on Λ-generalized continuous functions*

S.P. Missier, M.G. Rani, M. Caldas and S. Jafari

Abstract

In this paper, we introduce a new class of continuous functions as an application of Λ-generalized closed sets (namely Λ_g-closed set, Λ-g-closed set and $g\Lambda$-closed set) namely Λ-generalized continuous functions (namely Λ_g-continuous, Λ-g-continuous and $g\Lambda$-continuous) and study their properties in topological space.

1 Introduction and Preliminaries

Levine [7] introduced g-closed set. Maki [8] introduced the notion of Λ-sets in topological spaces. A subset A of a topological space (X, τ) is called a Λ-set if it coincides with its kernel (the intersection of all open supersets of A). In [1], Arenas et al. introduced the notions of λ-open sets, and λ-closed sets and presented fundamental results for these sets. They also introduced [1] λ-continuity, which is weaker than continuity. Recently, M. Caldas, S. Jafari and T. Noiri [3] introduced Λ-generalized closed sets in topological space. The aim of this paper is to introduce a weak form of continuous functions called Λ-generalized continuous functions. Moreover, the relationships and properties of Λ-generalized continuous functions are obtained.

Throughout this paper, by (X, τ) and (Y, σ) (or X and Y) we always mean topological spaces. Let A be a subset of X. We denote the interior, the closure and the complement of a set A by $Int(A)$, $Cl(A)$ and $X \setminus A$ or A^c, respectively. A subset A of a space (X, τ) is

*2000 Mathematics Subject Classification: 54B05, 54C08; Secondary: 54D05.
Keywords and phrases: generalized closed sets, Λ-generalized closed sets, λ-open sets, Λ-closed sets, Λ-generalized continuous functions.
called λ-closed \[1\] if $A = L \cap D$, where L is a Λ-set and D is a closed set. The intersection of all λ-closed sets containing a subset A of X is called the λ-closure of A and is denoted by $Cl_\lambda(A)$. The complement of a λ-closed set is called λ-open. We denote the collection of all λ-open sets by $\lambda O(X, \tau)$.

Recall that a subset A of a topological space (X, τ) is called generalized closed (briefly g-closed) \[7\] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ). B is a g-open set of (X, τ) if and only if B^c is g-closed.

Definition 1 A subset A of a topological space (X, τ) is called a Λ-generalized closed, briefly Λ_g-closed \[3\], (resp. λ-g-closed, $g\lambda$-closed) if $Cl(A) \subseteq U$ (resp. $Cl_\lambda(A) \subseteq U$, $Cl_\lambda(A) \subseteq U$) whenever $A \subseteq U$ and U is λ-open (resp. U is λ-open, U is open) in (X, τ).

Remark 1.1 From the above definitions, we have the following.

1. Λ_g-closed sets and λ-closed sets are independent concepts.
2. λ-g-closed sets and g-closed sets are independent concepts.
3. λ-closed sets and g-closed sets are also independent concepts.

From the above definitions and remark 1.1, we have the following diagram.

\[
\begin{array}{ccc}
d\text{closed} & \Rightarrow & \text{Λ_g-closed} \\
\downarrow & & \downarrow \\
\text{λ-closed} & \Rightarrow & \text{Λ-g-closed} \\
& & \downarrow \\
& & \text{$g\lambda$-closed}
\end{array}
\]

Example 1.2 (i) Let $X = \{a, b, c\}$ with a topology $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$. Thus $\lambda O(X, \tau) = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Take $A = \{a, c\}$. Observe that A is a g-closed set but it is not Λ-g-closed.

(ii) Let $X = \{a, b, c\}$ with a topology $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then, $A = \{b\}$ is a λ-closed set but it is not g-closed.

(iii) Let $X = \{a, b, c\}$ with a topology $\tau = \{\emptyset, \{a\}, X\}$. Then, $A = \{a, b\}$ is a Λ_g-closed set but it is not λ-closed.
Definition 2 A function $f : (X, \tau) \to (Y, \sigma)$ is called:

(1) g-continuous [7] if $f^{-1}(V)$ is g-closed in (X, τ) for every closed set V of (Y, σ).

(2) λ-continuous [1] if $f^{-1}(V)$ is λ-closed in (X, τ) for every closed set V of (Y, σ).

2 Λ-generalized continuous functions

We introduce the following notions:

Definition 3 A function $f : (X, \tau) \to (Y, \sigma)$ is called:

(1) Λ_g-continuous if $f^{-1}(V)$ is Λ_g-closed in X, for every closed set in Y.

(2) Λ-continuous if $f^{-1}(V)$ is Λ-closed in X, for every closed set in Y.

(3) $g\Lambda$-continuous if $f^{-1}(V)$ is $g\Lambda$-closed in X, for every closed set in Y.

Example 2.1 Let $X = \{a, b, c, d\} = Y$, $\tau = \{\phi, X, \{b\}, \{b, c\}, \{a, b\}, \{a, b, c\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$. Define the function $f : (X, \tau) \to (Y, \sigma)$ by $f(a) = b = f(b), f(c) = c, f(d) = d$. Then f is Λ_g-continuous, Λ-continuous and $g\Lambda$-continuous.

Proposition 2.2 Every continuous function is Λ_g-continuous (resp. Λ-continuous, $g\Lambda$-continuous).

Proof. By [3], every closed set is Λ_g-closed (resp Λ-closed, $g\Lambda$-closed) and the proof follows.

Example 2.3 Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$ and $\sigma = \{\phi, Y, \{b\}, \{b, c\}, \{a, b\}, \{a, b, c\}\}$. Define the function $f : (X, \tau) \to (Y, \sigma)$ by $f(a) = f(b) = b, f(c) = c, f(d) = d$. Then f is Λ_g-continuous, Λ-continuous and $g\Lambda$-continuous but not continuous.

Proposition 2.4 Every Λ_g-continuous function is g-continuous.

Proof. It follows from the fact that every Λ_g-closed set is g-closed set [3].
Example 2.5 The function f in Example 2.3 with $\tau = \{\phi, X, \{b\}, \{b, c\}, \{a, b, c\}\}, \sigma = \{\phi, Y, \{a\}, \{a, c\}, \{a, b\}, \{a, b, c\}\}$ is g-continuous but not Λ_g-continuous since for the closed set $U = \{b, d\}$ in (Y, σ), $f^{-1}(U) = \{a, b, d\}$ which is not Λ_g-closed in (X, τ).

Proposition 2.6 Every λ-continuous function and Λ_g-continuous function are Λ-g-continuous function.

Proof. By [3], every λ-closed set is Λ-g-closed set and every Λ_g-closed set is Λ-g-closed set, the proof follows.

Example 2.7 Let (X, τ) and (Y, σ) be as in Example 2.3.

(i) Define a function $f : (X, \tau) \to (Y, \sigma)$ by $f(a) = a$, $f(c) = c$, $f(b) = d = f(d)$. Then f is Λ-g-continuous but not λ-continuous since for the closed set $U = \{c, d\}$ in (Y, σ), $f^{-1}(U) = \{b, c, d\}$ which is not λ-closed in (X, τ).

(ii) Define a function $f : X \to Y$ by $f(a) = b$, $f(b) = a$, $f(c) = d$ and $f(d) = c$. Then f is Λ-g-continuous but not Λ_g-continuous since for the closed set $U = \{d\}$ in (Y, σ), $f^{-1}(U) = \{c\}$ which is not Λ_g-g-closed in (X, τ).

Remark 2.8 (1) Λ_g-continuous and λ-continuous are independent.

(2) Λ-g-continuous and g-continuous are independent.

(3) λ-continuous and g-continuous are independent.

Example 2.9 (i) The function f in Example 2.7(i) is Λ_g-continuous but not λ-continuous.

(ii) Let (X, τ) and (Y, σ) be as in Example 2.5. Then f in Example 2.7(ii) is λ-continuous but not Λ_g-continuous.

(iii) f is λ-continuous but not g-continuous.

(iv) f is Λ-g-continuous but not g-continuous.

(v) Let (X, τ) and (Y, σ) be as in Example 2.5 and the function f be an identity function from X to Y. Then f is g-continuous but neither Λ-g-continuous nor λ-continuous.
We get the following diagram:

\[
\begin{array}{c}
\text{continuous} \Rightarrow \Lambda_g\text{-continuous} \Rightarrow g\text{-continuous} \\
\downarrow \quad \downarrow \quad \downarrow \\
\lambda\text{-continuous} \Rightarrow \Lambda-g\text{-continuous} \Rightarrow g\Lambda\text{-continuous}
\end{array}
\]

3 Properties of \(\Lambda\)-generalized continuous functions

Theorem 3.1 If a function \(f : (X, \tau) \to (Y, \sigma)\) is \(\Lambda_g\)-continuous and \(X\) is \(T_1\) then \(f\) is continuous.

Proof. Let \(f\) be \(\Lambda_g\)-continuous and \(X\) be \(T_1\). Assume that \(V\) is closed in \(Y\). Hence \(f^{-1}(V)\) is \(\Lambda_g\)-closed set in \(X\). Since every \(\Lambda_g\)-closed is closed in a \(T_1\) space \(X\) [3], then \(f^{-1}(V)\) is closed set in \(X\). This shows that \(f\) is continuous.

Corollary 3.2 If a function \(f : (X, \tau) \to (Y, \sigma)\) is \(\Lambda_g\)-continuous and \(X\) is \(T_1\) then \(f\) is \(\lambda\)-continuous.

Theorem 3.3 If a function \(f : (X, \tau) \to (Y, \sigma)\) is \(\Lambda\)-\(g\)-continuous and \(X\) is \(T_0\) then \(f\) is \(\lambda\)-continuous.

Proof. Let \(f\) be \(\Lambda\)-\(g\)-continuous and \(X\) be \(T_0\). Let \(V\) be closed in \(Y\). \(f^{-1}(V)\) is \(\Lambda\)-\(g\)-closed in \(X\). Since \(\Lambda\)-\(g\)-closed is \(\lambda\)-closed in a \(T_0\) space \(X\) [9], then \(f^{-1}(V)\) is \(\lambda\)-closed in \(X\). This shows that \(f\) is \(\lambda\)-continuous.

Definition 4 A function \(f : (X, \tau) \to (Y, \sigma)\) is said to be:

(i) \(\Lambda_g\)-irresolute if \(f^{-1}(V)\) is \(\Lambda_g\)-closed in \(X\) for every \(\Lambda_g\)-closed set \(V\) in \(Y\).

(ii) \(\Lambda\)-\(g\)-irresolute if \(f^{-1}(V)\) is \(\Lambda\)-\(g\)-closed in \(X\) for every \(\Lambda\)-\(g\)-closed set \(V\) in \(Y\).

(iii) \(g\Lambda\)-irresolute if \(f^{-1}(V)\) is \(g\Lambda\)-closed in \(X\) for every \(g\Lambda\)-closed set \(V\) in \(Y\).

Recall that a function \(f : (X, \tau) \to (Y, \sigma)\) is said to be \(\lambda\)-closed if \(f(F)\) is \(\lambda\)-closed in \(Y\) for every \(\lambda\)-closed set \(F\) of \(X\).
Lemma 3.4 [3]. A function \(f : (X, \tau) \to (Y, \sigma) \) is \(\lambda \)-closed if and only if for each subset \(B \) of \(Y \) and each \(U \in \lambda O(X, \tau) \) containing \(f^{-1}(B) \), there exists \(V \in \lambda O(Y, \sigma) \) such that \(B \subseteq V \) and \(f^{-1}(V) \subseteq U \).

Theorem 3.5 Let \(f : (X, \tau) \to (Y, \sigma) \) be a continuous \(\lambda \)-closed function. Then \(f \) is \(\Lambda_{g} \)-irresolute.

Proof. Let \(B \) be \(\Lambda_{g} \)-closed in \((Y, \sigma) \) and \(U \) a \(\lambda \)-open set of \((X, \tau) \) containing \(f^{-1}(B) \). Since \(f \) is \(\lambda \)-closed, by Lemma 3.4 there exists a \(\lambda \)-open set \(V \) of \((Y, \sigma) \) such that \(B \subseteq V \) and \(f^{-1}(V) \subseteq U \). Since \(B \) is \(\Lambda_{g} \)-closed in \((Y, \sigma) \), \(Cl(B) \subseteq V \) and hence \(f^{-1}(B) \subseteq f^{-1}(Cl(B)) \subseteq f^{-1}(V) \subseteq U \). Since \(f \) is continuous, \(f^{-1}(Cl(B)) \) is closed and hence \(Cl(f^{-1}(B)) \subseteq U \). This shows that \(f^{-1}(B) \) is \(\Lambda_{g} \)-closed in \((X, \tau) \). Therefore \(f \) is \(\Lambda_{g} \)-irresolute.

Theorem 3.6 If a function \(f : (X, \tau) \to (Y, \sigma) \) is \(\Lambda_{g} \)-irresolute and \(Y \) is \(T_{1} \) then \(f \) is \(\Lambda_{g} \)-continuous.

Proof. Let \(f \) be \(\Lambda_{g} \)-irresolute and \(Y \) be \(T_{1} \). Suppose \(V \) is \(\Lambda_{g} \)-closed in \(Y \). Then \(f^{-1}(V) \) is \(\Lambda_{g} \)-closed set in \(X \). Since \(Y \) is \(T_{1} \), \(V \) is closed in \(Y \). Thus \(f \) is \(\Lambda_{g} \)-continuous.

Theorem 3.7 If a function \(f : (X, \tau) \to (Y, \sigma) \) is \(\Lambda_{g} \)-irresolute and \(Y \) is \(T_{0} \) then \(f \) is \(\Lambda_{g} \)-continuous.

Proof. Let \(f \) be \(\Lambda_{g} \)-irresolute, \(Y \) a \(T_{0} \) space and \(V \) be \(\Lambda_{g} \)-closed in \(Y \). Then \(f^{-1}(V) \) is \(\Lambda_{g} \)-closed set in \(X \). Since \(Y \) is \(T_{0} \), \(V \) is closed in \(Y \). Thus \(f \) is \(\Lambda_{g} \)-continuous.

Theorem 3.8 If \(f : (X, \tau) \to (Y, \sigma) \) is a \(\lambda \)-irresolute bijection and \(f \) is \(\lambda \)-open, then \(f \) is \(\Lambda_{g} \)-irresolute.

Proof. Let \(V \) be \(\Lambda_{g} \)-closed and let \(f^{-1}(V) \subseteq U \), where \(U \in \lambda O(X, \tau) \). Clearly, \(V \subseteq f(U) \). Since \(f(U) \in \lambda O(X, \tau) \) and since \(V \) is \(\Lambda_{g} \)-closed in \(Y \), then \(Cl_{\lambda}(V) \subseteq f(U) \) and thus \(f^{-1}(Cl_{\lambda}(V)) \subseteq U \). Since \(f \) is \(\lambda \)-irresolute and \(Cl_{\lambda}(V) \) is a \(\lambda \)-closed set, then \(f^{-1}(Cl_{\lambda}(V)) \) is \(\lambda \)-closed in \(X \). Thus \(Cl_{\lambda}(f^{-1}(V)) \subseteq Cl_{\lambda}(f^{-1}(Cl_{\lambda}(V))) = f^{-1}(Cl_{\lambda}(V)) \subseteq U \). Therefore, \(Cl_{\lambda}(f^{-1}(V)) \subseteq U \). So, \(f^{-1}(V) \) is \(\Lambda_{g} \)-closed and \(f \) is a \(\Lambda_{g} \)-irresolute bijection.
Definition 5 A topological space \((X, \tau)\) is called:

1. a \(T_g\Lambda\)-space if every \(g\Lambda\)-closed is \(g\)-closed.
2. a \(T_{\Lambda g}\)-space if every \(\Lambda-g\)-closed is \(\Lambda_g\)-closed.

Recall that a function \(f : (X, \tau) \to (Y, \sigma)\) is said to be \(g\)-irresolute [2] if \(f^{-1}(V)\) is \(g\)-closed in \(X\) for every \(g\)-closed set \(V\) in \(Y\). It is clear that a function \(f : (X, \tau) \to (Y, \sigma)\) is \(ge\)-irresolute if and only if \(f^{-1}(V)\) is \(g\)-open in \(X\) for every \(g\)-open set \(V\) in \(Y\).

Theorem 3.9 If a function \(f : (X, \tau) \to (Y, \sigma)\) is \(g\)-irresolute and closed, then \(f\) is \(ge\)-irresolute.

Proof. It follows immediately from ([4], Proposition 2).

Theorem 3.10 If a function \(f : (X, \tau) \to (Y, \sigma)\) is \(g\Lambda\)-irresolute and \(X\) is a \(T_g\Lambda\)-space, then \(f\) is \(ge\)-irresolute.

Proof. Let \(f\) be \(g\Lambda\)-irresolute and \(V\) a \(g\)-closed set in \(X\). Then \(V\) is \(g\Lambda\)-closed in \(Y\). Since \(f\) is \(g\Lambda\)-irresolute, \(f^{-1}(V)\) is \(g\Lambda\)-closed in \(X\). But \(X\) is a \(T_g\Lambda\)-space. Therefore \(f^{-1}(V)\) is \(g\)-closed in \(X\) and this implies that \(f\) is \(ge\)-irresolute.

Remark 3.11 The condition that \(X\) is a \(T_g\Lambda\)-space cannot be omitted in above theorem as shown in the following example.

Example 3.12 Let \(X = \{a, b, c, d\}\), \(\tau = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\} \) and \(\sigma = \{\phi, Y, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}\). Note that \((X, \tau)\) is not a \(T_g\Lambda\)-space. Let \(f : (X, \tau) \to (Y, \sigma)\) be the function defined as follows \(f(a) = b\), \(f(b) = a\), \(f(c) = d\) and \(f(d) = c\). Then \(f\) is \(g\Lambda\)-irresolute but not \(ge\)-irresolute, since \(f^{-1}(\{d\}) = \{c\}\) is not \(g\)-closed in \((X, \tau)\).

Theorem 3.13 If a function function \(f : (X, \tau) \to (Y, \sigma)\) is \(\Lambda\)-irresolute and \(X\) is a \(T_{\Lambda g}\)-space then \(f\) is \(\Lambda_g\)-irresolute.

Proof. Let \(B\) be any \(\Lambda_g\)-closed set in \(Y\). Then \(B\) is \(\Lambda-g\)-closed in \(Y\). Since, \(f\) is \(\Lambda\)-irresolute, then \(f^{-1}(B)\) is \(\Lambda-g\)-closed in \(X\). But \(X\) is \(T_{\Lambda g}\)-space. Therefore \(f^{-1}(B)\) is \(\Lambda_g\)-closed in \(X\) which implies that \(f\) is \(\Lambda_g\)-irresolute.
Remark 3.14 The condition that X is a T_{λ}-space can not be omitted in Theorem 3.13 as it is shown in our next example.

Example 3.15 Let f be as in Example 3.12. Then f is Λ-irresolute but not Λ_{g}-irresolute, where X is not T_{λ}-space. $f^{-1}(\{d\}) = \{c\}$ is not Λ_{g}-closed in (X, τ).

We recall that the space X is called a λ-space [1] if the set of all λ-open subsets form a topology on X. Clearly a space X is a λ-space if and only if the intersection of two λ-open sets is λ-open. An example of a λ-space is a $T_{\frac{1}{2}}$-space, where a space X is called $T_{\frac{1}{2}}$ [5] if every singleton is open or closed.

Theorem 3.16 If $f_i : (X, \tau_i) \rightarrow (Y, \sigma_i)(i \in I)$ is a family of functions, where X is a λ-space and Y is any topological space, then every f_i is Λ-continuous.

Proof. It follows from ([9], Theorem 2.4).

Theorem 3.17 (i) If a function $f : (X, \tau) \rightarrow (Y, \sigma)$ is Λ-continuous then $f(Cl_{\lambda}(A)) \subseteq Cl_{\lambda}(f(A))$ for every A of X.

(ii) If a function $f : (X, \tau) \rightarrow (Y, \sigma)$ is Λ-irresolute then for every subset A of X, $f(Cl_{\lambda-g}(A)) \subseteq Cl_{\lambda}(f(A))$ (where $Cl_{\lambda-g}(A)$ is the intersection of the smallest Λ-g-closed set containing A).

Proof. (i) It follows from the fact that every λ-continuous is Λ-g-continuous.

(ii) If $A \subseteq X$, then consider $Cl_{\lambda}(f(A))$ which is λ-closed in Y. Thus by Definition 4, $f^{-1}Cl_{\lambda}(f(A))$ is Λ-g-closed in X. Furthermore, $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(Cl_{\lambda}(f(A)))$. Therefore $Cl_{\lambda-g}(A) \subseteq f^{-1}(Cl_{\lambda}(f(A)))$ and consequently, $f(Cl_{\lambda-g}(A)) \subseteq f(f^{-1}(Cl_{\lambda}(f(A)))) \subseteq Cl_{\lambda}(f(A))$.

Theorem 3.18 If a map $f : X \rightarrow Y$ is Λ_{g}-irresolute, then it is Λ_{g}-continuous but not conversely.

Proof. Since every closed set is Λ_{g}-closed, it is proved that f is Λ_{g}-continuous. The converse need not be true as it is seen from the following example.
Example 3.19 Let $X = Y = \{a, b, c, d\}$, $\sigma = \{\emptyset, X, \{b\}, \{d\}, \{b, d\}\}$, $\tau = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by $f(a) = d = f(d), f(b) = b$ and $f(c) = c$. Then f is Λ_g-continuous but not Λ_g-irresolute.

Theorem 3.20 Let (X, τ) and (Z, η) be topological spaces and (Y, σ) be a T_1 space. The composition $g \circ f : (X, \tau) \to (Z, \eta)$ is Λ_g-continuous function where $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ are Λ_g-continuous.

Proof. Let F be any closed set in Z. Since g is Λ_g-continuous, $g^{-1}(F)$ is Λ_g-closed in Y. But Y is a T_1-space and so $g^{-1}(F)$ is closed in Y. Since f is Λ_g-continuous, $f^{-1}(g^{-1}(F))$ is Λ_g-closed in X. Hence, $g \circ f$ is Λ_g-continuous.

Theorem 3.21 Let (X, τ) and (Z, η) be topological spaces and (Y, σ) be a T_1 space.

1. The composition $g \circ f : (X, \tau) \to (Z, \eta)$ is λ-continuous function where $f : (X, \tau) \to (Y, \sigma)$ is λ-continuous and $g : (Y, \sigma) \to (Z, \eta)$ is Λ_g-continuous.

2. The composition $g \circ f : (X, \tau) \to (Z, \eta)$ is g-continuous function where $f : (X, \tau) \to (Y, \sigma)$ is g-continuous and $g : (Y, \sigma) \to (Z, \eta)$ is Λ_g-continuous.

3. The composition $g \circ f : (X, \tau) \to (Z, \eta)$ is Λ_g-continuous function where $f : (X, \tau) \to (Y, \sigma)$ is Λ_g-continuous and $g : (Y, \sigma) \to (Z, \eta)$ is Λ_g-continuous.

Proof. Similar to the proof of Theorem 3.20.

Theorem 3.22 Let (X, τ) and (Z, η) be any topological spaces and (Y, σ) be a T_0 space. The composition $g \circ f : (X, \tau) \to (Z, \eta)$ is λ-continuous function where $f : (X, \tau) \to (Y, \sigma)$ is λ-irresolute and $g : (Y, \sigma) \to (Z, \eta)$ is Λ_g-continuous.

Proof. Let V be any closed set in Z. Since g is Λ_g-continuous, $g^{-1}(V)$ is Λ_g-closed in Y. But Y is a T_0-space and so $g^{-1}(V)$ is λ-closed in Y. Since f is λ-irresolute, $f^{-1}(g^{-1}(V))$ is λ-closed in X. Hence, $g \circ f$ is λ-continuous.

Theorem 3.23 Let (X, τ) and (Z, η) be topological spaces and (Y, σ) be a $T_0\Lambda$ space. The composition $g \circ f : (X, \tau) \to (Z, \eta)$ is g-continuous function where $f : (X, \tau) \to (Y, \sigma)$ is gc-irresolute and $g : (Y, \sigma) \to (Z, \eta)$ is $g\Lambda$-continuous.
Proof. This follows from the definitions.

Theorem 3.24 Let \((X, \tau)\) and \((Z, \eta)\) be topological spaces and \((Y, \sigma)\) be a \(T_{\Lambda}\) space. The composition \(g \circ f : (X, \tau) \rightarrow (Z, \eta)\) is \(\Lambda_g\)-continuous function, where \(f : (X, \tau) \rightarrow (Y, \sigma)\) is \(\Lambda_g\)-irresolute and \(g : (Y, \sigma) \rightarrow (Z, \eta)\) is \(\Lambda\)-\(g\)-continuous.

Proof. This follows from definitions.

Recall that a space \(X\) is called locally indiscrete if and only if every open set is closed if and only if every \(\lambda\)-open set of \(X\) is open in \(X\).

Finally, we get the following diagram:

\[
\begin{aligned}
\text{continuous} & \Rightarrow \Lambda_g\text{-continuous} & \Rightarrow g\text{-continuous} \\
S_1 & \updownarrow & T_{\Lambda_g} & \updownarrow & T_g & \updownarrow \\
\lambda\text{-continuous} & \Rightarrow \Lambda\text{-}g\text{-continuous} & \Rightarrow g\Lambda\text{-continuous}
\end{aligned}
\]

where \(S_1\) is a locally indiscrete space.

References

Addresses:

S. Pious Missier
Post Graduate and Research Department of Mathematics
V. O. Chidambaram College
Thoothukudi 628 008
Tamil Nadu, INDIA.
email: spmissier@yahoo.com

M. G. Rani
Post Graduate and Research Department of Mathematics
V. O. Chidambaram College
Thoothukudi 628 008
Tamil Nadu, INDIA.
email: kanchidev@gmail.com

M. Caldas
Departamento de Matematica Aplicada,
Universidade Federal Fluminense,
Rua Mario Santos Braga, s/n
24020-140, Niteroi, RJ, BRASIL.
e-mail: gmamccs@vm.uff.br

S. Jafari
College of Vestsjaelland South,
Herrestraede 11,
4200 Slagelse, DENMARK.
e-mail: jafari@stofanet.dk