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Abstract 

The electron-proton scattering experiment by the PRad (proton radius) team at Jefferson Lab measured 

the root mean square (rms) charge radius of the proton as rp = 0.831 ± 0.007stat ± 0.012syst fm.1 We offer 

a theoretical explanation of the new measurement based on a ring current model of a proton. This 

model further builds on older ring current and/or Zitterbewegung models for an electron and, hence, we 

will also highlight those results when relevant. We obtain a theoretical radius that is equal to four times 

the range parameter (ħ/mpc) in Yukawa’s formula: 

rp = 4ħ/mpc  0.841 fm  

The 1/4 factor stems from the energy equipartition theorem: using Wheeler’s ‘mass without mass’ idea, 

we effectively assume half of the energy of a proton is explained by the electromagnetic, while the other 

half is attributed to the strong force, which we do not model but isolate from the analysis using the 

energy equipartition theorem.  

As for the small difference between the theoretical and measured radius, we attribute this to the 

mathematical idealizations that underpin ring current models. While useful and necessary as a concept, 

we think pointlike electric charges with zero rest mass and/or zero dimension that, therefore, move at 

lightspeed, do not exist: they must have some (very) small dimension which explains the anomaly. We 

think mathematical idealization also explains the anomalous magnetic moment of an electron. 

We think the calculations may offer a model of matter-particles in general. 

  

 
1 https://www.jlab.org/prad/collaboration.html 

mailto:jeanlouisvanbelle@outlook.com
https://www.jlab.org/prad/collaboration.html
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The mass, radius, and magnetic moment  
of a proton and an electron  

 

1. The recommended CODATA values for the magnetic moment (mm) and the mass of a proton are the 

following: 

μ = 1.4106067973610−26 J·T−1  0.00000000060 J·T−1 

m = 1.6726219236910−27 kg  0.0000000005110−27 kg  

We also have the following defined (or exact) values for the elementary charge, the velocity of light and 

Planck’s constant2: 

qe = 1.60217663410−19 C 

c = 299 792 458 m/s 

h = 6.62607015 J·s 

From a mathematical point of view, we have a set of exact values (the physical constants) and a set of 

variables (mass, magnetic moment, radius, angular momentum of a proton, etcetera) that depend on 

them. The constants are related to the variables through a number of physical laws and theorems we 

accept to be valid.3 The laws and theorems that we will use in this article are: 

• The energy equipartition theorem 

• The Planck-Einstein relation: E = h·f = ħ·ω 

• The principle of relativity and the energy-mass equivalence relation: E = m·c2 

• The force law, which states that a force acts upon a charge and changes its state of motion 

• Maxwell’s laws of electromagnetism 

The system is completely determined – possible over-determined – and, hence, it is easy to derive the  

relations we seek: from the energy (or equivalent mass) of the particle (electron or proton), we can 

calculate all other observables using the three above-mentioned constants (Planck’s quantum of action, 

the elementary charge and the speed of light). 

2. We believe a realist interpretation of quantum mechanics is possible, which means the structure of 

the laws and theorems should not only reflect some structure in our mind, but in Nature as well.  

 
2 As part of the 2019 revision of SI units, exact numerical values were set for Planck’s constant (h), the elementary 
electric charge (qe), the Boltzmann constant (kB), and Avogadro’s constant (NA). The fine-structure constant has 
now also been defined as: 

α =
qe

2

4πε0ℏ𝑐
 

Its value still has an uncertainty of 1.510−19 on it, which it shares with the electric and magnetic constants 
because of the c2 = 1/ε0μ0 relation. 
3 We adhere to a Popperian view here: we accept them to be valid because they have resisted falsification (Popper, 
1959). 
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We, therefore, imagine the magnetic moment of a proton to be created by a circular current of the 

elementary charge. It is, therefore, equal to the current times the area of the loop: 

μ = Iπ𝑎2 = qe𝑓π𝑎2 =
qeω𝑎2

2
⟺ 𝑎 = √

2μ

qeω
 

The frequency is equal to the velocity of the charge (v) divided by the circumference of the loop (2πa). 

However, for a reason the reader will readily understand after reading this article, we prefer to use the 

Planck-Einstein relation for the frequency. We believe the Planck-Einstein relation (E = h·f = ħ·ω) reflects 

a fundamental cycle in Nature. It, therefore, makes sense to also apply it to the ring current idea of a 

proton.4 Hence, we write: 

𝑎 = √
2μ

qeω
= √

2μℏ

qeE
 

3. When applying this formula to an electron, we get the Compton radius of an electron (a = ħ/mc).5 

When applying the a = ħ/mc radius formula to a proton, we get a value which is about 1/4 of the 

measured proton radius. We, therefore, need to consider using the same fraction of the proton energy 

to calculate the frequency:  

ω =
1

4

E

ℏ
 

We should motivate the 1/4 factor, of course. We think the huge value of the proton mass and its tiny 

size – as compared to the mass and size of an electron – lend credibility to the assumption of another 

force (or another charge) inside of the proton.6 Hence, the 1/4 factor combines (1) the energy 

equipartition theorem (half of the energy or mass of the electron is to be explained by the strong force) 

and (2) Hestenes’ interpretation of Schrödinger’s Zitterbewegung interpretation of an electron.7 We can, 

finally, do an actual calculation now: 

 
4 There is a long tradition of thinking of an electron in terms of a current ring. We may refer to Parson (1915), 
Schrödinger (1930) and, more recently, Hestenes (1990). It has been suggested it may also apply to protons 
(Consa, 2018) but, based on quick feedback from sympathetic researchers, we think this paper may be the first 
fully consistent theory in this regard. Alexander Burinskii, whose work on an integrated theory of the electron we 
admire greatly, drew our attention to earlier work of M.E. Shulman but Shulman’s work seems to focus on leptons 
only (https://www.scirp.org/journal/paperinformation.aspx?paperid=78086). Giorgio Vassallo also sent useful 
references we will further examine over the coming months. We thank both for their quick feedback on our ‘back-
of-the-envelope’ calculations.  
5 The reader who is not familiar with ring current and/or Zitterbewegung models of an electron may also not be 
familiar with the concept of a Compton radius. It is, of course, the reduced form of the Compton wavelength. We 
think of it as an actual (electric) charge radius (see Annex I and II). 
6 We use a model explaining mass as the equivalent mass of energy here, i.e. Wheeler’s idea of “mass without 
mass”. Energy is force over a distance and, hence, we can distinguish between electromagnetic energy (and the 
equivalent mass) and some new strong energy or mass, which is defined in terms of some strong force and the 
related strong charge. Our interpretation of Wheeler’s “mass without mass” theory is explained in a previous 
paper (https://vixra.org/abs/2001.0453). 
7 Hestenes summarizes his various papers as follows: “The electron is nature's most fundamental superconducting 
current loop. Electron spin designates the orientation of the loop in space. The electron loop is a superconducting 

https://www.scirp.org/journal/paperinformation.aspx?paperid=78086
https://vixra.org/abs/2001.0453
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𝑎 = √
2μ

qeω
= √

4 ∙ 2μℏ

qeE
= 2 ∙ √

2μℏ

qem𝑐2
≈ 2 ∙ 0.35146…× 10−15 ≈ 0.703 fm 

The gap between the 0.831 and 0.703 values suggests we are missing a 2 factor: 

𝑎 = √
√2 ∙ 2μ

qeω
= 2 ∙ √

2√2μℏ

qeE
≈ 0.8359278 fm 

The difference between this calculated value (which used all of the precision of the CODATA values) and 

the PRad result is only about 0.005 fm8, which is well within the statistical standard error of the 

measurement. Hence, it is a significant and, therefore, useful result. 

4. We now need to motivate the insertion of the 2 factor. As part of our realist interpretation of 

quantum physics, we imagine there is some real magnetic moment here, which we denote as μL: 

μL = 2·(1.4106067973610−26 J·T−1)  1.99510−26 J·T−1  

The subscript L in the μL notation stands for (orbital) angular momentum. A magnetic dipole will precess 

when placed in a magnetic field⎯which is what is being done when measuring the magnetic moment of 

a proton. We refer to Feynman9 for an easy and very meaningful explanation of the relation between 

the magnitude of the actual – or imagined?10 – angular momentum of a precessing magnet (L) and Lz 

(the measured quantum value) as: 

𝐿

𝐿𝑧
=

√𝑗(𝑗 + 1) ∙ ℏ

𝑗 ∙ ℏ
=

√𝑗(𝑗 + 1)

𝑗
 

For j = ½, we get: 

=
√1/2(1/2 + 1)

1/2
= 2 ∙ √

3

4
= √3 

We need a 2 factor. Hence, the spin number must be one: 

𝐿

𝐿𝑧
=

√𝑗(𝑗 + 1) ∙ ℏ

𝑗 ∙ ℏ
=

√1(1 + 1)

1
= √2 

 
LC circuit. The mass of the electron is the energy in the electron's electromagnetic field. Half of it is magnetic 
(potential) energy and half is kinetic.” (email from Dr. David Hestenes to the author dated 17 March 2019)  
8 0.831 − 0.836 = 0.005. We showed a result with seven digits to show the difference between this calculation and 
another value we will get out of another calculation (see Section 5). 
9 See: https://www.feynmanlectures.caltech.edu/II_34.html#Ch34-S7 
10 The difference between actual and imagined here depends on one’s interpretation of quantum-mechanical laws. 
From what we present in this article, it should be obvious to the reader that we like to think this magnitude is 
something real. However, such metaphysical questions should not be the concern of the reader: he or she should 
just check our calculations so as to verify them. The interpretation of the results is a different matter. 

https://www.feynmanlectures.caltech.edu/II_34.html#Ch34-S7
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We know this assumption relates to the theoretical distinction between fermions and bosons. However, 

we will show the j = 1 assumption makes sense. 

5. Because of the apparent randomness of this 2 factor, we must try the simpler approach to 

calculating the magnetic moment, which calculates the frequency from the f = c/2πa formula: 

μL = Iπ𝑎2 = qe𝑓π𝑎2 = qe

𝑐

2π𝑎
π𝑎2 =

qe𝑐

2
𝑎 

⟺ 𝑎 =
2μL

qe𝑐
= √2 ∙

2μ

qe𝑐
= √2 ∙ 0.587 × 10−15 ≈ 0.83065344… fm 

The result differs – slightly but significantly – from the result we obtained from using the Planck-Einstein 

relation for the frequency calculation (see Section 3). It is a very small difference. To be precise, it is, 

again, of the order of 0.005 fm. At the same time, this result is closer to the 0.831 PRad value: the 

difference is 0.000346656… fm only, which is less than 5% of the standard error of the PRad point 

estimate (0.007 fm). 

6. In our calculations, we used the CODATA value for the magnetic moment of a proton in two different 

formulas for the radius, and we found the result is slightly different. While the two values do not differ 

significantly from the experimentally measured value for the proton radius – and, thereby, may be seen 

as a confirmation of the relevance of the PRad experiment – the two different values suggest we may 

think of some unique or absolute theoretical value for the magnetic moment. Indeed, because we have 

two equations for the radius a – and both of them involve μL – we can just equate them: 

𝑎 = 2 ∙ √
2μLℏ

qeE
=

2μL

qe𝑐
⟺ √

2μLℏ ∙ qe
2𝑐2

qeE ∙ μL
2 = 1 

⟺ μL =
2qe

m
ℏ  2.02035 × 10−26 J · T−1  

We get a value that is almost 2, but not quite. We think of this as a coincidence. We can now calculate 

an exact theoretical value for the proton radius: 

𝑎 =
2μL

qe𝑐
=

2

qe𝑐
∙
2qeℏ

m
= 4 ∙

ℏ

m𝑐
≈ 4 ∙ (0.21… fm) ≈ 0.8413564…  fm  
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This value is not within the 0.831  0.007 fm interval, but it is well within the wider 

rp  = 0.831 ± 0.007stat ± 0.012syst fm interval.11 It is also within the 2018 CODATA interval for the proton 

radius, which is equal to rp = 0.8414 ± 0.0019 fm.12 

It may be noted that the ħ/mpc factor is equal to the range parameter in Yukawa’s formula for the 

nuclear potential.13 As such, it is equivalent to the concept of the Compton radius for an electron. 

7. We will now come back to the question of the spin number. Quantum-mechanical spin is expressed 

in units of ħ/2 and, according to the Copenhagen interpretation of quantum mechanics, we should not 

try to think of it as a classical property⎯as something that has some physical meaning. We obviously 

disagree with this point of view. We think we can just use the classical L = I·ω expression and substitute I 

and ω for the angular mass and the angular frequency.14 To calculate the angular mass, one must 

assume some form factor: a hoop, a disk, a sphere or a shell are associated with different form factors. 

Our electron model15 assumes that the effective mass of the electron is spread over a circular disk. We 

can, therefore, calculate the angular momentum as: 

L = 𝐼 ∙ ω =
m𝑎2

2

𝑐

𝑎
=

m𝑐

2
∙ 𝑎 =

𝑚𝑐

2
∙

ℏ

𝑚𝑐
=

ℏ

2
 

Hence, we may effectively refer to an electron as a spin-1/2 particle. However, we do not think of this 

property as some obscure ‘intrinsic’ property of an equally obscure ‘pointlike’ particle: we think of the 

 
11 We readily admit the insertion of the 2 factor needs further examination. We have a μL = 2qeħ/mp  2.02… J/T 

value for the magnetic proton which, we argue, differs from the CODATA value with a 2 factor because of 

precession. In contrast, the formula for the magnetic moment of an electron (μe = qeħ/2me  9.274 J/T) gives us the 
CODATA value (apart from the anomaly, of course) without the need for any correction factor because of 
precession. If an electron is some ring current as well, then it must precess as well. We looked on the NIST site, but 
could not find much in terms of methodology. We sent an email to the NIST Public Affairs section with a request to 
guide us to the necessary materials in this regard. Annex I offers a full discussion of the perceived issue. 
12 We quickly tried to verify the history behind the new 2018 CODATA value for the radius of a proton but we could 
not find the usual reports of meetings and/or decisions. We will do some more search in the NIST bibliographies. 
The new 2018 CODATA value for the proton radius seems to discard all of the previous measurements except 
those of Pohl (2010) and Antognini (2013). Indeed, the new 2018 CODATA value for the proton radius is equal to 
rp = 0.8414 ± 0.0019 fm, and seems to be some weighted average of the two mentioned measurements: (0.84087 
+ 0.84184)/2 = 0.841355 fm. Not only does this make the PRad measurement look very good but, importantly, this 
value also hardly differs from our theoretical 'back-of-the-envelope' calculation from the ring current model 
(4ħ/mc = 0.8413564... fm). However, we are intrigued, because previous CODATA values for the radius included all 
measurements except those of Pohl and Antognini. 
13 We calculated this range parameter in previous papers. See, for example, our Metaphysics of Physics paper 
(https://vixra.org/abs/2001.0453). 
14 The reader should not confuse the I and I symbols. The first (I in italics) stands for angular mass (expressed in 
kg·m2), while the second (I, normal type) is the symbol for current (expressed in C/s). We could have used different 
symbols, but we wanted to stick to the usual conventions. The reader will, of course, also not confuse the concepts 
of angular mass (I), also known as the moment of inertia, and angular momentum (L). 
15 See: https://vixra.org/abs/1905.0521. 

https://vixra.org/abs/2001.0453
https://vixra.org/abs/1905.0521
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electron as an actual disk-like structure with some torque on it. Its angular momentum is, therefore, 

real.16 Likewise, we think of the magnetic moment as being equally real17: 

μ = I ∙ π𝑎2 =
qe𝑐 ∙ π𝑎2

2π𝑎
=

qe𝑐

2

ℏ

m𝑐
=

qe

2m
ℏ ≈ 9.274 × 10−24 J · T−1  

We think there is a confusion in regard to spin numbers and g-factors because we cannot directly 

measure the angular momentum: in real-life experiments, we measure the magnetic moment. Having 

said that, it is true we can combine the two formulas to get the g-factor that is usually associated with 

the spin of an electron18: 

𝛍 = −g(
qe

2m
)𝐋 ⇔

qe

2m
ℏ = g

qe

2m

ℏ

2
⇔ g = 2 

We should now apply these ideas to the proton. The idea of a current ring – and the idea of precession, 

of course – strongly suggests we should, once again, think of the proton as a disk-like structure. 

However, not all of the mass is in the electromagnetic oscillation: we think half of it remains to be 

explained by what is referred to as the strong force (or, what amounts to the same, the idea of a strong 

charge).19 We will, therefore, use a 1/4 rather than a 1/2 factor in the angular mass formula. This yields 

the following result: 

Lp = 𝐼p ∙ ω =
mp𝑟p

2

4
∙
𝑐

𝑟p
=

mp𝑐

4
∙ 𝑟p =

mp𝑐

4
∙

4ℏ

mp𝑐
= ℏ 

Hence, our ‘spin number’ is equal to one. Most academics will cry wolf here: we cannot possibly believe 

a proton is a spin-one particle, can we? We think we can. We think there is no need for the concept of a 

spin number and a g-factor in a realist interpretation of quantum mechanics. We think of the angular 

momentum and the magnetic moment as being real and, hence, whatever else is being calculated – be it 

a spin number or a g-factor – is not very relevant. Worse, we think it confuses rather than clarifies the 

analysis. We, therefore, think our calculation of Lp is consistent. We also think it is consistent with the 

use of the 2 factor – as opposed to a 3 factor – to calculate what we think of as a real magnetic 

moment of a proton (μp). 

 
16 We will not engage in philosophical discussions here. We hope the reader understands what we want him/her to 
understand. 
17 The CODATA value for the magnetic moment includes the anomaly and is, therefore, slightly different from the 

theoretical value: μe  9.285 J/T. We think the difference between the theoretical and measured value is to be 
explained by a form factor: the circular point charge must have some (tiny) dimension and/or must have some 
(very tiny) non-zero rest mass. We believe the two letters of Gregory Breit to Gregory Breit to Isaac Rabi can easily 
be interpreted as Breit defending the idea that an intrinsic magnetic moment “of the order of αμB” is not 
anomalous at all. For more details on this conversation, see: Silvan S. Schweber, QED and the Men Who Made It: 
Dyson, Feynman, Schwinger, and Tomonaga , p. 222-223.   
18 We used vector notation (boldface) to draw attention, once again, to our physical interpretation of what might 

be going on: the minus sign (−) is there because, in the case of an electron, the magnetic moment and angular 
momentum vectors have opposite directions.  
19 See our paper on the idea of a strong force and/or a strong charge: https://vixra.org/abs/2001.0453. 

https://vixra.org/abs/2001.0453
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We should, of course, relate this to the usual conventions. We will, therefore, do some calculations 

involving a g-factor. Instead of the Bohr magneton μB = qeħ/2me, we should use the nuclear magneton 

μN = qeħ/2mp. We get the following result: 

𝛍𝐋 = g(
qe

2mp
)𝐋 ⇔

2qe

mp
ℏ = g

qe

2mp
ℏ ⇔ g = 4 

That is, of course, a strange number: the CODATA value is about 5.5857. However, this result depends 

on the use of a theoretical ħ/2 value for the angular momentum. It also uses the CODATA value for the 

magnetic moment⎯as opposed to our μL value, which is the CODATA value corrected for precession. 

Hence, the CODATA calculation of the g-factor is this: 

μp = gp

qe

2mp

ℏ

2
⟺ gp =

4μpmp

ℏqe
= 5.58569… 

We get a slightly different value when we insert our newly found theoretical value for the magnetic 

moment: 

μp = gp

qe

2mp

ℏ

2
⟺ gp =

4μpmp

ℏqe
=

4

√2
∙
μLmp

ℏqe
=

4

√2
∙
2qeℏ

mp
∙
mp

ℏqe
=

8

√2
= 5.65685… 

How can we explain the difference? 

8. The difference of about 0.071 (about 1.2%) is not surprising: the difference is of the same order of 

magnitude as the difference between our theoretical value for the radius – which is based on the 

assumption of a pointlike charge – and the actually measured radius. We think this difference confirms 

both the theory as well as the PRad measurement. We anticipate theorists and experimenters to argue 

about the next digit of the anomalous magnetic moment of a proton in pretty much the same way as 

they have been arguing about the anomalous magnetic moment of an electron. We think both 

‘anomalies’ are there because of the mathematical idealization in our assumptions: the pointlike charge 

may have zero rest mass (or some value very close to zero), but we should not assume it has no 

dimension whatsoever.20 

Why not? We can only give a philosophical answer here: something that has no dimension whatsoever 

probably exists in our mind only. Something real – like a charge – must have some dimension.  

From what we write above, the reader will understand that we think some of the generalizations in 

quantum physics – most notably, the concept of bosons – are not necessary to understand Nature. 

Jean Louis Van Belle, 6 February 2020 

  

 
20 See our paper on Consa’s calculations of the anomalous magnetic moment (https://vixra.org/abs/2001.0264), 
which also references our approach to the matter (https://vixra.org/abs/1906.0007). 

https://vixra.org/abs/2001.0264
https://vixra.org/abs/1906.0007
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Annex I: Precession of electrons and protons 

When inserting the CODATA value for the magnetic moment of an electron in the two formulas that we 

have used to calculate the theoretical magnetic moment of a proton, we get the electron’s Compton 

radius. Calculating the frequency using the geometric formula (f = c/2πa), we get: 

μe = Iπ𝑎2 = qe𝑓π𝑎2 = qe

𝑐

2π𝑎
π𝑎2 =

qe𝑐

2
𝑎 ⟺ 𝑎 =

2μe

qe𝑐
≈ 0.3866607…pm 

Calculating the frequency using the Planck-Einstein relation (f = E/h), we get the same value: 

μe = Iπ𝑎2 = qe𝑓π𝑎2 =
qeω𝑎2

2
⟺ 𝑎 = √

2μe

qeω
= √

2μeℏ

qeE
≈ 0.3863831…pm 

There is, once again, a small difference between the two values and we can, therefore, equate the two 

formulas to calculate a theoretical value for the magnetic moment of an electron21: 

𝑎 = √
2μeℏ

qem𝑐2
=

2μe

qe𝑐
⟺ √

μeℏ ∙ qe
2𝑐2

2qem𝑐2 ∙ μe
2 = 1 

⟺ μe =
qe

2m
ℏ  9.274…× 10−24 J · T−1 

The reader should note this differs slightly from the CODATA recommended value – which is equal to 

about 9.284 J·T−1, which is based on experimental measurement. Again, we think this difference 

confirms both the theory as well as the measurement: we think the ‘anomaly’ is there because of the 

mathematical idealization in our assumptions: the pointlike charge may have zero rest mass (or some 

value very close to zero), but we should not assume it has no dimension whatsoever. We may also 

assume its velocity is, perhaps, nearly lightspeed but not quite. We, therefore, think it can be explained 

using classical physics. 

We can now re-insert the theoretical magnetic moment in our formulas for the radius to calculate the 

theoretical radius of the electron: 

𝑎 = √
2μeℏ

qem𝑐2
= √

2qeℏ
2

2mqem𝑐2
=

2μe

qe𝑐
=

2qeℏ

2mqe𝑐
=

ℏ

m𝑐
≈ 0.3861592…pm 

This is a nice result, but let us explore it some more. Do we assume precession and, if so, what factor 

should we use? The formulas do not suggest so. Our equality no longer holds. Indeed, if we would 

denote the so-called real magnetic moment as μJ = n·μe
22 and then our equality becomes this: 

 
21 We should add a minus sign because of the opposite direction of magnetic moment and angular momentum. 
However, here we are only calculating magnitudes. 
22 We use a J instead of L so as to avoid confusion with the μL symbol which we used for the angular momentum of 
a proton. The physical meaning of μL and μJ is, therefore, exactly the same. Note that n is not necessarily a whole 

number. For example, when inserting j = 3/2 in the formula for the L/Lz or J/Jz ratio, we get √𝑛 = √15 3⁄ .  
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𝑎 = √
2√𝑛μeℏ

qem𝑐2
=

2√𝑛μe

qe𝑐
⟺

√𝑛μeℏ ∙ qe
2𝑐2

2qem𝑐2 ∙ 𝑛μe
2 =

√𝑛qeℏ

2m ∙ 𝑛μe
= 1 ⟺

√𝑛

𝑛
∙
qeℏ

2m
∙
2m

qeℏ
= 1 ⟺ √𝑛 = 𝑛 

This equality only holds for n = 1. It is very puzzling: should we assume that the CODATA value for the 

magnetic moment of an electron has already been corrected to include the idea of precession? 

While contemplating this possibility, we should also note we did not use a 1/2 factor in our f = E/h 

formula. If we used such factor for our proton calculations – arguing half of the energy is kinetic and the 

other half is electromagnetic – then we should use such factor for our electron calculations as well. Let 

us see if this gets us anywhere. Substituting ω for E/2ħ instead of E/ħ, we get this formula for the 

electron radius: 

μ = Iπ𝑎2 = q𝑓π𝑎2 =
qω𝑎2

2
⟺ 𝑎 = √

2μ

qω
= √

4μℏ

qE
= 2 ∙ √

μℏ

qE
 

The other way to calculate μ was like this: 

μ = Iπ𝑎2 = q𝑓π𝑎2 = q
𝑐

2π𝑎
π𝑎2 =

q𝑐

2
𝑎 ⟺ 𝑎 =

2μ

q𝑐
 

Equating both equations for a gives us this: 

𝑎 = 2 ∙ √
μℏ

qm𝑐2
=

2μ

q𝑐
⟺ √

μℏ

qm𝑐2
∙
q2𝑐2

μ2
= 1 ⟺ μ =

q

m
ℏ  18.548 × 10−24 J · T−1  

This is, unsurprisingly, twice the CODATA value for the magnetic moment. The corresponding radius is, 

unsurprisingly, twice the Compton radius: 

𝑎 = 2 ∙ √
μℏ

qm𝑐2
= 2 ∙ √

qℏ2

qm2𝑐2
= 2

ℏ

m𝑐
=

2μ

q𝑐
=

2qℏ

qm𝑐
= 2

ℏ

m𝑐
 

This is very weird, of course, even if the math here are very simple.23 Let us quickly examine if this 

strange result respects conventional wisdom in regard to spin numbers and g-factors. The formula to be 

used depends, once again, on our assumption in regard to the form factor: 

𝛍 = −g(
qe

2m
)𝐋 

Do we think of the electron as a loop or a hoop, or do we think its mass is effectively spread out over a 

disk? The formulas below show that we only get the conventional g-factor (g = 2) if we assume, once 

 
23 It is especially weird because most Zitterbewegung theorists, including Hestenes (1990), Burinskii (2008, 2016) 
and Gauthier (2019), etcetera arrive at the conclusion that the radius of the oscillation must be equal to half the 
Compton radius. Oliver Consa (2018) is one of the few physicists who also equate the electron radius with the 
reduced Compton wavelength. As for the math, one should note that the current is inversely proportional to the 
radius (f = c/2πa) but that the surface of the loop (πa2) is proportional to the square of the radius. The magnetic 
moment (μ)is the product of both. Hence, the radius (a) will be proportional to μ.  
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again, that the mass of the electron is spread out over a disk, which allows us to insert the necessary ½ 

factor 24:   

𝛍 = −g(
qe

2m
)𝐋 ⇔

qe

m
ℏ = g

qe

2m
ℏ ⇔ g = 2 

⇔ L = 𝐼 ∙ ω =
m𝑎2

2

𝑐

𝑎
=

m𝑐

2
∙ 𝑎 =

𝑚𝑐

2
∙
2ℏ

𝑚𝑐
= ℏ 

We are not sure how to make sense of the 1/2 factor and the thorny question of quantum-mechanical 

precession. Perhaps they are related to two different concepts of the radius: while we can calculate the 

radius of a loop of a pointlike charge, our model suggests the electromagnetic field will extend beyond 

the current ring. This may result in an effective charge radius which is larger than the Compton radius. It 

may also explain the 1/2 factor we used for the energy: if we do not include the energy of the magnetic 

field, then we get a radius that is only half the Compton radius. We welcome suggestions as to how to 

improve on this rather sloppy answer. 

As for the methodology used to calculate the CODATA value of the magnetic moment of an electron, we 

have requested NIST to provide us with more details. This may or may not lead to future revisions of 

some of the remarks we presented in this paper. 

  

 
24 This allows us to insert a 1/2 factor in the formula for the angular mass. 
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Annex II: The Compton radius: calculation and interpretation 

Introduction 

The reader who is not familiar with ring current and/or Zitterbewegung models of an electron may also 

not be familiar with the concept of a Compton radius. It is, of course, the reduced form of the Compton 

wavelength: rC = λC/2π. From what we wrote in the body of this paper, it is obvious we think of it as an 

actual radius⎯but a radius of what, exactly? We think of it as a distance, or a scale, within which a 

photon interacts with the electromagnetic field of the ring current electron or – let us drop the word 

again – the Zitterbewegung electron. As this is an annex, we have some more space to develop the idea. 

Zitter is German for shaking or trembling, and the Zitterbewegung refers to a presumed local oscillatory 

motion—which we believe is real. Erwin Schrödinger stumbled upon the idea when he was exploring 

solutions to Dirac’s wave equation for free electrons, and it is worth quoting Dirac’s summary of 

Schrödinger’s discovery: 

“The variables give rise to some rather unexpected phenomena concerning the motion of the 

electron. These have been fully worked out by Schrödinger. It is found that an electron which 

seems to us to be moving slowly, must actually have a very high frequency oscillatory motion of 

small amplitude superposed on the regular motion which appears to us. As a result of this 

oscillatory motion, the velocity of the electron at any time equals the velocity of light. This is a 

prediction which cannot be directly verified by experiment, since the frequency of the 

oscillatory motion is so high and its amplitude is so small. But one must believe in this 

consequence of the theory, since other consequences of the theory which are inseparably 

bound up with this one, such as the law of scattering of light by an electron, are confirmed by 

experiment.” (Paul A.M. Dirac, Theory of Electrons and Positrons, Nobel Lecture, December 12, 

1933) 

The reference to the ‘law of scattering of light by an electron’ is, of course, a reference to Compton 

scattering. For the convenience of the reader, we will quickly remind him or her how one gets the 

Compton wavelength from more standard (mainstream) calculations.25 The reader should note that the 

calculations do not involve any quantum-mechanical weirdness: the uncertainty principle, for example, 

is not being invoked. In fact, we wanted to add this annex to illustrate how classical basic quantum-

mechanical calculations can actually be.26 

Compton scattering: energy and angle formulas 

Compton scattering is referred to as inelastic because the frequency of the incoming and outgoing 

photon are different. The situation is illustrated below. 

 
25 The presentation in this annex reflects standard analysis and can, therefore, be googled easily. However, we 
relied on Prof. Dr. Barton Zwiebach’s introduction to quantum mechanics in MIT’s edX course on quantum 
mechanics (8.01.1x). We took the illustration from the Wikipedia article on scattering. Finally, we found the notes 
that are part of Prof. Dr. Patrick LeClair’s Physics 253 course (http://pleclair.ua.edu/PH253/Notes/compton.pdf) 
very useful, and we will also refer to them later.   
26 We repeat: the presentation in this annex is mainstream analysis. For a more speculative – but also more 
intuitive – theory of what might actually be going on, we refer to our own classical analysis of Compton scattering 
(https://vixra.org/abs/1912.0251). 

http://pleclair.ua.edu/PH253/Notes/compton.pdf
https://vixra.org/abs/1912.0251
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We are not sure how to describe the interaction. We may, perhaps, think of an electron first absorbing 

the photon before re-emitting the new photon. Indeed, a photon is defined by its frequency, so we 

should think of the outgoing photon as a different photon. We will come back to these questions. What 

we do know is that the energy difference between the two photons is converted into some linear 

momentum. Hence, before the photon hits it, the electron is thought of as being stationary. Two 

classical laws govern the process: (1) energy conservation, and (2) momentum conservation.  

1. The energy conservation law tells us that the total (relativistic) energy of the electron (E = mec2) and 

the incoming photon must be equal to the total energy of the outgoing photon and the electron, which 

is now moving and, hence, includes the kinetic energy from its (linear) motion. We use a prime (‘) to 

designate variables measured after the interaction. Hence, Ee’ and Eγ’ are the energy of the moving 

electron (e’) and the outgoing photon (γ’) in the state after the event. We write: 

Ee + Eγ = Ee′ + Eγ′ 

We can now use (i) the mass-energy equivalence relation (E = mc2), (ii) the Planck-Einstein relation for a 

photon (E = h·f) and (iii) the relativistically correct relation (E2 – p2c2 = m2c4) between energy and 

momentum for any particle – charged or non-charged, matter-particles or photons or whatever other 

distinction one would like to make27 – to re-write this as28: 

me𝑐
2 + ℎ𝑓 = √pe′

2 𝑐2 + me
2𝑐4 + ℎ𝑓′ ⟺ pe′

2 𝑐2 = (ℎ𝑓 − ℎ𝑓′ + me
2𝑐4)2 − me

2𝑐4 (1) 

2. This looks rather monstrous but things will fall into place soon enough because we will now derive 

another equation based on the momentum conservation law. Momentum is a vector, and so we have a 

vector equation here29: 

p⃗ γ = p⃗ γ′ + p⃗ e′ ⟺ p⃗ e′ = p⃗ γ − p⃗ γ′ 

 
27 This is, once again, a standard textbook equation but – if the reader would require a reminder of how this 
formula comes out of special relativity theory – we may refer him to the online Lectures of Richard Feynman. 
Chapters 15 and 16 offer a concise but comprehensive overview of the basics of relativity theory and section 5 of 
Chapter 6 (https://www.feynmanlectures.caltech.edu/I_16.html#Ch16-S5) gives the reader the formula he needs 
here. It should be noted that we dropped the 0 subscript for the rest mass or energy: m0 = m. The prime symbol (‘) 
takes care of everything here and so you should carefully distinguish between primed and non-primed variables. 
28 We realize we are cutting some corners. We trust the reader will be able to google the various steps in-between. 
29 We could have used boldface to denote vectors, but the calculations make the arrow notation more convenient 
here. So as to make sure our reader stays awake, we note that the objective of the step from the first to the 
second equation is to derive a formula for the (linear) momentum of the electron after the interaction. As 
mentioned, the linear momentum of the electron before the interaction is zero, because its (linear) velocity is zero: 
pe = 0. 

https://www.feynmanlectures.caltech.edu/I_16.html#Ch16-S5
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For reasons that will be obvious later – it is just the usual thing: ensuring we can combine two equations 

into one, as we did with our formulas for the radius – we square this equation and multiply with 

Einstein’s constant c2 to get this30: 

p⃗ e′
2 = p⃗ γ

2 + p⃗ γ′
2 − 2p⃗ γp⃗ γ′ ⟺ pe′

2 𝑐2 = pγ
2𝑐2 + pγ′

2 𝑐2 − 2(pγ𝑐)(pγ′𝑐) ∙ cosθ 

⟺ pe′
2 𝑐2 = ℎ2𝑓2 + ℎ2𝑓′2 − 2(ℎ𝑓)(ℎ𝑓′) ∙ cosθ (2) 

3. We can now combine equations (1) and (2): 

pe′
2 𝑐2 = (𝐸𝑞. 1) = (𝐸𝑞. 1) =  (ℎ𝑓 − ℎ𝑓′ + me

2𝑐4)2 − me
2𝑐4 = ℎ2𝑓2 + ℎ2𝑓′2 − 2(ℎ𝑓)(ℎ𝑓′) ∙ cosθ 

The reader will be able to do the horrible stuff of actually squaring the expression between the brackets 

and verifying only cross-products remain. We get: 

(ℎ𝑓 − ℎ𝑓′)me𝑐
2 = ℎ(𝑓 − 𝑓′)me𝑐

2 = ℎ2𝑓𝑓′(1 − cosθ) 

Multiplying both sides of the equation by the 1/hmeff’ constant yields the formula we were looking for: 

(𝑓 − 𝑓′)me𝑐

𝑓 ∙ 𝑓′
=

𝑓me𝑐 − 𝑓′me𝑐

𝑓 ∙ 𝑓′
=

ℎ

me𝑐
(1 − cosθ) 

⟺
𝑐

𝑓′
−

𝑐

𝑓
= λ′ − λ = ∆𝑓 =

ℎ

me𝑐
(1 − cosθ) 

The formulas allow us also to calculate the angle in which the electron is going to recoil. It is equal to: 

cot (
θ

2
) = (1 +

Eγ

Ee
) tan φ 

The h/mc factor on the left-hand side of the right-hand side of the formula for the difference between 

the wavelengths is, effectively, a distance: about 2.426 picometer (10−12 m). The 1 − cosθ factor goes 

from 0 to 2 as θ goes from 0 to π. Hence, the maximum difference between the two wavelengths is 

about 4.85 pm. This corresponds, unsurprisingly, to half the (relativistic) energy of an electron.31 Hence, 

a highly energetic photon could lose up to 255 keV.32 That sounds enormous, but Compton scattering is 

usually done with highly energetic X- or gamma-rays. 

Could we imagine that a photon loses all of its energy to the electron? No. We refer to Prof. Dr. Patrick 

LeClair’s course notes on Compton scattering33 for a very interesting and more detailed explanation of 

what actually happens to energies and frequencies, and what depends on what exactly. He shows that 

 
30 We do not want to sound disrespectful when referring to c2 as Einstein’s constant. It has a deep meaning, in fact. 
Einstein does not have any fundamental constant or unit named after him. Nor does Dirac. We think c2 would be 
an appropriate ‘Einstein constant’. Also, in light of Dirac’s remarks on the nature of the strong force, we would 
suggest naming the unit of the strong charge after him. More to the point, note these steps – finally ! – 
incorporated the directional aspect we needed for the analysis. When everything is said and done, we don’t only 
want some value for the Compton wavelength (λC = h/mc), but for the scattering angle (θ) as well! Note that we 
also use the rather obvious E = pc relation for photons in the transformation of formulas here. 
31 The energy is inversely proportional to the wavelength: E = h·f = hc/λ. 
32 The electron’s rest energy is about 511 keV. 
33 See: http://pleclair.ua.edu/PH253/Notes/compton.pdf. 

http://pleclair.ua.edu/PH253/Notes/compton.pdf
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the electron’s kinetic energy will always be a fraction of the incident photon’s energy, and that fraction 

may approach but will never actually reach unity. In his words: “This means that there will always be 

some energy left over for a scattered photon. Put another way, it means that a stationary, free electron 

cannot absorb a photon! Scattering must occur. Absorption can only occur if the electron is bound to a 

nucleus.” 

Prof. Dr. LeClair also examines the scattering of photons from a proton and this is where he goes as far 

as mainstream physicists usually go when interpreting the actual meaning of the Compton wavelength 

or radius34: 

“The only difference is that the proton is heavier. We simply replace the electron mass in the 

Compton wavelength shift equation with the proton mass, and note that the maximum shift is 

at θ = π. The maximum shift is Δλmax = 2h/mpc  2.64 fm. Fantastically small. This is roughly the 

size attributed to a small atomic nucleus, since the Compton wavelength sets the scale above 

which the nucleus can be localized in a particle-like sense.”35 (my italics) 

This is, effectively, what we like to hear from physicists. The Compton radius has a physical meaning. It’s 

the distance or scale within which we can, effectively, expect the photon to interfere with the 

electromagnetic field of the electron or proton current ring. 

Of course, we need a photon model to corroborate this: if a photon and an electron (or a proton) are 

going to interfere, we need to know what interferes with what, exactly. What is our photon model? We 

have elaborated that elsewhere and, hence, we will just copy the basics from one of our papers here.36 

The photon model 

Angular momentum comes in units of ħ. When analyzing the electron orbitals for the simplest of atoms 

(the one-proton hydrogen atom), this rule amounts to saying the electron orbitals are separated by a 

amount of physical action that is equal to h = 2π·ħ.  Hence, when an electron jumps from one level to 

the next – say from the second to the first – then the atom will lose one unit of h. The photon that is 

emitted or absorbed will have to pack that somehow. It will also have to pack the related energy, which 

is given by the Rydberg formula: 

E𝑛2
− E𝑛1

= −
1

𝑛2
2
E𝑅 +

1

𝑛1
2
E𝑅 = (

1

𝑛1
2
−

1

𝑛2
2
) ∙ E𝑅 = (

1

𝑛1
2
−

1

𝑛2
2
) ∙

α2m𝑐2

2
 

To focus our thinking, let us consider the transition from the second to the first level, for which the 1/12 

– 1/22 is equal 0.75. Hence, the photon energy should be equal to (0.75)·ER ≈ 10.2 eV. Now, if the total 

action is equal to h, then the cycle time T can be calculated as: 

E ∙ T = ℎ ⇔ T =
ℎ

E
≈

4.135 × 10−15eV ∙ s

10.2 eV
≈ 0.4 × 10−15 s 

 
34 As mentioned before, the concept of a Compton radius is usually not mentioned in physics textbooks. They only 
talk about the reduced value (rC = λC/2π), pretty much like the difference between ħ and h, which – in our realist 
interpretation of quantum mechanics – is also physical.  
35 See: http://pleclair.ua.edu/PH253/Notes/compton.pdf, p. 10 
36 See: https://vixra.org/abs/2001.0345. 

http://pleclair.ua.edu/PH253/Notes/compton.pdf
https://vixra.org/abs/2001.0345
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This corresponds to a wave train with a length of (3×108 m/s)·(0.4×10−15 s) = 122 nm. That is the size of a 

large molecule and it is, therefore, much more reasonable than the length of the wave trains we get 

when thinking of transients using the supposed Q of an atomic oscillator.37 In fact, this length is the 

wavelength of the light (λ = c/f = c·T = h·c/E) that we would associate with this photon energy.38  

Let us quickly insert another calculation, which you may find interesting⎯or not. If we think of an 

electromagnetic oscillation – as a beam or, what we are trying to do here, as some quantum – then its 

energy is going to be proportional to (a) the square of the amplitude of the oscillation – and we are not 

thinking of a quantum-mechanical amplitude here: we are talking the amplitude of a physical wave here 

– and (b) the square of the frequency. Hence, if we write the amplitude as a and the frequency as ω, 

then the energy should be equal to E = k·a2·ω2. The k is just a proportionality factor. 

However, relativity theory tells us the energy will have some equivalent mass, which is given by 

Einstein’s mass-equivalence relation: E = m·c2. Hence, the energy will also be proportional to this 

equivalent mass. It is, therefore, very tempting to equate k and m. We can only do this, of course, if c2 is 

equal to a2·ω2 or – what amounts to the same – if c = a·ω. You will recognize this as a tangential velocity 

formula, and so you should wonder: the tangential velocity of what? The a in the E = k·a2·ω2 formula 

that we started off with is an amplitude: why would we suddenly think of it as a radius now? I cannot 

give you a very convincing answer to that question but – intuitively – we will probably want to think of 

our photon as having a circular polarization. Why? Because it is a boson and it, therefore, has angular 

momentum. To be precise, its angular momentum is +ħ or −ħ. There is no zero-spin state.39 Hence, if we 

think of this classically, then we will associate it with circular polarization.  

We are now ready for the punch line, as Dr. Zwiebach would say. If the energy E in the Planck-Einstein 

relation (E = ħ·ω) and the energy E in the energy equation for an oscillator (E = m·a2·ω2) are the same – 

 
37 In one of his famous Lectures (I-32-3), Feynman thinks about a sodium atom, which emits and absorbs sodium 
light, of course. Based on various assumptions – assumption that make sense in the context of the blackbody 
radiation model but not in the context of the Bohr model – he gets a Q of about 5×107. Now, the frequency of 
sodium light is about 500 THz (500×1012 oscillations per second). Hence, the decay time of the radiation is of the 

order of 10−8 seconds. So that means that, after 5×107 oscillations, the amplitude will have died by a factor 1/e ≈ 
0.37. That seems to be very short, but it still makes for 5 million oscillations and, because the wavelength of 
sodium light is about 600 nm (600×10–9 meter), we get a wave train with a considerable length: (5×106)·(600×10–

9 meter) = 3 meter. Surely you’re joking, Mr. Feynman! A photon with a length of 3 meter – or longer? While one 
might argue that relativity theory saves us here (relativistic length contraction should cause this length to reduce 
to zero as the wave train zips by at the speed of light), this just doesn’t feel right – especially when one takes a 
closer look at the assumptions behind. 
38 This is short-wave ultraviolet light (UV-C). It is the light that is used to purify water, food or even air. It kills or 
inactivate microorganisms by destroying nucleic acids and disrupting their DNA. It is, therefore, harmful. The ozone 
layer of our atmosphere blocks most of it. 
39 This is one of the things in mainstream quantum mechanics that bothers me. All courses in quantum mechanics 
spend like two or three  chapters on why bosons and fermions are different (spin-one versus spin-1/2) and, when it 
comes to the specifics, then the only boson we actually know (the photon) turns out to not be a typical boson 
because it can’t have zero spin. Feynman gives some haywire explanation for this is section 4 of Lecture III-17. I will 
let you look it up (Feynman’s Lectures are online) but, as far as I am concerned, I think it’s really one of those 
things which makes me think of Prof. Dr. Ralston’s criticism of his own profession: “Quantum mechanics is the only 
subject in physics where teachers traditionally present haywire axioms they don’t really believe, and regularly violate in 
research.” (John P. Ralston, How To Understand Quantum Mechanics, 2017, p. 1-10) 
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and they should be because we are talking about something that has some energy – then we get the 

following formula for the amplitude or radius a: 

E = ℏ ∙ ω = m ∙ 𝑎2 ∙ ω2 ⟺ ℏ = m ∙ 𝑎2 ∙ ω ⟺ 𝑎 = √
ℏ

m ∙ ω
= √

ℏ

E
𝑐2 ∙

E
ℏ

= √
ℏ2

m2 ∙ 𝑐2
=

ℏ

m ∙ 𝑐
 

This is the formula for the Compton radius of an electron ! How can we explain this? What relation could 

there possibly be between our Zitterbewegung model of an electron and the quantum of light? We do 

not want to confuse the reader too much but things become somewhat more obvious when staring at 

the illustration below (Error! Reference source not found.). We think of the Zitterbewegung of a free 

electron as a circular oscillation of a pointlike charge (with zero rest mass) moving about some center at 

the speed of light. However, as the electron starts moving along some linear trajectory at a relativistic 

velocity (i.e. a velocity that is a substantial fraction of c), then the radius of the oscillation will have to 

diminish – because the tangential velocity remains what it is: c. The geometry of the situation  shows the 

circumference – so that’s the Compton wavelength λC = 2π·a = 2πħ/mc – becomes a wavelength in this 

process.    

 

Let us quickly calculate it for our 10.2 eV photon. We should, of course, express the energy in SI units 

(10.2 eV  1.63410−18 J) to get what we should get: 

𝑎 =
ℏ

m ∙ 𝑐
=

ℏ

E/𝑐
=

(1.0545718 × 10−18 𝐽 ∙ 𝑠) ∙ (3 × 108 𝑚/𝑠)

1.634 × 10−18 𝐽
≈ 19.4 × 10−9 m 

We have a linear structure here. The integrity of the photon is given by this wavelength, and we think it 

interferes with the disk-like structure of the electromagnetic field of the electron’s ring current. 

Of course, the example that was given was of a low-energy photon. The Compton radius of an electron 

is equal to about 38610−15 m, so that’s about 50,000 times smaller than this ‘Compton radius’ of a 

photon. Unsurprisingly, that’s the ratio between the electron’s (rest) energy (about 8.18710−14 J) and 

the photon energy (about 1.63410−18 J). If we calculate the Compton radius for highly energetic 

photons, we get very different results. For example, the X-ray photons in the original Compton 

scattering experiment had an energy of about 17 keV = 17,000 eV and modern-day experiments will use 

gamma rays with even higher energies. One experiment, for example, uses a cesium-137 source 

emitting photons with an energy that is equal to 0.662 MeV = 662,000 eV. We can see these high 

photon energies can easily bridge the gap with the rest energy of the electron they are targeting. 
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I hope we were able to make the case: the Compton radius is, effectively, some kind of effective radius 

of interference. 

As we may (or may not) have the attention of the reader, let us quickly further explore this one-cycle 

photon model. We can use the elementary wavefunction to represent the rotating field vector or, 

remembering the F = qeE equation, the force field. 

 

It is a delightfully simple model: the photon is just one single cycle traveling through space and time, 

which packs one unit of angular momentum (ħ) or – which amounts to the same, one unit of physical 

action (h). This gives us an equally delightful interpretation of the Planck-Einstein relation (f = 1/T = E/h) 

and we can, of course, do what we did for the electron, which is to express h in two alternative ways: (1) 

the product of some momentum over a distance and (2) the product of energy over some time. We find, 

of course, that the distance and time correspond to the wavelength and the cycle time: 

ℎ = p ∙ λ =
E

𝑐
∙ λ ⟺ λ =

ℎ𝑐

E
 

ℎ = E ∙ T ⟺ T =
ℎ

E
=

1

𝑓
 

Needless to say, the E = mc2 mass-energy equivalence relation can be written as p = mc = E/c for the 

photon. The two equations are, therefore, wonderfully consistent: 

ℎ = p ∙ λ =
E

𝑐
∙ λ =

E

𝑓
= E ∙ T 

Let us now try something more adventurous: let us try to calculate the strength of the electric field. How 

can we do that? Energy is some force over a distance and, hence, the force must equal the ratio of the 

energy and the distance. What distance should we use? The force will vary over the cycle and, hence, 

this distance is a distance that we must be able to relate to this fundamental cycle. Is it the Compton 

radius (a) or the wavelength (λ)? They differ by a factor 2π only, so let us just try the radius and see if we 

get some kind of sensible result:  

F =
E

𝑎
=

2π ∙ E

λ
=

2π ∙ ℎ ∙ 𝑓

λ
=

2π ∙ ℎ ∙ 𝑐

λ2
 

Does this look weird? Not really. We get the E·λ = h·c equation from de Broglie’s h = p·λ = m·c·λ = E·λ/c  

equation and the equation above respects that equation: 

E

𝑎
=

2π ∙ ℎ ∙ 𝑐

λ2
⟺ E ∙ λ =

2π ∙ 𝑎 ∙ ℎ ∙ 𝑐

λ
= ℎ ∙ 𝑐 
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Let’s try the next logical step. The electric field – which we will write as E40 – is  the force per unit charge 

which, we should remind the reader, is the coulomb – not the electron charge. Why? Because we use SI 

units. We, therefore, get a delightfully simple formula for the strength of the electric field vector for a 

photon41: 

𝐸 =

2πℎ𝑐
λ2

1
=

2πℎ𝑐

λ2
=

2πE

λ
=

E

𝑎
 

The electric field is the ratio of the energy and the Compton radius. Does this make sense? What about 

units? We divided by 1 coulomb and the physical dimension is, therefore, equal to [E] = [E/a] per 

coulomb. A joule is a newton·meter and [E/a] is, therefore, equal to N·m/m = N. We’re fine. Let us 

calculate its value for our 10.2 eV photon (using SI units once again, of course): 

𝐸 ≈
1.634 × 10−18 𝐽

19.4 × 10−9 𝑚 ∙ 𝐶
≈ 84 × 10−12

N

C
 

We hope the reader can now, finally, connect the dots and imagine how a photon and an electron 

actually interfere. The core of the story is an interference which – temporarily – creates an unstable 

wavicle which does not respect the integrity of Planck’s quantum of action (E = h·f). The equilibrium 

situation is re-established as the electron – now moving – emits a new photon. Both the electron and 

the photon respect the integrity of Planck’s quantum of action again and they are, therefore, stable. 

END 

 
40 The E and E symbols should not be confused. E is the magnitude of the electric field vector and E is the energy of 
the photon. We hope the italics (E) – and the context of the formula, of course! – will be sufficient to help the 
reader distinguish the electric field vector (E) from the energy (E). We do not needlessly want to multiply the 
number of symbols we are using here. 
41 The E and E symbols should not be confused. E is the magnitude of the electric field vector and E is the energy of 
the photon. We hope the italics (E) – and the context of the formula, of course! – will be sufficient to distinguish 
the electric field vector (E) from the energy (E). 


