A proof of

Riemann hypothesis

Francisco Moga Moscoso ${ }^{1}$, Marina Moga Lozano ${ }^{2}$

1. Industrial Engineer. Mathematical researcher.
2. Malaga Faculty of Medicine. Malaga University.

Abstract

This article is very important because the objective is to contribute to research related to the riemann hypothesis. In this article, we will prove Riemann Hypothesis by a new novel vision.

Keywords: Riemann Hypothesis, Riemann zeta function.

Proof I:

Riemann zeta function is defined by the Dirichlet series

$$
\zeta=\sum_{n=1}^{\infty} \frac{1}{n^{8}} s=\sigma+i t
$$

This functions has only simple zeros, called trivial zeros at points $\sigma=-2 v, v=$ $1,2,3, \ldots$ Every non-trivial zero in the function $\zeta(s)$ are complex numbers which have symmetry property with respect to the real axis $t=0$ and to the vertical line $\sigma=\frac{1}{2}$ and they are on the called critical line $0 \leq \sigma \leq 1$. For $\sigma>1$ the function $\zeta(s) \neq 0$.

The Riemann hypothesis states that all non-trivial zeros of zeta function have real part $\sigma=\frac{1}{2}$:[3]

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=0 s=\sigma+i t \Rightarrow \sigma=1 / 2
$$

For that reason we establish that if an equation $P(x)=0$ with real coefficient admits a complex root $x^{\prime}=\sigma+i t$ of order k , it also admits, with the same order, its conjugate root $x "=\sigma-i t$.

Every infinite complex solution of zeta function of Riemann $\zeta(s)$ with its conjugated root, can also be used to be the solution of a quadratic equation of real coefficients which admits it as zeros, using the root theorem of Viete:

$$
\begin{aligned}
& x^{\prime}=\sigma+i t, x^{\prime \prime}=\sigma-i t \\
& x^{\prime}+x^{\prime \prime}=(\sigma+i t)+(\sigma-i t)=2 \sigma=b \Longrightarrow \sigma=\frac{b}{2} \\
& x^{\prime}, x^{\prime \prime}=(\sigma+i t) \cdot(\sigma-i t)=\sigma^{2}+t^{2}=c \\
& x^{2}-b x+c=0 \text { siendo } b=2 \sigma c=\sigma^{2}+t^{2} \\
& \quad x^{\prime 2}-2 \sigma x^{\prime}+\sigma^{2}+t^{2}=0 \longrightarrow x^{\prime}=\frac{2 \sigma+\sqrt{4 \sigma^{2}-4\left(\sigma^{2}+t^{2}\right)}}{2}=\sigma+i t=s \\
& \quad x^{\prime \prime 2}-2 \sigma x^{\prime \prime}+\sigma^{2}+t^{2}=0 \longrightarrow x^{\prime \prime}=\frac{2 \sigma-\sqrt{4 \sigma^{2}-4\left(\sigma^{2}+t^{2}\right)}}{2}=\sigma-i t
\end{aligned}
$$

This equation can also be written as:
$x^{2}-\mathrm{bx}+\mathrm{c}=0$ for $\mathrm{b}=\mathrm{x}^{\prime}+\mathrm{x}^{\prime \prime}$ and $\mathrm{c}=\mathrm{x}^{\prime} \cdot \mathrm{x}^{\prime \prime}$ $x^{\prime 2}-b x^{\prime}+c=0$ for $c=x^{\prime}\left(b-x^{\prime}\right)$ so the equality
belongs and identity $x^{\prime 2}-b x^{\prime}+x^{\prime}\left(b-x^{\prime}\right) \equiv 0$
so this identity has to be verified whatever the values might be for b and x^{\prime}. For that reason, $b=1$ and $x^{\prime}=s=\sigma+i t$ for $\sigma=\frac{b}{2}$ so it should be verified for $\sigma=\frac{1}{2}$, so:
$\left(\frac{1}{2}+i t\right)^{2}-1\left(\frac{1}{2}+i t\right)+\left(\frac{1}{2}+i t\right)\left(\frac{1}{2}-i t\right)=0$
$\frac{1}{4}+2 \frac{1}{2} i t+i^{2} t^{2}-\frac{1}{2}-i t+\frac{1}{4}-i^{2} t^{2}=0$
and this must be verified whatever t might be and for $\sigma=\frac{1}{2}$
so, $x^{\prime}=S=\frac{1}{2}+i t$
$x^{\prime 2}-\mathrm{bx}$ " $+\mathrm{c}=0$ for $\mathrm{c}=x^{\prime \prime}\left(b-x^{\prime \prime}\right)$ so the equality
belongs and identity $x^{" 2}-b x "+x^{\prime \prime}(b-x ") \equiv 0$
so this identity has to be verified whatever the values
might be for b and $x^{\prime \prime}$. For that reason, $b=1$ and $x^{\prime \prime}=\sigma-i t$ for $\sigma=\frac{b}{2} \quad$ so it should be verified for $\sigma=\frac{1}{2}$, so:

$$
\begin{aligned}
& \left(\frac{1}{2}-i t\right)^{2}-1\left(\frac{1}{2}-i t\right)+\left(\frac{1}{2}+i t\right)\left(\frac{1}{2}-i t\right)=0 \\
& \frac{1}{4}-2 \frac{1}{2} i t+i^{2} t^{2}-\frac{1}{2}+i t+\frac{1}{4}-i^{2} t^{2}=0
\end{aligned}
$$

and this must be verified whatever t might be and for $\sigma=\frac{1}{2}$
so, $x "=\frac{1}{2}-i t$.
The identities should be verified for b and $b=1$ and that is possible if and only if $\sigma=\frac{1}{2}$. So, all the non-trivial zeros in the zeta function of Riemann $\zeta(s)$ must be on the straight line $\sigma=\frac{1}{2}$. If it is not so, the identities contradict their own definition that states that: 'an identity is an equality which is verified whatever the values attributed to letters may be'.

A proof II:

Beginning with the equation $x^{2}-b x+c=0$ for $b=x^{\prime}+x^{\prime \prime}$ and $c=x^{\prime} x^{\prime \prime}$
$x^{\prime 2}-b x^{\prime}+c=0 \quad c=x^{\prime}\left(b-x^{\prime}\right)$ for b and x^{\prime}. If $b=1$ we have the following equation:
$x^{\prime 2}-1 x^{\prime}+x^{\prime}\left(1-x^{\prime}\right)=0$ and this expression is an identity $x^{\prime 2}-1 x^{\prime}+x^{\prime}\left(1-x^{\prime}\right) \equiv 0$.
This has to be verified whatever the value of x^{\prime} may be, so it has to be also verified for every value $\mathrm{S}=\sigma+i t$, that is for every value of the solution of the Riemann zeta equation.

If we substitute x^{\prime} for $\sigma+$ it, we have the following:
$(\sigma+i t)^{2}-1(\sigma+i t)+(\sigma+i t)(\sigma-i t) \equiv 0$
$\sigma^{2}+2 \sigma i t+i^{2} t^{2}-\sigma-i t+\sigma^{2}-i^{2} t^{2} \equiv 0 \Rightarrow i^{2} t^{2}+2 \sigma i t+2 \sigma^{2} \equiv i^{2} t^{2}+i t+\sigma$ and being an identity, both members rmust be identical, as the definition of an identity. We can have the following system:
$\mathrm{i}^{2} \mathrm{t}^{2}-\mathrm{i}^{2} \mathrm{t}^{2} \equiv 0$ for all σ
2σ it - it $\equiv 0$ for $\sigma=\frac{1}{2}$
$2 \sigma^{2}-\sigma \equiv 0$ for $\sigma=0$ and $\sigma=\frac{1}{2}$
$\sigma=0$ does not verify the system, so the system is verified if and only if $\sigma=\frac{1}{2}$. For that reason, we have that $x^{\prime}=s=\frac{1}{2}+i t$, as we wanted to demonstrate. Dedekin function and similar, whose are $s=\sigma+i t$, have the same demonstration.

Conflict of interest. The author declares that there is no conflict of interest regarding the publication of this paper.

References:

[1] I. M. Vinográdov, Enciclopedia de las matematicas / Encyclopedia of mathematics, no. v. 5. Grupo Anaya Comercial, 2004.
[2] E. Bombieri, "Problems of the Millennium : The Riemann Hypothesis," Millenn. Prize Probl., vol. 1, no. 2004, pp. 3-9, 2005.
[3] A. Bouvier and M. George, Diccionario de matemáticas. Akal, 1984.

