sian coordinates. This doesn’t depend on the choice of ~eu and ~ev. For a mass
distribution, the unit vector pointing from a massive point towards a local point
in space is the same as the radial vector ~er so we can aggregate their influence
thanks to the above formula.
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Indeed, for an infinitely small potential dΦ, we have β−2 − 1 = −2dΦ/c2 and
the metric becomes, when integrating over every infinitely small potential:

gs,ij = δij + λ ·
∫
−2rirjdΦ/c2 with λ such that det(gs) = (1 + Φ/c2)−2

Space being curved there might not be a unique choice of ri. Therefore
we introduce the potential angular distribution φ(~σ), where ~σ is the observed
direction. Leading to the following metric equation:

gs,ij = δij + λ ·
∫
−2φ(~σ)/c2 · ri(~σ)rj(~σ)dσ (8)

With: Bij =

∫
−2φ(~σ)/c2 · ri(~σ)rj(~σ)dσ (9)

We have: gs,ij = δij + λBij

In fact, for any 3x3 matricial function f such that f(P−1MP ) = P−1f(M)P
and f(M) = I + M if M is small, gs = f(λB) would also be valid. For
physical reasons, rather than summing the infinitely small pertubations, we
should multiply the metrics induced by each infinitely small perturbations. That
would yield:

gs = eλB (10)

Deriving λ is then straightforward since B being symmetric, it is diagonal
in a certain basis, and eλB would be a diagonal matrix in such a basis whose
determinant is the exponential of the sum of its eigenvalues. The sum of the
eigenvalues being the trace of λB, we have:

det(eλB) = eTr(λB)

Applying VEI principle we then have : eλTr(B) = (1 + Φ/c2)−2

Hence : λ = −2 · ln(1 + Φ/c2)/Tr(B) (11)

So in the weak-fields limit we have: gs,ij = δij − 2Φ/c2 ·Bij/Bkk (12)

Applying it to a punctual mass, space deformation being radial, in spherical
coordinates we trivially obtain a modified Schwarzschild metric:
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ds2 = (1 + Φ/c2)2c2dt2 − (1 + Φ/c2)−2dr2 − r2(dθ2 + sin2θdψ2) (13)

So this predicts Mercury’s Orbital Precession and Light Deflection by the Sun
since its mass is concentrated in its core. But in case of a homogenous spherical
mass distribution like the Earth, the radial dilation would be smaller than the
one predicted by the Schwarzschild metric because the deformation is fairly
distributed according to the influence of every part of the mass distribution.
This could be measured through interferometry and provides another test of
the theory.

VIII - Summary

The formalism could be enhanced but this is not necessary to show the math-
ematical consistency of this theory. Gµ being Lorentzian, G0 = Φ/c depends on
the referential frame. So space dilation through VEI would be relative. There
is a paradox there that we won’t adress and suppose that a better formalism
would erase it. In last resort, General Covariance could be dropped.

The theory can be summarized by the equations below:

Φ0 = Φ

L = −αm0c
√
gµν ẋµẋν − γ−1αm0ẋµGµ

α = (1 + Φ0/c
2)−1

γ−1 =

√
gµν

dxµ

dx0

dxν

dx0

g =

(
(1 + Φ0/c

2)2 0
0 −eλB

)

Bij =
∫
−2φ0(~σ)/c2 · ri(~σ)rj(~σ)dσ

λ = −2 · ln(1 + Φ/c2)/Tr(B)

This can be easily adapted to any violation of Weak Equivalence principle by
separating vacuum gravitational potential from the bodies’ gravitational poten-
tial: Φ0 6= Φ
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IX - Universe Expansion

The Cosmological Redshift can as well be interpreted as due to an expanding
universe if we postulate that the universe is homogeneous and isotropic and
has a beginning. This wouldn’t be an extension of General Relativity but an
alternative coherent model providing the same observational results. Indeed,
if gravity is a force, gravitational potential propagates at the speed of light.
The older the universe, the more propagated the gravitational potential and the
greater space dilation would be.

Let’s see how global vacuum gravitational potential evolves in a homogeneous
and isotropic universe from its creation. The potential is induced by the mass
in a cT radius sphere where T is the age of the universe. The gravitational
potential is:

Φ =
∫ cT

0
φ(r)ρ · 4πr2dr

Taking space dilation into account and conservation of matter, we have:

ρ = ρ0 · (1 + Φ/c2)−1

And with the variable change t = r/c we have:

Φ = 4πρ0c
3 ·
∫ T

0
φ(ct)(1 + Φ/c2)−1t2dt

Hence the following gravitational potential differential equation:

dΦ/dT = 4πρ0c
3 · φ(cT )(1 + Φ/c2)−1T 2

Separating variables, we get:

Φ + Φ2/2c2 = 4πρ0c
3 ·
∫ T

0
φ(ct)t2dt

Hence the solution:

1 + Φ/c2 =

√
1 + 8cπρ0 ·

∫ T

0

φ(ct)t2dt (14)

The age T is the time elapsed from the point of view of an observer in a null
gravitational potential, as if he was shielded from gravity.

Since the universe is homogeneous, the scale factor is a = (1 + Φ/c2)−1/3 so
recasting the solution yields:
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a(T ) = (1 + 8cπρ0 ·
∫ T

0

φ(ct)t2dt)−1/6 (15)

To be able to compare this model with Friedmann-Lemaitre-Robertson-Walker
models, we need to express the dilation factor with a time equivalent to comov-
ing observers. The time Tc of a comoving observer satisfies:

dTc =
√
g00dT = (1 + Φ(T )/c2)dT

It comes: Tc =

∫ T

0

(1 + 8cπρ0 ·
∫ t

0

φ(cτ)τ2dτ)1/2dt (16)

Intuitively, the dilation factor has a positive acceleration because it is a divi-
sion by a quantity that seems to near zero. In fact, the above equations shows
that the absolute time T can have a finite limit value when the comoving time
Tc tends to infinity. That depends on the gravitational potential theory used.
Let’s do the calculation for a newtonian potential φ(r) = −G/r. We have:

Tc =
∫ T

0
(1− 4πGρ0t

2)1/2dt

And: a(T ) = (1− 4πGρ0T
2)−1/6

From this simple newtonian model, we see the scalar factor has a positive
acceleration. The potential is not necessarily newtonian, but we see that an
accelerating expanding universe would be more expected than a non-accelerating
universe, especially for non-newtonian potentials such that G/r · φ(r)−1 = o(1).
This model doesn’t require Dark Energy to explain such acceleration.

X - Intrinsic Redshift Non-Standart Cosmology

From Halton Arp observations [12], it seems like the Cosmological Redshift is
not only due to expansion. It seems like there is what we can call an Intrinsic
Redshift. This can be understood through mass relativity. Indeed, hydrogen
atom absorption lines spectrum is dependent on electron and proton mass which
are relative. An hydrogen photon frequency emitted or absorbed in Φ2 gravi-
tational potential as seen by an observer shielded from gravity is proportional
to the inertial reduced mass of a proton and an electron µ = µ0/(1 + Φ2/c

2)
since hydrogen energy states are given by EI/n

2 with EI = µe4/8ε20h
2 and is

then stretched through expansion. Such frequency observed in Φ1 gravitational
potential is of the form:

ν2 = ν0/(1 + Φ2/c
2) · (1 + Φ1/c

2)−1
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Same reasonning for a photon emitted or absorbed in Φ1 and observed in Φ1

gives the observed frequency:

ν1 = ν0/(1 + Φ1/c
2) · (1 + Φ1/c

2)−1

Hence the redshift: ν2/ν1 = (1 + Φ1/c
2)/(1 + Φ2/c

2)

At a cosmological scale, a photon observed from a far away galaxy at a dis-
tance D is emitted or absorbed under the gravitational potential Φ0(T −D/c)
at time T −D/c plus intrinsic potential ΦGal of the galaxy, hence the redshift
observed in Φ0(T ) + Φlocal gravitational potential taking into account space
dilation with scale factor a:

νGal/νlocal =
1 + Φlocal/c

2 + Φ0(T )/c2

1 + ΦGal/c2 + Φ0(T −D/c)/c2
· a(T −D/c)

a(T )

Since a(T ) = (1 + Φ0(T )/c2)−1/3, it comes:

νGal/νlocal =
1 + Φlocal/(c

2 + Φ0(T ))

1 + ΦGal/(c2 + Φ0(T −D/c))
·
(
a(T −D/c)

a(T )

)4

(17)

So we have this way an intrinsic redshift taken into account that explains
Halton Arp’s observations.

In case of no apparent intrinsic redshift, the redshift formula becomes:

νGal/νlocal =

(
a(T −D/c)

a(T )

)4

(18)

It means that the Cosmological Redshift is not only due to the expansion of
the universe but is mostly due to mass relativity.

CONCLUSION

Vacuum Apparent Energy Invariance is a principle analogous to speed of light
invariance that is the fundamental postulate of this theory, just like Strong
Equivalence principle is the fundamental postulate of General Relativity. From
it we can derive the Schwarzschild metric in weak-fields and equations of space
dilation similar to linearized General Relativity in weak-fields. We demonstrated
that in every experimental tests done so far, viewing gravity as a spacetime bend-
ing force gives equivalent results as viewing gravity as a spacetime curvature.
The only new concept introduced is rest mass relativity which is physically
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acceptable since the concept of rest mass and relative mass already exist. It
also takes into account any possible violations of Weak Equivalence Principle
and non-newtonian potentials which is an open door to further studies. It pro-
vides a model of an accelerating expanding universe witout Dark Energy and
an explanation of Halton Arp observations which has never been done before.

Above all, more than being mathematically consistent, it is testable. Pre-
dicted deviations from General Relativity are described in Section III, IV and
VII and could ascertain its physical consistency.

Gravity as a spacetime bending force is trivially quantizable as a force in a
curved spacetime analogous to electromagnetism [10][11]:

[iγµ(∂µ − Γµ − ieAµ − im0(1 + Φ0/c
2)−1Gµ)−m0(1 + Φ0/c

2)−1] · ψ = 0 (19)

It is then a possible alternative to General Relativity that is worth investigat-
ing further even though it could very well be ruled out as many other theories.
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