ON SOME NEW CLASSES OF SETS AND A NEW DECOMPOSITION OF CONTINUITY VIA GRILLS

ESREF HATIR AND SAEID JAFARI

ABSTRACT. In this paper, we present and study some new classes of sets and give a new decomposition of continuity in terms of grills.

1. INTRODUCTION AND PRELIMINARIES

The idea of grill on a topological space was first introduced by Choquet [7]. The concept of grills has shown to be a powerful supporting and useful tool like nets and filters, for getting a deeper insight into further studying some topological notions such as proximity spaces, closure spaces and the theory of compactifications and extension problems of different kinds ([5], [6], [8]). In [2], Roy and Mukherjee defined and studied a typical topology associated rather naturally to the existing topology and a grill on a given topological space. We are utilizing the same procedure in this paper.

Throughout this paper, X or (X, τ) represent a topological space with no separation axioms assumed unless explicitly stated. For a subset A of a space X, the closure of A and the interior of A are denoted by $\text{Cl}(A)$ and $\text{Int}(A)$, respectively. The power set of X will be denoted by $\wp(X)$. A collection G of a nonempty subsets of a space X is called a grill [7] on X if (i) $A \in G$ and $A \subseteq B \Rightarrow B \in G$, (ii) $A, B \subseteq X$ and $A \cup B \in G \Rightarrow A \in G$ or $B \in G$. For any point x of a topological space (X, τ), $\tau(x)$ denote the collection of all open neighborhoods of x. Let (X, τ) be a topological space. A subset A in X is said to be a t-set ([3] and [4]) if $\text{Int}(\text{Cl}(A)) = \text{Int}(A)$. A subset A in X is said to be a B-set [4] if there is a $U \in \tau$ and a t-set A in (X, τ) such that $H = U \cap A$, respectively. A subset A in X is said to be preopen [1] (resp. regular open) if $A \subseteq \text{Int}(\text{Cl}(A))$ (resp. $\text{Int}(\text{Cl}(A)) = A$).

Received: August 15, 2009.
2000 Mathematics Subject Classification: Primary: 54D30, 54C10; Secondary: 54D0.
Key words and phrases: Topological space, grill, Φ-open, g-set, $g\Phi$-set, G-regular.
Definition 1.1 ([2]). Let \((X, \tau)\) be a topological space and \(G\) be a grill on \(X\). The mapping \(\Phi: \varnothing(X) \to \varnothing(X)\), denoted by \(\Phi_G(A, \tau)\) for \(A \in \varnothing(X)\) or simply \(\Phi(A)\) called the operator associated with the grill \(G\) and the topology \(\tau\) and is defined by \(\Phi_G(A) = \{x \in X \mid A \cap U \in G, \forall U \in \tau(x)\}\).

Proposition 1.1 ([2]). Let \((X, \tau)\) be a topological space and \(G\) be a grill on \(X\). Then for all \(A, B \subseteq X\):

i) \(\Phi(A \cup B) = \Phi(A) \cup \Phi(B)\);

ii) \(\Phi(\Phi(A)) \subseteq \Phi(A) = Cl(\Phi(A)) \subseteq Cl(A)\).

Let \(G\) be a grill on a space \(X\). Then a map \(\Psi: \varnothing(X) \to \varnothing(X)\) is defined by \(\Psi(A) = A \cup \Phi(A)\), for all \(A \in \varnothing(X)\). The map \(\Psi\) satisfies Kuratowski closure axioms. Corresponding to a grill \(G\) on a topological space \((X, \tau)\), there exists a unique topology \(\tau_G\) on \(X\) given by \(\tau_G = \{U \subseteq X \mid \Psi(X - U) = X - U\}\), where for any \(A \subseteq X\), \(\Psi(A) = A \cup \Phi(A) = \tau_G - Cl(A)\). For any grill \(G\) on a topological space \((X, \tau)\), \(\tau \subseteq \tau_G\) [2]. If \((X, \tau)\) is a topological space and \(G\) is a grill on \(X\), then we denote a grill topological space by \((X, \tau, G)\).

Let \((X, \tau)\) be a topological space and \(G\) be any grill on \(X\). Then \(A \cup B \subseteq X\) implies \(\Phi(A) \cup \Phi(B)\) [2].

Theorem 1.1 ([2]). i) If \(G_1\) and \(G_2\) are two grills on a space \(X\) with \(G_1 \subseteq G_2\), then \(\tau_{G_1} \subseteq \tau_{G_2}\).

ii) If \(G\) is a grill on a space \(X\) and \(B \notin G\), then \(B\) is closed in \((X, \tau, G)\).

iii) For any subset \(A\) of a space \(X\) and any grill \(G\) on \(X\), \(\Phi(A)\) is \(\tau_G\)-closed.

Theorem 1.2 ([2]). Let \((X, \tau)\) be a topological space and \(G\) be a grill on \(X\). If \(U \in \tau\), then \(U \cap \Phi(A) = U \cap \Phi(U \cap A)\) for any \(A \subseteq X\).

2. Some new classes of sets

Definition 2.1. Let \((X, \tau)\) be a topological space and \(G\) be a grill on \(X\). A subset \(A\) in \(X\) is said to be:

i) \(\Phi\)-open if \(A \subseteq Int(\Phi(A))\);

ii) \(g\)-set if \(Int(\Phi(A)) = Int(A)\);

iii) \(g\Phi\)-set if \(Int(\Phi(A)) = Int(A)\).

Remark 2.1. It should be noted that:

i) Open set and \(\Phi\)-open set are independent from each other.

ii) Every \(g\Phi\)-set is a \(g\)-set, but it is not conversely.

Example 2.1. Let \(X = \{a, b, c, d\}\) and \(\tau = \{\emptyset, X, \{a\}, \{b, d\}, \{a, b, d\}\}\). If \(G = \{\{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}\), then \(G\) is a grill on \(X\) such that \(\tau - \{\emptyset\} \subseteq G\).
Take $A = \{a,b,d\} \in \tau$, but it is not Φ-open, since $\Phi(\{a,b,d\}) = \{a\}$. And take $B = \{a,b\} \notin \tau$, but it is a Φ-open since $\Phi(\{a,b\}) = X$. Furthermore, $A = \{a,b,d\}$ is a g-set, but it is not a $g\Phi$-set.

Proposition 2.1. A τ_G-closed set is equivalent to a g-set.

Proof. Let A be a subset in (X, τ, G). Then $\text{Int}(\Psi(\Phi(A))) = \text{Int}(\Phi(A) \cup \Phi(\Phi(A))) = \text{Int}(\Phi(A))$, i.e. $\Phi(A)$ is a g-set.

Definition 2.2. A subset A of (X, τ, G) is said to be G-regular if $\text{Int}(\text{Int}(A)) = A$.

Proposition 2.2. Every G-regular open set is a g-set.

Proof. Obvious.

Example 2.2 ([2]). Let $X = \{a,b,c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b,c\}\}$. If $G = \{\{a\}, \{b\}, \{a,b\}, \{a,c\}, \{b,c\}, X\}$, then G is a grill on X such that $\tau - \{\emptyset\} \subset G$. Take $A = \{a,c\}$, then A is a g-set but it is not a G-regular set.

Proposition 2.3. A t-set is a g-set.

Proof. Let A be a t-set. Then

\[
\text{Int}(A) \supset \text{Int}(\text{Int}(A)) = \text{Int}(A \cup \Phi(A)) \supset \text{Int}(A \cup \text{Cl}(A)) = \text{Int}(\text{Cl}(A)) = \text{Int}(A).
\]

Therefore, A is a g-set.

Remark 2.2. The converse of Proposition 2.3 is false. By the same conditions as in Example 2.2, take $A = \{a,c\}$. Then A is a g-set and also a $g\Phi$-set, but it is not a t-set.

Proposition 2.4. If A, B are two g-sets, then $A \cap B$ is a g-set.

Proof. $\text{Int}(A \cap B) \supset \text{Int}(\text{Int}(A \cap B)) = \text{Int}(\text{Int}(A \cap B) \cap \text{Int}(A \cap B)) = \text{Int}(\text{Int}(A \cap B) \cap \text{Int}(\text{Int}(A \cap B))) = \text{Int}(A \cap B) = \text{Int}(A \cap B)$. Then $A \cap B$ is a g-set.

Definition 2.3. Let (X, τ) be a topological space and G be a grill on X. A subset A in X is said to be G-preopen set if $A \subset \text{Int}(\Psi(A))$.

Example 2.3. In Example 2.2, take $A = \{a,c\}$. Then A is preopen, but it is not G-preopen.

Proposition 2.5. A G-preopen set A is a preopen set.

Proof. Let A be a G-preopen. Then

\[
A \supset \text{Int}(\text{Int}(A)) = \text{Int}(A \cup \Phi(A)) \supset \text{Int}(A \cup \text{Cl}(A)) = \text{Int}(\text{Cl}(A)).
\]

Therefore, A is a preopen set.
Remark 2.3. By Example 2.9 in [2], since if \(G = \emptyset(X) - \{0\} \) in \((X, \tau)\), then \(\tau_G = \tau \), G-preopen and preopen sets are equivalent.

Proposition 2.6. If \(A \) is a G-preopen, then \(Cl(Int(\Psi(A))) = Cl(A) \)

Proof. \(Cl(A) \subset Cl(Int(\Psi(A))) \subset Cl(\Psi(A)) = Cl(A \cup \Phi(A)) = Cl(A) \cup Cl(\Phi(A)) = Cl(A) \cup \Phi(A) \subset Cl(A) \).

Proposition 2.7. Every \(\Phi \)-open set \(A \) is G-preopen.

Proof. Let \(A \) be a \(\Phi \)-open. Then \(A \subset Int(\Phi(A)) \subset Int(A \cup \Phi(A)) = Int(\Psi(A)) \). Therefore \(A \) is G-preopen.

Proposition 2.8. Let \((X, \tau, G)\) be a grill topological space with I arbitrary index set. Then:

i) If \(\{A_i \mid i \in I\} \) are G-preopen sets, then \(\cup \{A_i \mid i \in I\} \) is a G-preopen set.

ii) If \(A \) is a G-preopen set and \(U \in \tau \), then \((A \cap U) \) is a G-preopen set.

Proof. i) Let \(\{A_i \mid i \in I\} \) be G-preopen sets, then \(A_i \subset Int(\Psi(A_i)) \) for every \(i \in I \). Thus

\[
\bigcup A_i \subset \bigcup(\Psi(A_i)) \subset \bigcup(\Psi(A_i)) = Int(A_i \cup \Phi(A_i)) =
\]

\[
Int(A_i \cup \Phi(A_i)) = Int(\Psi(A_i) \cup \Phi(A_i)) = Int(\Psi(A_i)).
\]

ii) Let \(A \) be a G-preopen set and \(U \in \tau \). By Theorem 1.2,

\[
U \cap A \subset U \cap Int(\Psi(A)) = U \cap Int(A \cup \Phi(A)) = Int(U \cap (A \cup \Phi(A))) = Int(U \cap A \cup (U \cap \Phi(A))) = Int(U \cap A \cup (U \cap \Phi(U \cap A))) \subset Int((U \cap A) \cup \Phi(U \cap A)) = Int(\Psi(U \cap A)).
\]

Definition 2.4. Let \((X, \tau, G)\) be a topological space and \(G \) a grill on \(X \). A subset \(A \) in \(X \) is said to be G-set (resp. \(\Phi \)-set) if there is a \(U \in \tau \) and a g-set (resp. \(\Phi \)-set) \(A \) in \((X, \tau, G)\) such that \(H = U \cap A \), respectively.

Proposition 2.9. i) A g-set \(A \) is a G-set.

ii) A g\(\Phi \)-set \(A \) is a G\(\Phi \)-set.

Proof. Obvious.

Proposition 2.10. An open set \(U \) is a G-set (resp. \(\Phi \)-set).

Proof. \(U = U \cap X \), \(Int(\Psi(X)) = Int(X) \).

Proposition 2.11. A \(\tau_G \)-closed set \(C \) is a G-set

Proof. It follows from Proposition 2.1 and Proposition 2.9.
Proposition 2.12. i) A B-set is a G-set.

ii) A G-set is a $G\Phi$-set.

Proof. i) Let H be a B-set. Then $H = U \cap A$, where $U \in \tau$ and A is a t-set. $H = U \cap \text{Int}(A) = U \cap \text{Int}(\text{Cl}(A)) = U \cap \text{Int}(A \cup \text{Cl}(A)) \supset U \cap \text{Int}(A \cup \Phi(A)) = U \cap \text{Int}(\Psi(A)) \supset U \cap \text{Int}(A) = H$. Therefore H is a G-set.

ii) Similar to i).

The converse of Proposition 2.12 is false as it is shown by the following example.

Example 2.4. In Example 2.2 $A = \{a, c\}$ is a G-set and also a $G\Phi$-set, but it is not B-set. In Example 2.1, $A = \{a, b, d\}$ is a G-set, but it is not $G\Phi$-set.

Proposition 2.13. A subset S in a space (X, τ, G) is open if and only if it is a G-preopen and a G-set.

Proof. Necessity. It follows from Proposition 2.10 and the obvious fact that every open set is G-preopen.

Sufficiency. Since S is a G-set, then $S = U \cap A$ where U is an open set and $\text{Int}(\Psi(A)) = \text{Int}(A)$. Since S is also G-preopen, we have

$$S \subset \text{Int}(\Psi(S)) = \text{Int}(\Psi(U \cap A)) = \text{Int}(\Psi(U) \cap \Psi(A)) \subset \text{Int}(\Psi(U)) \cap \text{Int}(\Psi(A)) = \text{Int}(U \cap \Phi(U)) \cap \text{Int}(\Psi(A)) \subset \text{Int}(\text{Cl}(U)) \cap \text{Int}(\Psi(A)) = \text{Int}(\text{Cl}(U)) \cap \text{Int}(A).$$

Hence

$$S = U \cap A = (U \cap A) \cap U \subset (\text{Int}(\text{Cl}(U)) \cap \text{Int}(A)) \cap U$$

$$= (\text{Int}(\text{Cl}(U)) \cap U) \cap \text{Int}(A) = U \cap \text{Int}(A).$$

Therefore, $S = U \cap A \subset U \cap \text{Int}(A)$ and $S = U \cap \text{Int}(A)$. Thus S is an open set.

Corollary 2.1. If S is both $G\Phi$-set and Φ-open set in (X, τ, G), then S is open.

Definition 2.5. Let (X, τ, G) be a grill space and $A \subset X$. A set A is said to be G-dense in X, if $\Psi(A) = X$.

Proposition 2.14. A subset A of a grill G in a space (X, τ, G) is G-dense if and only if for every open set U containing $x \in X$, $A \cap U \in G$.

Proof. Necessity. Let A be a G-dense set. Then, for every open set U containing x in a space X, $x \in \Psi(A) = A \cup \Phi(A)$. Hence if $x \in A$, then $A \cap U \in G$ and if $x \in \Phi(A)$, then $A \cap U \in G$.

Sufficiency. Let every \(x \in X \). Moreover, let every open subset \(U \) of \(X \) containing \(x \) such that \(A \cap U \in G \). Then if \(x \in A \) or \(x \in \Phi(A) \), we have \(A \cap U \in G \). It follows that \(x \in \Psi(A) \) and thus \(X \subset \Psi(A) \). Therefore \(\Psi(A) = X \).

\[\square \]

Proposition 2.15. If \(U \) is an open set and \(A \) is a \(G \)-dense set in \((X, \tau, G)\), then \(\Psi(U) = \Psi(U \cap A) \).

Proof. Since \(A \cap U \subset U \), we have \(\Psi(U \cap A) \subset \Psi(U) \). Conversely, if \(x \in \Psi(U) \), \(x \in U \) and \(x \in \Phi(U) \). Then for every open set \(V \) containing \(x \), \(U \cap V \in G \). Put \(W = U \cap V \in \tau(x) \). Since \(\Psi(A) = X \), \(W \cap A \in G \), i.e. \(W = (U \cap A) \cap V \in G \). Therefore, \(x \in \Psi(U \cap A) \) and \(\Psi(U) = \Psi(U \cap A) \).

\[\square \]

Proposition 2.16. For any subset \(A \) of a space \((X, \tau, G)\), the following are equivalent:

1. \(A \) is \(G \)-preopen;
2. there is a \(G \)-regular open set \(U \) of \(X \) such that \(A \subset U \) and \(\Psi(A) = \Psi(U) \);
3. \(A \) is the intersection of \(G \)-regular open set and a \(G \)-dense set;
4. \(A \) is the intersection of an open set and a \(G \)-dense set.

Proof. (1) \(\Rightarrow \) (2): Let \(A \) be \(G \)-preopen in \((X, \tau, G)\), i.e. \(A \subset Int(\Psi(A)) \). Let \(U = Int(\Psi(A)) \). Then \(U \) is \(G \)-regular open such that \(A \subset U \) and \(\Psi(A) \subset \Psi(U) = \Psi(\Phi(A)) \subset \Psi(\Psi(A)) = \Psi(A) \). Hence \(\Psi(A) = \Psi(U) \).

(2) \(\Rightarrow \) (3): Suppose (2) holds. Let \(D = A \cup (X - U) \). Then \(D \) is a \(G \)-dense set. In fact \(\Psi(D) = \Psi(A \cup (X - U)) = \Psi(A) \cup \Psi(X - U) = \Psi(U) \cup \Psi(X - U) = \Psi(U \cup (X - U)) = \Psi(X) = X \). Therefore, \(A = D \cap G \), \(D \) is a \(G \)-dense set and \(U \) is a \(G \)-regular open set.

(3) \(\Rightarrow \) (4): Every \(G \)-regular open set is open.

(4) \(\Rightarrow \) (1): Suppose \(A = U \cap D \) with \(U \) and \(D \) \(G \)-dense. Then \(\Psi(A) = \Psi(U) \) since \(A = U \cap D \), \(\Psi(A) = \Psi(U \cap D) = \Psi(U) \). Hence \(A \subset U \subset \Psi(U) = \Psi(A) \), that is, \(A \subset Int(\Psi(A)) \).

\[\square \]

Proposition 2.17. If \(A \) is both regular open and \(G \)-preopen set in \((X, \tau, G)\), then it is \(G \)-regular open.

Proof. \(A \subset Int(\Psi(A)) = Int(A \cup \Phi(A)) \subset Int(Cl(A)) = A \).

\[\square \]

Remark 2.4. It should be noted that open sets and \(g \)-sets are independent and regular open sets and \(G \)-regular open sets are also independent. Every \(G \)-regular open set is open. Regular openness implies openness and \(G \)-regular open sets imply \(g \)-sets.
3. Decomposition of continuity

Definition 3.1. A function \(f : (X, \tau) \to (Y, \sigma) \) is said to be \(B \)-continuous [4] if for each open set \(V \) in \(Y \), \(f^{-1}(V) \) is a \(B \)-set in \(X \).

Definition 3.2. A function \(f : (X, \tau, G) \to (Y, \sigma) \) is said to be \(G \)-continuous (resp. \(G \Phi \)-continuous, \(\Phi \)-continuous, \(G \)-precontinuous) if for each open set \(V \) in \(Y \), \(f^{-1}(V) \) is a \(G \)-set (resp. \(G \Phi \)-set, \(\Phi \)-open, \(G \)-preopen) in \((X, \tau, G) \), respectively.

Proposition 3.1. i) A \(B \)-continuous function is \(G \)-continuous.

ii) A \(G \)-continuous function is \(G \Phi \)-continuous.

Example 3.1. Let \(X = \{a, b, c\} \) and \(\tau = \{\emptyset, X, \{a\}, \{b, c\}\} \). If \(G = \{\{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X\} \), then \(G \) is a grill on \(X \) such that \(\tau - \{\emptyset\} \subseteq G \) [2]. Let \(Y = \{a, b\} \) with topology \(\sigma = \{\emptyset, Y, \{a\}\} \). Define a function \(f(a) = f(c) = a \) and \(f(b) = b \). Then \(f \) is \(G \)-continuous, but it is neither \(B \)-continuous nor \(G \)-precontinuous.

Remark 3.1. \(G \)-precontinuous and \(G \)-continuous are independent from each other as in the following example:

Example 3.2. Let \(X = \{a, b, c\} \) and \(\tau = \{\emptyset, X, \{a\}, \{b, c\}\} \). If \(G = \{\{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X\} \), then \(G \) is a grill on \(X \) such that \(\tau - \{\emptyset\} \subseteq G \) [2]. Let \(Y = \{a, b\} \) with topology \(\sigma = \{\emptyset, Y, \{a\}\} \). Define a function \(f(a) = f(b) = a \) and \(f(c) = b \). Then \(f \) is \(G \)-precontinuous, but it is not \(G \)-continuous. In Example 3.1, \(f \) is \(G \)-continuous, but it is not \(G \)-precontinuous.

We have the following decomposition of continuity inspired by Proposition 2.13.

Proposition 3.2. A function \(f : (X, \tau, G) \to (Y, \sigma) \) is continuous if and only if it is both \(G \)-precontinuous and \(G \)-continuous.

Proof. It follows from Proposition 2.13.

Proposition 3.3. If a function \(f : (X, \tau, G) \to (Y, \sigma) \) is both \(\Phi \)-continuous and \(G \Phi \)-continuous, then \(f \) is continuous.

Proof. It follows from Corollary 2.1.

REFERENCES

Selcuk University
Education Faculty
42090, Meram-Konya, TURKEY
E-mail address: hatir10@yahoo.com

Copenhagen University
Department of Economics
Oester Farimagsgade 5, Building 26
1333 Copenhagen K, DENMARK
E-mail address: jafari@stofsmet.dk