Special Relativity is Incompatible with the Laws that Govern the Universe

Abstract

Special Relativity establishes that each celestial object sees all the others in motion with respect to itself. Unfortunately this rule has also been applied in cosmology, because Hubble, to calculate the speed of move away of celestial objects based on the redshift, has adopted the formula of the Doppler effect which sees the observer at rest and the emitter in motion, causing an high increase in speed and distances, compared to a reasonable reality. For years I have been saying and demonstrating that instead the formula that sees the emitter at rest and the observer in motion, should be applied, but my statements have been at least ignored by relativity physicists. And now I try again with this paper, exposing all the problems that this Hubble decision has caused to cosmology, thus demonstrating that Special Relativity is not compatible with the laws that govern the Universe. In addition, I will report some conclusions on the Cosmological Redshift, set out in my hypotheses on the motion related to expanding space, which I believe are simpler and more compatible with the laws that govern the Universe.

Keywords:
Special Relativity, expansion of space, cosmological redshift, Hubble, CMBR, scale factor, apparent brightness, supernovae Ia, Relatività Ristretta, spazio in espansione, redshift cosmologico, fattore di scala, luminosità apparente.

1. HISTORY OF EVALUATION OF COSMOLOGICAL REDSHIFT

1.1 Cosmological Redshift (CR) evaluated as the Doppler effect detected by the observer considered at rest with respect to the emitter in motion.

Einstein hypothesized that each Reference System sees itself at rest and all the other Reference Systems in motion, not because this hypothesis corresponds to reality, but for a convention. But when Hubble discovered that the distances of celestial objects are proportional to the redshift values of the received light, so it turns out that the further away they are, the faster they move away from Earth, he applied Einstein’s hypothesis to reality, so the speeds of celestial objects have been considered relative to Earth, causing significant problems for cosmology. In fact, he calculated their speed using the formula of the Doppler effect which sees the observer at rest and the emitter in motion, that is:

emitter speed = z x c

where z represents the CR, which corresponds to the increase in the wavelengths of the received photons. Then he calculated the distance of the celestial objects with the following formula:

\[d = \text{emitter speed} / H \]
where H represents a speed constant, which according to the latest observations is about 70 km / s, and d represents the distance of the emitter expressed in megaparsec, each of which equals 3.26 million light years.

To better understand what it is, I report the example of a celestial object with a redshift (z) of 0.1.

emitter speed = $0.1 \times 300,000 = 30,000$ km / s

emitter distance = $30,000 / 70 = 428$ megaparsec

which multiplied by 3.26 make result of 1,395 million light years of distance

Which in the years of Hubble's observations, which showed redshift values on that order, could be fine.

1.2 Cosmological Redshift evaluated as an indicator of the expansion of space

But in the following years, thanks to more and more performing telescopes, redshifts with much higher values were observed, so the speed of the emitter's go away was always higher, up to approaching that of light and even exceeding it, which is impossible for SR.

And in 1964 the Cosmic Microwave Background Radiation (CMBR) was discovered, so it was clear that the Universe was expanding and it was hypothesized that the CR was showing it.

So it was decided that the higher CRs were no longer due to the Doppler effect, but to the expansion of space.

So, for example, an CR with $z = 1$ no longer meant that the celestial emitting object was moving away at 300,000 km / s from the Earth, but that between the departure and the arrival of the photons, the space between the Earth and the emitter had doubled.

But later redshifts with values up to 7 were observed, so at this point here is what results from the application of the formula:

emitter distance = $(z \times c) / 70 = 30,000$

which multiplied by 3.26 results in 97.800 billion light years.

And considering the CR of the CMBR, which is around 1,100, here is what results applying the formula:

emitter distance = $(z \times c) / 70 = 4,714,285$

which multiplied by 3.26 results in 153,685 billion light years (which would constitute the so-called Observable Universe), to be covered in less than 14 billion years. Which at least "seems" impossible.
1.3 Cosmological Redshift evaluated as a scale factor

Then it was decided that the CR was also considered as a scale factor. So an CR of 7, meant that from the start of the photon to its arrival, the distance would have increased by 7 times, so it would have been 8 times that of departure. Here is how this consideration is described in a fairly technical physics text (1):

“If for a distant cluster we measure $z = 2$, it means that today all distances in the Universe have increased by 3 times compared to the time when the light we now collect from the cluster started; all cosmic linear scales were then 3 times less than they are today.”

In this way, the expansion of space is not considered from the observer’s point of view, as provided by the SR, so the distances of the celestial objects have been significantly reduced.

1.4 Comparison between the CR considered as an indicator of the expansion of space and the CR as a scale factor.

As regards the CR considered as an indicator of the expansion of space, the expansion is calculated by applying the above formulas, while for the CR considered as a scale factor, much more complex mathematical formulations must be applied, which also depend on the chosen model of universe and on factors such as the amount of energy, matter and photons present in Universe. However, in Zappalà’s article (2) there is a graph from which the data relating to the expansions can be obtained as a function of the CR considered as the scale factor. So below I present a comparison between the two hypotheses, for some cases:

<table>
<thead>
<tr>
<th>CR</th>
<th>as space expansion indicator</th>
<th>as scale factor indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>84</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>140</td>
<td>31</td>
</tr>
<tr>
<td>20</td>
<td>280</td>
<td>36</td>
</tr>
<tr>
<td>Observable Universe</td>
<td>153,685</td>
<td>46</td>
</tr>
</tbody>
</table>

In conclusion it seems that the CR is to be considered differently according to its value:
If it is small (how much?), it can be considered as speed;
If it is not too large (how much?), it can be considered as an indicator of the expansion of space;
If it is very high, it is considered as a scale factor.
1.5 The Cosmological Redshift as above evaluated, is incompatible with the observations of high redshift celestial objects.

In 1998 two groups of researchers observed celestial objects with a high redshift (type 1a supernovae) with an apparent brightness lower than what should have been based on their CR (3). Which would have meant that in the last billions of years the Universe has expanded at a higher speed than expected (which resulted in deceleration) and that, therefore, the expansion of the Universe is accelerating from some billion years.

Instead, I will demonstrate below that if the observed apparent brightness is lower than expected, it means that the CR does not indicate the expansion of the space.

To show that the CR does not indicate the expansion of space, I use the data relating to the photons journey of a hypothetical celestial object with a high redshift, which I obtained from a paper by the astronomer Vincenzo Zappalà (2), where the CR is considered as an indicator of the expansion of space, that is:

Initial distance (at the start of photons) = 5.46 billion light years;
Current distance (at the arrival of photons) = 8.68 billion light years;
\(z \) (cosmological redshift) = 0.59.

To better understand what it is, I set out below the formula and its calculation, to find the current distance knowing the initial one and the CR.

\[
\text{Current distance} = \text{Initial distance} \cdot (1 + z)
\]

\[
\text{Current distance} = 5.46 \cdot (1 + 0.59) = 8.68
\]

Which practically means that by multiplying the distance of the celestial object to the departure of the photons, for the expansion of the space that occurred during their journey, the distance to the arrival of photons is obtained. The result corresponds to the value indicated in the article of Zappalà (2), relative to the current distance of the object. So this is a correct calculation.

But from the observations it turns out that the current observed distance (naturally what is observed is the apparent brightness, which would constitute an indicator of distance) is higher than the expected one, that is to 8.68 billion light years.

But if the CR really meant the expansion of space, also the redshift of the photons, and therefore the CR itself, would have been greater than that considered, because the greater expansion of the space would be reflected also on the redshift of the photons and, therefore, on the CR. And so the current distance would have been greater.

So, if the current distance is greater than expected, it can only mean that the CR does not represent the expansion of space occurred during the photons' journey.
3. SOME CONCLUSIONS OF MY HYPOTHESIS ON COSMOLOGICAL REDSHIFT

Based on my theory (4) and hypotheses (5) the CR is a Doppler effect and ALWAYS indicates the speed of the observer’s move away from the emitter (and not vice versa, as required by the SR), which never exceeds the speed of light whatever is its value, including that of the CMBR. To calculate it we use the formula:

\[v_r = c \frac{c}{1 + z} \]

To be precise, the value of z also includes the redshift due to the movement of the celestial object with respect to space (therefore not due to its expansion), which based on the dipole anisotropy measured on Earth, has values on the order of 0.001 z, therefore very low.

To find the actual (real) distance, the CRs of the various periods are used to calculate the distances (c + space expansion) traveled during each of them, distances which then add up to find the total one.

Thus the distances of celestial objects were much less than those obtained by applying the Hubble formulas, so much so that the observable Universe was of only 22.3 billion light years.
And the expansion speed of the Universe has always been in deceleration.

Furthermore, the observed apparent brightness of celestial objects with a high redshift cannot be less than expected, since it is not used to find the real distances, but to find the expansion of space that occurred during the travel of the photons.

Here is the formula used, for the explanation of which I refer to my hypotheses (5).

\[I = \frac{L}{4\pi \cdot F^2 \cdot E^3} \]

Where I is the observed apparent brightness, L is the absolute brightness, F is the effective distance traveled by the photons (excluding the expansion distance) and E is the expansion of space that occurred during the travel of the photons.

I consider very important to say that I have also shown that the expansion of space, in addition to reducing the frequency of photons, also adequately slows down the measurement of time by clocks (the photon itself can be considered a clock), so that said frequency reduction is not detectable.

However, an evaluation of observational data based no longer on SR, but on expanding space, could make them take on different meanings.
References

1. Corrado Lamberti – Capire l'Universo
2. Vincenzo Zappalà – C'è distanza e distanza
3. Michele Diodati – Le supernovae di tipo Ia e l'espansione accelerata dell'Universo
 https://spazio-tempo-luce-energia.it/le-supernovae-di-tipo-ia-e-lespansione-accelerata-dell-universo-48aabbf4406c
4. Dino Bruniera - Theory on the Motion Related to the Expanding Space
 https://vixra.org/pdf/1811.0003v5.pdf;
5. Dino Bruniera – Hypothesis Based on the Theory on the Motion Related to the Expanding Space
La Relatività Ristretta è Incompatibile con le Leggi che Regolano l'Universo

Abstract

La Relatività Ristretta stabilisce che ogni oggetto celeste veda tutti gli altri in moto rispetto a se stesso. Purtroppo questa regola è stata applicata anche in cosmologia, perché Hubble per calcolare la velocità di allontanamento degli oggetti celesti in base al redshift, ha adottato la formula dell'effetto Doppler che vede l'osservatore a riposo e l'emittente in moto, causando un elevato incremento di velocità e distanze rispetto ad una ragionevole realtà.

Da anni vado dicendo e dimostrando che invece andrebbe applicata la formula che vede l'emittente a riposo e l'osservatore in moto, ma per bene che mi sia andata le mie affermazioni sono state ignorate dai fisici relativisti.

Ed ora ci riprovo col presente articolo, esponendo tutti i problemi che ha provocato alla cosmologia questa decisione di Hubble, dimostrando pertanto che la Relatività Ristretta non è compatibile con le leggi che regolano l'Universo. Inoltre riporterò alcune conclusioni sul Redshift Cosmologico, esposte nelle mie ipotesi sul moto relativo allo spazio in espansione, che credo siano più semplici e più compatibili con le leggi che regolano l'Universo.

1. STORIA DELLE VALUTAZIONI DEL REDSHIFT COSMOLOGICO

1.1 Redshift Cosmologico (RC) valutato come l'effetto Doppler rilevato dall'osservatore considerato a riposo rispetto all'emittente in moto.

Einstein ha ipotizzato che ogni Sistema di Riferimento veda se stesso a riposo e tutti gli altri Sistemi di Riferimento in moto, non perché questa ipotesi corrisponda alla realtà, ma per una convenzione.

Ma quando Hubble ha scoperto che le distanze degli oggetti celesti sono proporzionali ai valori del redshift della luce ricevuta, per cui risulta che quanto più lontani essi sono, tanto più velocemente si allontanano dalla Terra, ha applicato l'ipotesi di Einstein alla realtà, per cui le velocità degli oggetti celesti sono state considerate rispetto alla Terra, causando notevoli problemi alla cosmologia. Infatti ha calcolato la loro velocità usando la formula dell'effetto Doppler che vede l'osservatore fermo e l'emittente in moto, e cioè:

velocità emittente = z x c

dove z rappresenta il RC, che corrisponde all'incremento delle lunghezze d'onda dei fotoni ricevuti.

Poi ha calcolato la distanza degli oggetti celesti con la seguente formula:

\[d = \frac{\text{velocità emittente}}{H} \]

dove H rappresenta una costante di velocità, che in base alle ultime osservazioni vale circa 70 km/s, e d rappresenta la distanza dell'emittente espressa in megaparsec, ciascuno dei quali equivale a 3,26 milioni di anni luce.
Per far comprendere meglio di cosa si tratta, riporto l’esempio di un oggetto celeste con un redshift (z) di 0,1.

Velocità emittente = 0,1 x 300.000 = 30.000 km/s
distanza emittente = 30.000 / 70 = 428 megaparsec

che moltiplicato per 3,26 da 1.395 milioni di anni luce di distanza.

Il che negli anni delle osservazioni di Hubble, dalle quali risultavano valori di redshift su quell’ordine, poteva andar bene.

1.2 Redshift Cosmologico valutato come indicatore dell’espansione dello spazio

Ma negli anni successivi, grazie a telescopi sempre più performanti, sono stati osservati redshift con valori molto più elevati, per cui la velocità di allontanamento dell’emittente risultava sempre più elevata, fino ad avvicinarsi a quella della luce ed anche a superarla, cosa che per la RR è impossibile.

E nel 1964 è stata scoperta la Radiazione di Fondo (RF), per cui è risultato evidente che l’Universo si stava espandendo ed è stato ipotizzato che il RC indicasse tale espansione.

Per cui è stato deciso che i RC più elevati non fossero più dovuti all’effetto Doppler, ma all’espansione dello spazio.

Quindi, per esempio, un RC con z = 1 non significava più che l’oggetto celeste emittente si stava allontanando a 300.000 km/s dalla Terra, ma che tra la partenza e l’arrivo dei fotoni, lo spazio tra la Terra e l’emittente era raddoppiato.

Ma in seguito sono stati osservati redshift con valori fino a 7, per cui a questo punto ecco cosa risulta dall’applicazione delle formule:

distanza emittente = (z x c) / 70 = 30.000

che moltiplicato per 3,26 da 97,800 miliardi di anni luce.

E considerando il RC della RF, che è di circa 1.100, ecco cosa risulta applicando la formula:

distanza emittente = (z x c) / 70 = 4.714.285

che moltiplicato per 3,26 da 153.685 miliardi di anni luce (che costituirebbe il cosiddetto Universo Osservabile), da percorrere in meno di 14 miliardi di anni. Cosa che almeno “pare” impossibile.

1.3 Redshift Cosmologico valutato come fattore di scala

Allora è stato deciso che il RC fosse considerato anche come un fattore di scala. Per cui un RC di 7, significava che dalla partenza del fotone al suo arrivo
la distanza sarebbe aumentata di 7 volte, per cui sarebbe stata di 8 volte quella di partenza.

Ecco come questa considerazione viene descritta in un testo di fisica abbastanza tecnico (1):

"Se per un lontano ammasso si misura $z = 2$, vuol dire che oggi tutte le distanze nell'Universo sono cresciute di 3 volte rispetto all'epoca in cui partiva dall'ammasso la luce che adesso raccogliamo; tutte le scale lineari cosmiche erano allora 3 volte minori di quanto siano oggi."

In questo modo l'espansione dello spazio non viene considerata dal punto di vista dell'osservatore, come prevede la RR, per cui le distanze degli oggetti celesti si sono notevolmente ridotte.

1.4 Confronto tra il RC considerato come indicatore dell'espansione dello spazio e il RC come fattore di scala.

Per quanto riguarda il RC considerato come indicatore dell'espansione dello spazio, si calcola l'espansione applicando formule sopra riportate, mentre per il RC considerato come fattore di scala, debbono essere applicate delle formulazioni matematiche molto più complesse, che dipendono anche dal modello di universo scelto e da fattori come la quantità di energia, di materia e di fotoni, presenti nell'Universo.

Comunque nell'articolo di Zappalà (2) c'è un grafico dal quale si possono riconoscere i dati relativi alle espansioni in funzione del RC considerato come fattore di scala.

Per cui qui di seguito espongo un confronto tra le due ipotesi, per alcuni casi:

<table>
<thead>
<tr>
<th>RC</th>
<th>Distanze attuali in miliardi di anni luce</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>come indicatore espansione spazio</td>
</tr>
<tr>
<td>01</td>
<td>14</td>
</tr>
<tr>
<td>02</td>
<td>28</td>
</tr>
<tr>
<td>03</td>
<td>42</td>
</tr>
<tr>
<td>06</td>
<td>84</td>
</tr>
<tr>
<td>10</td>
<td>140</td>
</tr>
<tr>
<td>20</td>
<td>280</td>
</tr>
<tr>
<td>Universo</td>
<td></td>
</tr>
<tr>
<td>Osserv.le</td>
<td>153.685</td>
</tr>
</tbody>
</table>

In conclusione pare che il RC sia da considerare in modo diverso in funzione del suo valore:
Se è piccolo (quanto?), si può considerare come velocità;
Se non è troppo grande (quanto?), si può considerare come indicatore dell'espansione dello spazio;
Se è molto elevato si considera come fattore di scala.
1.5 Il Redshift Cosmologico come sopra valutato, è incompatibile con le osservazioni degli oggetti celesti ad alto redshift.

Nel 1998 due gruppi di ricercatori hanno osservato degli oggetti celesti ad alto redshift (supernove di tipo 1a) con luminosità apparente inferiore rispetto a quella che avrebbe dovuto essere in base al loro RC (3). Il che avrebbe significato che negli ultimi miliardi di anni l'Universo si è espanso ad una velocità superiore a quella attesa (che risultava in decele-razione) e che, pertanto, l'espansione dell'Universo risulta in accelerazione da alcuni miliardi di anni.

Invece io dimostrerò qui di seguito che se la luminosità apparente osservata è inferiore a quella attesa, significa che il RC non indica l'espansione dello spazio.

Per dimostrarlo uso i dati relativi al viaggio dei fotoni di un ipotetico oggetto celeste con un elevato redshift, che ho ricavato da un articolo di Vincenzo Zappalà (2), dove il RC viene considerato come un indicatore dell'espansione dello spazio, e cioè:

Distanza iniziale (alla partenza dei fotoni) = 5,46 miliardi di anni luce;
Distanza attuale (all'arrivo dei fotoni) = 8,68 miliardi di anni luce;
z (redshift cosmologico) = 0,59.

Per far comprendere di cosa si tratta, espongo qui di seguito la formula ed il relativo calcolo, per trovare la distanza attuale conoscendo quella iniziale ed il RC.

Distanza attuale = **Distanza iniziale** · $(1 + z)$
Distanza attuale = $5,46 \cdot (1 + 0,59) = 8,68$

Che in pratica significa che moltiplicando la distanza dell'oggetto celeste alla partenza dei fotoni, per l'espansione dello spazio avvenuta durante il loro viaggio, si ottiene la distanza all'arrivo dei fotoni.

Il risultato corrisponde al valore indicato nell'articolo di Zappalà (2), relativo alla distanza attuale dell'ipotetico oggetto. Quindi si tratta di un calcolo corretto.

Però dalle osservazioni risulta che la distanza attuale osservata (naturalmente ciò che viene osservato è la luminosità apparente, che costituirebbe un indicatore di distanza) è superiore a quella attesa e cioè a 8,68 miliardi di anni luce.

Ma se il RC indicasse veramente l'espansione dello spazio, anche il redshift dei fotoni, e quindi il RC stesso, sarebbe maggiore di quello considerato, perché la maggiore espansione dello spazio si sarebbe riflessa anche sulla lunghezza d'onda dei fotoni e, quindi, sul RC.

E quindi la distanza attuale attesa sarebbe risultata maggiore.

Per cui se la distanza attuale osservata risulta maggiore di quella attesa, può solo significare che il RC non rappresenta l'espansione dello spazio avvenuta durante il viaggio dei fotoni.
2. ALCUNE CONCLUSIONI DELLE MIE IPOTESI SUL REDSHIFT COSMOLOGICO

In base alle mie teorie (4) ed ipotesi (5) il RC è un effetto Doppler ed indica SEMPRE la velocità di allontanamento dell’osservatore rispetto all’emit-tente (e non viceversa, come previsto dalla RR), che non supera mai la ve-locità della luce qualunque sia il suo valore, compreso quello della RF. Per calcolarla si usa la formula:

\[v_r = c - \frac{c}{1 + z} \]

Per precisione il valore di \(z \) comprende anche il redshift dovuto al movimento dell'oggetto celeste rispetto allo spazio (quindi non dovuto alla sua espansione), che in base all'anisotropia di dipolo misurata sulla Terra, ha valori sull'ordine di 0,001 \(z \), quindi molto bassi.

Per trovare la distanza attuale (reale) si usano i RC dei vari periodi per calcola-re le distanze (\(c + \) espansione spazio) percorse durante ognuno di essi, distanze che poi si sommano per trovare quella totale.

Così le distanze degli oggetti celesti sono risultate molto inferiori rispetto a quelle ottenute applicando le formule di Hubble, tanto che l’Universo osservabile è risultato solo di 22,3 miliardi di anni luce. E la velocità di e-espansione dell’Universo è risultata sempre in decelerazione.

Inoltre la luminosità apparente osservata degli oggetti celesti ad alto redshift, non può essere inferiore a quella attesa, in quanto non viene utilizzata per trovare le distanze reali, ma per trovare l’espansione dello spazio avvenuta durante il viaggio dei fotoni.

Ecco la relativa formula utilizzata, per la spiegazione della quale rimando alle mie ipotesi (5).

\[I = \frac{L}{4\pi \cdot F^2 \cdot E^3} \]

Dove \(I \) è la luminosità apparente osservata, \(L \) è la luminosità assoluta, \(F \) è la di-stanza effettiva percorsa dai fotoni (esclusa la distanza relativa all’espansione) ed \(E \) è l’espansione dello spazio avvenuta durante il viaggio dei fotoni.

Ritengo molto importante dire che ho anche dimostrato che l’espansione dello spazio, oltre che a far ridurre la frequenza dei fotoni, rallenta adeguatamente anche la misurazione del tempo da parte degli orologi (il fotone stesso può essere considerato un orologio), in modo tale che detta ri-duzione di frequenza non risulta rilevabile.

Comunque una valutazione dei dati osservativi basata non più sulla RR, ma sul-lo spazio in espansione, potrebbe far loro assumere significati diversi.
Riferimenti

1. Corrado Lamberti – Capire l'Universo;
2. Vincenzo Zappalà – C’è distanza e distanza
3. Michele Diodati – Le supernovae di tipo Ia e l’espansione accelerata dell'Universo
4. Dino Bruniera - Theory on the Motion Related to the Expanding Space (nella seconda parte c’è la versione in italiano)
 https://vixra.org/pdf/1811.0003v5.pdf ;
5. Dino Bruniera – Hypothesis Based on the Theory on the Motion Related to the Expanding Space (nella seconda parte c’è la versione in italiano)
 http://vixra.org/abs/1811.0027