ON A FINER TOPOLOGICAL SPACE THAN τ_θ
AND SOME MAPS

E. Ekici, S. Jafari and R. M. Latif
February 11, 2009

Abstract

In 1943, Fomin [7] introduced the notion of θ-continuity. In 1966, the notions of θ-open subsets, θ-closed subsets and θ-closure were introduced by Veličko [18] for the purpose of studying the important class of H-closed spaces in terms of arbitrary filterbases. He also showed that the collection of θ-open sets in a topological space (X, τ) forms a topology on X denoted by τ_θ (see also [12]). Dickman and Porter [4], [5], Joseph [11] continued the work of Veličko. Noiri and Jafari [15], Caldas et al. [1] and [2], Steiner [16] and Cao et al [3] have also obtained several new and interesting results related to these sets.

In this paper, we will offer a finer topology on X than τ_θ by utilizing the new notions of ω_θ-open and ω_θ-closed sets. We will also discuss some of the fundamental properties of such sets and some related maps. Key words and phrases: Topological spaces, θ-open sets, θ-closed sets, ω_θ-open sets, ω_θ-closed sets, anti locally countable, ω_θ-continuity. 2000 Mathematics Subject Classification: 54B05, 54C08; Secondary: 54D05.

1 Introduction

In 1982, Hdeib [8] introduced the notion of ω-closedness by which he introduced and investigated the notion of ω-continuity. In 1943, Fomin [7] introduced the notion of θ-continuity. In 1966, the notions of θ-open subsets, θ-closed subsets and θ-closure were introduced by Veličko [18] for the purpose of studying the important class of H-closed spaces in terms of arbitrary filterbases. He also showed that the collection of θ-open sets in a topological space (X, τ) forms a topology on X denoted by τ_θ (see also [12]). Dickman and Porter [4], [5], Joseph [11] continued the work of Veličko. Noiri and Jafari [15], Caldas et al. [1] and [2], Steiner [16] and Cao et al [3]
have also obtained several new and interesting results related to these sets. In this paper, we will offer a finer topology on X than τ_θ by utilizing the new notions of ω_θ-open and ω_θ-closed sets. We will also discuss some of the fundamental properties of such sets and some related maps.

Throughout this paper, by a space we will always mean a topological space. For a subset A of a space X, the closure and the interior of A will be denoted by $cl(A)$ and $int(A)$, respectively. A subset A of a space X is said to be α-open [14] (resp. preopen [13], regular open [17], regular closed [17]) if $A \subseteq int(cl(A))$ (resp. $A \subseteq int(cl(A))$, $A = int(cl(A))$, $A = cl(int(A))$)

A point $x \in X$ is said to be in the θ-closure [18] of a subset A of X, denoted by $\theta-cl(A)$, if $cl(U) \cap A \neq \emptyset$ for each open set U of X containing x. A subset A of a space X is called θ-closed if $A = \theta-cl(A)$. The complement of a θ-closed set is called θ-open. The θ-interior of a subset A of X is the union of all open sets of X whose closures are contained in A and is denoted by $\theta-int(A)$. Recall that a point p is a condensation point of A if every open set containing p must contain uncountably many points of A. A subset A of a space X is ω-closed [8] if it contains all of its condensation points. The complement of an ω-closed subset is called ω-open. It was shown that the collection of all ω-open subsets forms a topology that is finer than the original topology on X. The union of all ω-open sets of X contained in a subset A is called the ω-interior of A and is denoted by $\omega-int(A)$.

The family of all ω-open (resp. θ-open, α-open) subsets of a space (X, τ) is denoted by $\omega O(X)$ (resp, $\tau_\theta = \theta O(X)$, $\alpha O(X)$).

A function $f : X \to Y$ is said to be ω-continuous [9] (resp. θ-continuous [7]) if $f^{-1}(V)$ is ω-open (resp. θ-open) in X for every open subset V of Y. A function $f : X \to Y$ is called weakly ω-continuous [6] if for each $x \in X$ and each open subset V in Y containing $f(x)$, there exists an ω-open subset U in X containing x such that $f(U) \subseteq cl(V)$.

2 A finer topology than τ_θ

Definition 1 A subset A of a space (X, τ) is called ω_θ-open if for every $x \in A$, there exists an open subset $B \subseteq X$ containing x such that $B \setminus \theta-int(A)$ is countable. The complement of an ω_θ-open subset is called ω_θ-closed.

The family of all ω_θ-open subsets of a space (X, τ) is denoted by $\omega_\theta O(X)$.

Theorem 2 $(X, \omega_\theta O(X))$ is a topological space for a topological space (X, τ).

2
Example 5 (1) Let \(\omega \) be a countable subset of a space \(X \) and \(x \in A \cap B \). There exists an open set \(U \supseteq X \) containing \(x \) such that \(U' \cap \text{cl}(A) \) and \(V' \cap \text{cl}(B) \) are countable. Then \((U' \cap C) \cap \text{cl}(A) \cap \text{cl}(B) \) is countable. Hence, \(A \cap B \in \omega O(X) \). Let \(\{ A_i : i \in I \} \) be a family of \(\omega \)-open subsets of \(X \) and \(x \in \bigcup_{i \in I} A_i \). Then \(x \in A_j \) for some \(j \in I \). This implies that there exists an open subset \(B \) of \(X \) containing \(x \) such that \(B' \cap \text{cl}(A_j) \) is countable. Since \(B' \cap \text{cl}((\bigcup_{i \in I} A_i)) \supset \bigcup_{i \in I} B' \cap \text{cl}(A_i) \), then \(B' \cap \text{cl}(\bigcup_{i \in I} A_i) \) is countable. Hence, \(\bigcup_{i \in I} A_i \in \omega O(X) \).

Theorem 3 Let \(A \) be a subset of a space \((X, \tau) \). Then \(A \) is \(\omega \)-open if and only if for every \(x \in A \), there exists an open subset \(U \) containing \(x \) and a countable subset \(V \) such that \(U \cap V \subseteq \text{cl}(A) \).

Proof. Let \(A \in \omega O(X) \) and \(x \in A \). Then there exists an open subset \(U \) containing \(x \) such that \(U' \subseteq \text{cl}(A) \) is countable. Take \(V = U' \cap \text{cl}(A) = U \cap (X' \cap \text{cl}(A)) \). Thus, \(U' \subseteq \text{cl}(A) \).

Conversely, let \(x \in A \). There exists an open subset \(U \) containing \(x \) and a countable subset \(V \) such that \(U' \subseteq \text{cl}(A) \). Hence, \(U' \subseteq \text{cl}(A) \) is countable.

Remark 4 The following diagram holds for a subset \(A \) of a space \(X \):

\[
\begin{array}{ccc}
\text{\(\omega \)-open} & \longrightarrow & \text{\(\omega \)-open} \\
\uparrow & & \uparrow \\
\text{\(\theta \)-open} & \longrightarrow & \text{open}
\end{array}
\]

The following examples show that these implications are not reversible.

Example 5 (2) Let \(R \) be the real line with the topology \(\tau = \{ \emptyset, R, R' \} \). Then the set \(R \setminus (0, 1) \) is open but it is not \(\omega \)-open.

Example 6 Let \(X = \{ a, b, c, d \} \) and \(\tau = \{ X, \emptyset, \{ a \}, \{ c \}, \{ a, b \}, \{ a, c \}, \{ a, b, c \}, \{ a, c, d \} \} \). Then the set \(A = \{ a, b, d \} \) is \(\omega \)-open but it is not open.

Example 7 Let \(A \) be an \(\omega \)-closed subset of a space \(X \). Then \(\text{cl}(A) \subseteq K \cup V \) for a closed subset \(K \) and a countable subset \(V \).
Proof. Since \(A \) is \(\omega_\theta \)-closed, then \(X \setminus A \) is \(\omega_\theta \)-open. For every \(x \in X \setminus A \), there exists an open set \(U \) containing \(x \) and a countable set \(V \) such that \(U \setminus V \subset \theta\text{-int}(X \setminus A) = X \setminus \theta\text{-cl}(A) \). Hence, \(\theta\text{-cl}(A) \subset X \setminus (U \setminus V) = X \cap ((X \setminus U) \cup V) = (X \setminus U) \cup V \). Take \(K = X \setminus U \). Thus, \(K \) is closed and \(\theta\text{-cl}(A) \subset K \cup V \).

Definition 8 The intersection of all \(\omega_\theta \)-closed sets of \(X \) containing a subset \(A \) is called the \(\omega_\theta \)-closure of \(A \) and is denoted by \(\omega_\theta\text{-cl}(A) \).

Lemma 9 Let \(A \) be a subset of a space \(X \). Then

1. \(\omega_\theta\text{-cl}(A) \) is \(\omega_\theta \)-closed in \(X \).
2. \(\omega_\theta\text{-cl}(X \setminus A) = X \setminus \omega_\theta\text{-int}(A) \).
3. \(x \in \omega_\theta\text{-cl}(A) \) if and only if \(A \cap G \neq \emptyset \) for each \(\omega_\theta \)-open set \(G \) containing \(x \).
4. \(A \) is \(\omega_\theta \)-closed in \(X \) if and only if \(A = \omega_\theta\text{-cl}(A) \).

Definition 10 A subset \(A \) of a topological space \((X, \tau) \) is said to be an \((\omega_\theta, \omega)\)-set if \(\omega_\theta\text{-int}(A) = \omega\text{-int}(A) \).

Definition 11 A subset \(A \) of a topological space \((X, \tau) \) is said to be an \((\omega_\theta, \theta)\)-set if \(\omega_\theta\text{-int}(A) = \theta\text{-int}(A) \).

Remark 12 Every \(\omega_\theta \)-open set is an \((\omega_\theta, \omega)\)-set and every \(\theta \)-open set is an \((\omega_\theta, \theta)\)-set but not conversely.

Example 13 (1) Let \(\mathbb{R} \) be the real line with the topology \(\tau = \{\emptyset, \mathbb{R}, Q'\} \) where \(Q' \) is the set of irrational numbers. Then the natural number set \(N \) is an \((\omega_\theta, \omega)\)-set but it is not \(\omega_\theta \)-open.

(2) Let \(\mathbb{R} \) be the real line with the topology \(\tau = \{\emptyset, \mathbb{R}, (2, 3)\} \). Then the set \(A = (1, \frac{5}{2}) \) is an \((\omega_\theta, \theta)\)-set but it is not \(\theta \)-open.

Theorem 14 Let \(A \) be a subset of a space \(X \). Then \(A \) is \(\omega_\theta \)-open if and only if \(A \) is \(\omega \)-open and an \((\omega_\theta, \omega)\)-set.

Proof. Since every \(\omega_\theta \)-open is \(\omega \)-open and an \((\omega_\theta, \omega)\)-set, it is obvious.

Conversely, let \(A \) be an \(\omega \)-open and \((\omega_\theta, \omega)\)-set. Then \(A = \omega\text{-int}(A) = \omega_\theta\text{-int}(A) \). Thus, \(A \) is \(\omega_\theta \)-open.
Theorem 15 Let A be a subset of a space X. Then A is θ-open if and only if A is ω_θ-open and an (ω_θ, θ)-set.

Proof. Necessity. It follows from the fact that every θ-open set is ω_θ-open and an (ω_θ, θ)-set.

Sufficiency. Let A be an ω_θ-open and (ω_θ, θ)-set. Then $A = \omega_\theta$-$\text{int}(A) = \theta$-$\text{int}(A)$. Thus, A is θ-open. □

Recall that a space X is called locally countable if each $x \in X$ has a countable neighborhood.

Theorem 16 Let (X, τ) be a locally countable space and $A \subset X$.

(1) $\omega_\theta O(X)$ is the discrete topology.

(2) A is ω_θ-open if and only if A is ω-open.

Proof. (1) : Let $A \subset X$ and $x \in A$. Then there exists a countable neighborhood B of x and there exists an open set U containing x such that $U \subset B$. We have $U \setminus \theta$-$\text{int}(A) \subset B \setminus \theta$-$\text{int}(A) \subset B$. Thus $U \setminus \theta$-$\text{int}(A)$ is countable and A is ω_θ-open. Hence, $\omega_\theta O(X)$ is the discrete topology.

(2) : Necessity. It follows from the fact that every ω_θ-open set is ω-open.

Sufficiency. Let A be an ω-open subset of X. Since X is a locally countable space, then A is ω_θ-open. □

Corollary 17 If (X, τ) is a countable space, then $\omega_\theta O(X)$ is the discrete topology.

A space X is called anti locally countable if nonempty open subsets are uncountable. As an example, observe that in Example 5 (1), the topological space (R, τ) is anti locally countable.

Theorem 18 Let (X, τ) be a topological space and $A \subset X$. The following hold:

(1) If X is an anti locally countable space, then $(X, \omega_\theta O(X))$ is anti locally countable.

(2) If X is anti locally countable regular space and A is θ-open, then θ-$\text{cl}(A) = \omega_\theta$-$\text{cl}(A)$.

Proof. (1) : Let $A \in \omega_\theta O(X)$ and $x \in A$. There exists an open subset $U \subset X$ containing x and a countable set V such that $U \setminus V \subset \theta$-$\text{int}(A)$. Thus, θ-$\text{int}(A)$ is uncountable and A is uncountable.
(2): It is obvious that ω_θ-cl$(A) \subset \theta$-cl(A).

Let $x \in \theta$-cl(A) and B be an ω_θ-open subset containing x. There exists an open subset V containing x and a countable set U such that $V \setminus U \subset \theta$-int$(B)$. Then $(V \setminus U) \cap A \subset \theta$-int$(B) \cap A$ and $(V \cap A) \setminus U \subset \theta$-int$(B) \cap A$. Since X is regular, $x \in V$ and $x \in \theta$-cl(A), then $V \cap A \neq \emptyset$. Since X is regular and V and A are ω_θ-open, then $V \cap A$ is ω_θ-open. This implies that $V \cap A$ is uncountable and hence $(V \cap A) \setminus U$ is uncountable. Since $B \cap A$ contains the uncountable set θ-int$(B) \cap A$, then $B \cap A$ is uncountable. Thus, $B \cap A \neq \emptyset$ and $x \in \omega_\theta$-cl(A). □

Corollary 19 Let (X, τ) be an anti locally countable regular space and $A \subset X$. The following hold:

1. If A is θ-closed, then θ-int$(A) = \omega_\theta$-int(A).
2. The family of (ω_θ, θ)-sets contains all θ-closed subsets of X.

Theorem 20 If X is a Lindelof space, then $A \setminus \theta$-int(A) is countable for every closed subset $A \in \omega_\theta O(X)$.

Proof. Let $A \in \omega_\theta O(X)$ be a closed set. For every $x \in A$, there exists an open set U_x containing x such that $U_x \setminus \theta$-int(A) is countable. Thus, \{U$_x$: $x \in A$\} is an open cover for A. Since A is Lindelof, it has a countable subcover \{U$_n$: $n \in N$\}. Since $A \setminus \theta$-int$(A) = \cup_{n \in N}(U_n \setminus \theta$-int$(A))$, then $A \setminus \theta$-int(A) is countable. □

Theorem 21 If A is ω_θ-open subset of (X, τ), then $\omega_\theta O(X)|_A \subset \omega_\theta O(A)$.

Proof. Let $G \in \omega_\theta O(X)|_A$. We have $G = V \cap A$ for some ω_θ-open subset V. Then for every $x \in G$, there exist $U, W \in \tau$ containing x and countable sets K and L such that $U \setminus K \subset \theta$-int$(V)$ and $W \setminus L \subset \theta$-int$(A)$. We have $x \in A \cap (U \cap W) \in \tau|_A$. Thus, $K \cup L$ is countable and $A \cap (U \cap W) \setminus (K \cup L) \subset (U \cap W) \setminus (X \setminus K) \cap (X \setminus L) = (U \setminus K) \cap (W \setminus L) \subset \theta$-int$(V) \cap \theta$-int$(A) \cap A = \theta$-int$(V \cap A) \cap A = \theta$-int$(G) \cap A \subset \theta$-int$_A(G)$. Hence, $G \in \omega_\theta O(A)$. □

3 Continuities via ω_θ-open sets

Definition 22 A function $f : X \to Y$ is said to be ω_θ-continuous if for every $x \in X$ and every open subset V in Y containing $f(x)$, there exists an ω_θ-open subset U in X containing x such that $f(U) \subset V$.

Theorem 23 For a function $f : X \to Y$, the following are equivalent:

1. f is ω_θ-continuous.
2. $f^{-1}(A)$ is ω_θ-open in X for every open subset A of Y.
3. $f^{-1}(K)$ is ω_θ-closed in X for every closed subset K of Y.

Proof. (1) \Rightarrow (2) : Let A be an open subset of Y and $x \in f^{-1}(A)$. By (1), there exists an ω_θ-open set B in X containing x such that $B \subset f^{-1}(A)$. Hence, $f^{-1}(A)$ is ω_θ-open.

(2) \Rightarrow (1) : Let A be an open subset in Y containing $f(x)$. By (2), $f^{-1}(A)$ is ω_θ-open. Take $B = f^{-1}(A)$. Hence, f is ω_θ-continuous.

(2) \Leftrightarrow (3) : Let K be a closed subset of Y. By (2), $f^{-1}(Y \setminus K) = X \setminus f^{-1}(K)$ is ω_θ-open. Hence, $f^{-1}(K)$ is ω_θ-closed.

Theorem 24 The following are equivalent for a function $f : X \to Y$:

1. f is ω_θ-continuous.
2. $f : (X, \omega_\theta O(X)) \to (Y, \sigma)$ is continuous.

Definition 25 A function $f : X \to Y$ is called weakly ω_θ-continuous at $x \in X$ if for every open subset V in Y containing $f(x)$, there exists an ω_θ-open subset U in X containing x such that $f(U) \subset \text{cl}(V)$. If f is weakly ω_θ-continuous at every $x \in X$, it is said to be weakly ω_θ-continuous.

Remark 26 The following diagram holds for a function $f : X \to Y$:

$$
\begin{array}{ccc}
\text{weakly } \omega_\theta\text{-continuous} & \longrightarrow & \text{weakly } \omega\text{-continuous} \\
\uparrow & & \uparrow \\
\omega_\theta\text{-continuous} & \longrightarrow & \omega\text{-continuous} \\
\uparrow & & \uparrow \\
\theta\text{-continuous} & \longrightarrow & \text{continuous}
\end{array}
$$

The following examples show that these implications are not reversible.

Example 27 Let R be the real line with the topology $\tau = \{\emptyset, R, (2,3)\}$. Let $Y = \{a, b, c\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{c\}, \{a, c\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ as follows: $f(x) = \begin{cases} a & \text{if } x \in (0,1) \\ b & \text{if } x \notin (0,1) \end{cases}$. Then f is weakly ω_θ-continuous but it is not ω_θ-continuous.
Example 28 Let R be the real line with the topology $\tau = \{\emptyset, R, Q'\}$ where Q' is the set of irrational numbers. Let $Y = \{a, b, c, d\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, c, d\}\}$. Define a function $f : (R, \tau) \to (Y, \sigma)$ as follows: $f(x) = \begin{cases} a & \text{if } x \in Q' \cup \{1\} \\ b & \text{if } x \notin Q' \cup \{1\}. \end{cases}$ Then f is ω-continuous but it is not weakly $\omega\theta$-continuous.

Example 29 Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ as follows: $f(a) = a$, $f(b) = a$, $f(c) = c$, $f(d) = a$. Then f is $\omega\theta$-continuous but it is not θ-continuous.

For the other implications, the contra examples are as shown in [6, 9].

Definition 30 A function $f : X \to Y$ is said to be $(\omega\theta, \omega)$-continuous if $f^{-1}(A)$ is an $(\omega\theta, \omega)$-set for every open subset A of Y.

Definition 31 A function $f : X \to Y$ is said to be $(\omega\theta, \theta)$-continuous if $f^{-1}(A)$ is an $(\omega\theta, \theta)$-set for every open subset A of Y.

Remark 32 Every θ-continuous function is $(\omega\theta, \theta)$-continuous and every $\omega\theta$-continuous function is $(\omega\theta, \omega)$-continuous but not conversely.

Example 33 Let R be the real line with the topology $\tau = \{\emptyset, R, Q'\}$ where Q' is the set of irrational numbers. Define a function $f : (R, \tau) \to (R, \tau)$ as follows: $f(x) = \begin{cases} \pi & \text{if } x \in N \\ 1 & \text{if } x \notin N. \end{cases}$ Then f is $(\omega\theta, \omega)$-continuous but it is not $\omega\theta$-continuous.

Example 34 Let R be the real line with the topology $\tau = \{\emptyset, R, (2, 3)\}$. Let $A = (1, \frac{3}{2})$ and $\sigma = \{R, \emptyset, A, R\setminus A\}$. Define a function $f : (R, \tau) \to (R, \sigma)$ as follows: $f(x) = \begin{cases} \frac{5}{4} & \text{if } x \in (1, 2) \\ 4 & \text{if } x \notin (1, 2). \end{cases}$ Then f is $(\omega\theta, \theta)$-continuous but it is not θ-continuous.

Definition 35 A function $f : X \to Y$ is coweakly $\omega\theta$-continuous if for every open subset A in Y, $f^{-1}(fr(A))$ is $\omega\theta$-closed in X, where $fr(A) = cl(A)\setminus int(A)$.
Theorem 36 Let \(f : X \to Y \) be a function. The following are equivalent:

1. \(f \) is \(\omega_\theta \)-continuous,
2. \(f \) is \(\omega \)-continuous and \((\omega_\theta, \omega)\)-continuous,
3. \(f \) is weakly \(\omega_\theta \)-continuous and coweakly \(\omega_\theta \)-continuous.

Proof. (1) \(\Leftrightarrow \) (2): It is an immediate consequence of Theorem 14.

(1) \(\Rightarrow \) (3): Let \(f \) be weakly \(\omega_\theta \)-continuous and coweakly \(\omega_\theta \)-continuous. Let \(x \in X \) and \(V \) be an open subset of \(Y \) such that \(f(x) \in V \). Since \(f \) is weakly \(\omega_\theta \)-continuous, then there exists an \(\omega_\theta \)-open subset \(U \) of \(X \) containing \(x \) such that \(f(U) \subset cl(V) \). We have \(fr(V) = cl(V) \setminus V \) and \(f(x) \notin fr(V) \). Since \(f \) is coweakly \(\omega_\theta \)-continuous, then \(x \in U \setminus f^{-1}(fr(V)) \) is \(\omega_\theta \)-open in \(X \). For every \(y \in f(U \setminus f^{-1}(fr(V))) \), \(y = f(x_1) \) for a point \(x_1 \in U \setminus f^{-1}(fr(V)) \). We have \(f(x_1) = y \in f(U) \subset cl(V) \) and \(y \notin fr(V) \). Hence, \(f(x_1) = y \notin fr(V) \) and \(f(x_1) \in V \). Thus, \(f(U \setminus f^{-1}(fr(V))) \subset V \) and \(f \) is \(\omega_\theta \)-continuous. \(\blacksquare \)

Theorem 37 The following are equivalent for a function \(f : X \to Y \):

1. \(f \) is \(\theta \)-continuous,
2. \(f \) is \(\omega_\theta \)-continuous and \((\omega_\theta, \theta)\)-continuous.

Proof. It is an immediate consequence of Theorem 15. \(\blacksquare \)

Theorem 38 Let \(f : X \to Y \) be a function. The following are equivalent:

1. \(f \) is weakly \(\omega_\theta \)-continuous,
2. \(\omega_\theta \)-cl\((f^{-1}(int(cl(K)))) \subset f^{-1}(cl(K)) \) for every subset \(K \) of \(Y \),
3. \(\omega_\theta \)-cl\((f^{-1}(int(A))) \subset f^{-1}(A) \) for every regular closed set \(A \) of \(Y \),
4. \(\omega_\theta \)-cl\((f^{-1}(A)) \subset f^{-1}(cl(A)) \) for every open set \(A \) of \(Y \),
5. \(f^{-1}(A) \subset \omega_\theta \)-int\((f^{-1}(cl(A))) \) for every open set \(A \) of \(Y \),
6. \(\omega_\theta \)-cl\((f^{-1}(A)) \subset f^{-1}(cl(A)) \) for each preopen set \(A \) of \(Y \),
7. \(f^{-1}(A) \subset \omega_\theta \)-int\((f^{-1}(cl(A))) \) for each preopen set \(A \) of \(Y \).

Proof. (1) \(\Rightarrow \) (2): Let \(K \subset Y \) and \(x \in X \setminus f^{-1}(cl(K)) \). Then \(f(x) \in Y \setminus cl(K) \). This implies that there exists an open set \(A \) containing \(f(x) \) such that \(A \cap K = \emptyset \). We have, \(cl(A) \cap int(cl(K)) = \emptyset \). Since \(f \) is weakly \(\omega_\theta \)-continuous, then there exists an \(\omega_\theta \)-open set \(B \) containing \(x \) such that \(f(B) \subset cl(A) \). We have \(B \cap f^{-1}(int(cl(K))) = \emptyset \). Thus, \(x \in X \setminus \omega_\theta \)-cl\((f^{-1}(int(cl(K)))) \) and \(\omega_\theta \)-cl\((f^{-1}(int(cl(K)))) \subset f^{-1}(cl(K)) \).

(2) \(\Rightarrow \) (3): Let \(A \) be any regular closed set in \(Y \). Thus, \(\omega_\theta \)-cl\((f^{-1}(int(A))) \) = \(\omega_\theta \)-cl\((f^{-1}(int(cl(int(A)))) \subset f^{-1}(cl(int(A))) = f^{-1}(A) \).
Thus \(x \in \text{cl}(A) \) and hence \(f(B) \subset \text{cl}(A) \). We have \(f(B) \cap A = \emptyset \) and hence \(B \cap f^{-1}(A) = \emptyset \). Thus, \(x \in X \setminus \omega\text{-cl}(f^{-1}(A)) \) and \(\omega\text{-cl}(f^{-1}(A)) \subset f^{-1}(\text{cl}(A)) \).

(6) \(\Rightarrow \) (7) : Let \(A \) be any preopen set of \(Y \). Since \(Y \setminus \text{cl}(A) \) is open in \(Y \), then \(X \setminus \omega\text{-int}(f^{-1}(\text{cl}(A))) = \omega\text{-cl}(f^{-1}(Y \setminus \text{cl}(A))) \subset f^{-1}(\text{cl}(Y \setminus \text{cl}(A))) \subset X \setminus f^{-1}(A) \). Hence, \(f^{-1}(A) \subset \omega\text{-int}(f^{-1}(\text{cl}(A))) \).

(7) \(\Rightarrow \) (1) : Let \(x \in X \) and \(A \) any open set of \(Y \) containing \(f(x) \). Then \(x \in f^{-1}(A) \subset \omega\text{-int}(f^{-1}(\text{cl}(A))) \). Take \(B = \omega\text{-int}(f^{-1}(\text{cl}(A))) \). Then \(f(B) \subset \text{cl}(A) \). Thus, \(f \) is weakly \(\omega\text{-continuous} \) at \(x \in X \).

Theorem 39 The following properties are equivalent for a function \(f : X \to Y \):

1. \(f : X \to Y \) is weakly \(\omega \)-continuous at \(x \in X \).
2. \(x \in \omega\text{-int}(f^{-1}(\text{cl}(A))) \) for each neighborhood \(A \) of \(f(x) \).

Proof. (1) \(\Rightarrow \) (2) : Let \(A \) be any neighborhood of \(f(x) \). There exists an \(\omega\text{-open} \) set \(B \) containing \(x \) such that \(f(B) \subset \text{cl}(A) \). Since \(B \subset f^{-1}(\text{cl}(A)) \) and \(B \) is \(\omega \)-open, then \(x \in B \subset \omega\text{-int}(f^{-1}(\text{cl}(A))) \subset \omega\text{-int}(f^{-1}(\text{cl}(A))) \).

(2) \(\Rightarrow \) (1) : Let \(x \in \omega\text{-int}(f^{-1}(\text{cl}(A))) \) for each neighborhood \(A \) of \(f(x) \). Take \(U = \omega\text{-int}(f^{-1}(\text{cl}(A))) \). Thus, \(f(U) \subset \text{cl}(A) \) and \(U \) is \(\omega \)-open. Hence, \(f \) is weakly \(\omega \)-continuous at \(x \in X \).

Theorem 40 Let \(f : X \to Y \) be a function. The following are equivalent:

1. \(f \) is weakly \(\omega \)-continuous.
2. \(f(\omega\text{-cl}(K)) \subset \theta\text{-cl}(f(K)) \) for each subset \(K \) of \(X \),
3. \(\omega\text{-cl}(f^{-1}(A)) \subset f^{-1}(\theta\text{-cl}(A)) \) for each subset \(A \) of \(Y \),
4. \(\omega\text{-cl}(f^{-1}(\text{int}(\theta\text{-cl}(A)))) \subset f^{-1}(\theta\text{-cl}(A)) \) for every subset \(A \) of \(Y \).
Theorem 43 If $f : X \to Y$ is a weakly ω-continuous surjection and X is ω-connected, then Y is connected.
Proof. Suppose that Y is not connected. There exist nonempty open sets U and V of Y such that $Y = U \cup V$ and $U \cap V = \emptyset$. This implies that U and V are clopen in Y. By Theorem 38, $f^{-1}(U) \subset \omega_{\theta}\text{-int}(f^{-1}(cl(U))) = \omega_{\theta}\text{-int}(f^{-1}(U))$. Hence $f^{-1}(U)$ is ω_{θ}-open in X. Similarly, $f^{-1}(V)$ is ω_{θ}-open in X. Hence, $f^{-1}(U) \cap f^{-1}(V) = \emptyset$, $X = f^{-1}(U) \cup f^{-1}(V)$ and $f^{-1}(U)$ and $f^{-1}(V)$ are nonempty. Thus, X is not ω_{θ}-connected.

References

Addresses:

Erdal Ekici
Department of Mathematics
Canakkale Onsekiz Mart University
Terzioglu Campus,
17020 Canakkale, TURKEY
E-mail: eekici@comu.edu.tr

Saeid Jafari
College of Vestsjaelland South
Herrestraede 11,
4200 Slagelse, DENMARK
E-mail: jafari@stofanet.dk

Raja Mohammad Latif
Department of Mathematics and Statistics
King Fahd University of Petroleum and Minerals
Dhahran 31261 SAUDI ARABIA
E-mail: raja@kfupm.edu.sa