ON FUZZY UPPER AND LOWER CONTRA-CONTINUOUS MULTIFUNCTIONS

M. Alimohammady, E. Ekici, S. Jafari and M. Roohi

February 18, 2009

Abstract

This paper is devoted to the concepts of fuzzy upper and fuzzy lower contra-continuous multifunctions and also some characterizations of them are considered.

2000 Mathematics Subject Classifications: 03E72, 54A40, 54C60.

Keywords: fuzzy topological space, fuzzy multifunctions, fuzzy lower contra-continuous multifunction, fuzzy upper contra-continuous multifunction.

1 Introduction

In the last three decades, the theory of multifunctions has advanced in a variety of ways and applications of this theory can be found, specially in functional analysis and fixed point theory [5, 23, 24] etc. The initiation of fuzzy multifunctions is due to Papageorgiou [20]. He studied upper and lower semi-continuous multifunctions. Mukherjee and Malakar [15] have studied fuzzy multifunctions with q-coincidence. Recently many authors for example Albrycht and Maltoka, Nouh and El-Shafei [1, 17] and Beg [3, 4] have studied fuzzy multifunctions and have characterized, some properties of fuzzy multifunctions defined on a fuzzy topological space. Several authors have studied different types of fuzzy continuity for fuzzy multifunctions, for example see [2, 9, 20, 21] and also for more details on fuzzy multifunctions one can see [4]. On the other hand, Dontchev [8] introduced the notion of contra-continuous functions. It is shown in [8] that contra-continuous images of strongly S-closed spaces are compact. Joseph and Kwack [14] introduced another form of contra-continuity called \((\theta, s)\)-continuous functions in order to investigate S-closed spaces due to Thompson [25]. In recent years, several authors have studied some new forms of contra-continuity for functions and multifunctions, for example see [6, 11, 12, 13, 16]. In the present paper, we study the notions of fuzzy upper and fuzzy lower contra-continuous multifunctions. Also, some characterizations and properties of such notions are discussed.
2 Preliminaries

The class of all fuzzy sets on a universe Y will be denoted by I^Y and fuzzy sets on Y will be denoted by μ, η, etc. A family τ of fuzzy sets in Y is called a fuzzy topology for Y [7] if

1. $\emptyset, Y \in \tau$.
2. $\mu \land \eta \in \tau$ whenever $\mu, \eta \in \tau$.
3. If $\mu_i \in \tau$ for each $i \in I$, then $\bigvee \mu_i \in \tau$.

The pair (Y, σ) is called a fuzzy topological space. Every member of σ is called a fuzzy open set. A fuzzy set in Y is called a fuzzy point if it takes the value 0 for all $y \in Y$ except one, say, $x \in Y$. If its value at x is ε $(0 < \varepsilon \leq 1)$, we denote this fuzzy point by x_ε, where the point x is called its support [18, 19].

For any fuzzy point x_ε and any fuzzy set μ, $x_\varepsilon \in \mu$ if and only if $\varepsilon \leq \mu(x)$. A fuzzy point x_ε is called quasi-coincident with a fuzzy set η, denoted by $x_\varepsilon \eta \eta$, if $\varepsilon + \eta(x) > 1$. A fuzzy set μ is called quasi-coincident with a fuzzy set η, denoted by $\mu \eta \eta$, if there exists a $x \in Y$ such that $\mu(x) + \eta(x) > 1$ [18, 19]. When they are not quasi-coincident, it will be denoted by $\mu \not\equiv \eta$.

Throughout this paper, (X, τ) or simply X will stand for ordinary topological space and (Y, σ) or simply Y will be denoted a fuzzy topological space.

Let X and Y be a topological space in the classical sense and a fuzzy topological space, respectively. $F : X \to Y$ is called a fuzzy multifunction [20] if for each $x \in X$, $F(x)$ is a fuzzy set in Y. Throughout the paper, by $F : X \to Y$ we will mean that F is a fuzzy multifunction from a classical topological space X to a fuzzy topological space Y. For a fuzzy multifunction $F : X \to Y$, the upper inverse $F^+(\mu)$ and lower inverse $F^-(\mu)$ of a fuzzy set μ in Y are defined as follows: $F^+(\mu) = \{x \in X : F(x) \leq \mu\}$ and $F^-(\mu) = \{x \in X : F(x) \geq \mu\}$. For any fuzzy set μ in Y, we have $F^-(1 - \mu) = X - F^+(\mu)$ [15]. We denote the interior and the closure of a subset A of a topological space X by $\text{Int}(A)$ and $\text{Cl}(A)$, respectively.

3 Fuzzy upper and lower contra-continuous multifunctions

Definition 1 A fuzzy multifunction $F : X \to Y$ is called fuzzy lower contra-continuous multifunction if for each fuzzy closed set μ in Y with $x \in F^-(\mu)$, there exists an open set B in X containing x such that $B \subset F^-(\mu)$.

Definition 2 A fuzzy multifunction $F : X \to Y$ is called fuzzy upper contra-continuous multifunction if for each fuzzy closed set μ in Y with $x \in F^+(\mu)$, there exists an open set B in X containing x such that $B \subset F^+(\mu)$.

Theorem 3 The following are equivalent for a fuzzy multifunction $F : X \to Y$:

1. F is fuzzy upper contra-continuous,
2. For each fuzzy closed set μ and $x \in X$ such that $F(x) \leq \mu$, there exists an open set B containing x such that if $y \in B$, then $F(y) \leq \mu$.
(3) $F^+(\mu)$ is open for any fuzzy closed set μ in Y,
(4) $F^-(\rho)$ is closed for any fuzzy open set ρ in Y.

Proof. (1) \iff (2): Obvious.
(1) \Rightarrow (3): Let μ be any fuzzy closed set in Y and $x \in F^+(\mu)$. By (1), there exists an open set A_x containing x such that $A_x \subseteq F^+(\mu)$. Thus, $x \in \text{Int}(F^+(\mu))$ and hence $F^+(\mu)$ is an open set in X.
(3) \Rightarrow (4): Let ρ be a fuzzy open set in Y. Then $Y \setminus \rho$ is a fuzzy closed set in Y. By (3), $F^+(Y \setminus \rho)$ is open. Since $F^+(Y \setminus \rho) = X \setminus F^-(\rho)$, then $F^-(\rho)$ is closed in X.
(4) \Rightarrow (3): It is similar to that of (3) \Rightarrow (4).
(3) \Rightarrow (1): Let ρ be any fuzzy closed set in Y and $x \in F^+(\rho)$. By (3), $F^+(\rho)$ is an open set in X. Take $A = F^+(\rho)$. Then, $A \subseteq F^+(\rho)$. Thus, F is fuzzy upper contra-continuous.

Definition 4 The set $\land \{\rho \in \tau : \mu \leq \rho\}$ is called the fuzzy kernel of a fuzzy set μ in a fuzzy topological space (X, τ) and is denoted by $\text{Ker}(\mu)$.

Lemma 5 For fuzzy set μ in a fuzzy topological space (X, τ), if $\mu \in \tau$, then $\mu = \text{Ker}(\mu)$.

Theorem 6 Let $F : (X, \tau) \rightarrow (Y, \sigma)$ be a fuzzy multifunction. If $\text{Cl}(F^-(\mu)) \leq F^-(\text{Ker}(\mu))$ for every fuzzy set μ in Y, then F is fuzzy upper contra-continuous.

Proof. Suppose that $\text{Cl}(F^-(\mu)) \leq F^-(\text{Ker}(\mu))$ for every fuzzy set μ in Y. Let $\rho \in \sigma$. By Lemma 5, $\text{Cl}(F^-(\rho)) \leq F^-(\text{Ker}(\rho)) = F^-(\rho)$. This implies that $\text{Cl}(F^-(\rho)) = F^-(\rho)$ and hence $F^-(\rho)$ is closed in X. Thus, by Theorem 3, F is fuzzy upper contra-continuous.

Definition 7 A fuzzy multifunction $F : X \rightarrow Y$ is called
(1) fuzzy lower semi-continuous [15] if for each fuzzy open set μ in Y with $x \in F^-(\mu)$, there exists an open subset B of X containing x such that $B \subseteq F^-(\mu)$.
(2) fuzzy upper semi-continuous [15] if for each fuzzy open set μ in Y with $x \in F^+(\mu)$, there exists an open subset B of X containing x such that $B \subseteq F^+(\mu)$.

Remark 8 The notions of fuzzy upper contra-continuous multifunctions and fuzzy upper semi-continuous multifunctions are independent as shown in the following examples.

Example 9 Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}\}$ and $Y = [0, 1]$, $\sigma = \{Y, \emptyset, \mu, \rho, \eta\}$, where $\mu(y) = 0.5$, $\rho(y) = 0.6$, $\eta(y) = 0.7$ for $y \in Y$. Define a fuzzy multifunction as follows: $F(a) = \mu$, $F(b) = \rho$, $F(c) = \eta$. Then the fuzzy multifunction $F : (X, \tau) \rightarrow (Y, \sigma)$ is fuzzy upper contra-continuous but it is not fuzzy upper semi-continuous.
Example 10 Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{b, c\}\}$ and $Y = [0, 1]$, $\sigma = \{Y, \emptyset, \mu, \rho, \eta\}$, where $\mu(y) = 0.3$, $\rho(y) = 0.2$, $\eta(y) = 0.6$, $\gamma(y) = 0.4$, $\zeta(y) = 0.5$ for $y \in Y$.
Define a fuzzy multifunction as follows: $F(a) = \gamma$, $F(b) = \zeta$, $F(c) = \eta$. Then the fuzzy multifunction $F : (X, \tau) \to (Y, \sigma)$ is fuzzy upper semi-continuous but it is not fuzzy upper contra-continuous.

Theorem 11 The following are equivalent for a fuzzy multifunction $F : X \to Y$:

1. F is fuzzy lower contra-continuous,
2. For each fuzzy closed set μ and $x \in X$ such that $F(x)\mu$, there exists an open set B containing x such that if $y \in B$, then $F(y)\mu$,
3. $F^{-1}(\mu)$ is open for any fuzzy closed set μ in Y,
4. $F^+(\rho)$ is closed for any fuzzy open set ρ in Y.

Proof. It is similar to that of Theorem 3.

Theorem 12 For a fuzzy multifunction $F : (X, \tau) \to (Y, \sigma)$, if $\text{Cl}(F^+(\rho)) \leq F^+(\text{Ker}(\rho))$ for every fuzzy set ρ in Y, then F is fuzzy lower contra-continuous.

Proof. Suppose that $\text{Cl}(F^+(\rho)) \leq F^+(\text{Ker}(\rho))$ for every fuzzy set ρ in Y.
Let $\rho \in \sigma$. We have $\text{Cl}(F^+(\rho)) \leq F^+(\text{Ker}(\rho)) = F^+(\rho)$. Thus, $\text{Cl}(F^+(\rho)) \leq F^+(\rho)$ and hence $F^+(\rho)$ is closed in X. By Theorem 11, F is fuzzy lower contra-continuous.

Theorem 13 If $F_i : X \to Y$ are fuzzy upper contra-continuous multifunctions for $i = 1, 2, ..., n$, then $\vee_{i=1}^n F_i$ is a fuzzy upper contra-continuous multifunction.

Proof. Let μ be a fuzzy closed set of Y. We will show that $(\vee_{i=1}^n F_i)^+(\mu) = \{x \in X : \vee_{i=1}^n F_i(x) \leq \mu\}$ is open in X. Let $x \in (\vee_{i=1}^n F_i)^+(\mu)$. Then $F_i(x) \leq \mu$ for $i = 1, 2, ..., n$. Since $F_i : X \to Y$ is fuzzy upper contra-continuous multifunction for $i = 1, 2, ..., n$, there exists an open set U_x containing x such that for all $z \in U_x$, $F_i(z) \leq \mu$. Let $U = \bigwedge_{i=1}^n U_x$. Then $U \subset (\vee_{i=1}^n F_i)^+(\mu)$. Thus, $(\vee_{i=1}^n F_i)^+(\mu)$ is open and hence $\vee_{i=1}^n F_i$ is a fuzzy upper contra-continuous multifunction.

Lemma 14 ([4]) Let $\{\mu_i\}_{i \in I}$ be a family of fuzzy sets in a fuzzy topological space X. Then a fuzzy point x is quasi-coincident with $\forall \mu_i$ if and only if there exists an $i_0 \in I$ such that $x q \mu_{i_0}$.

Theorem 15 If $F_i : X \to Y$ are fuzzy lower contra-continuous multifunctions for $i = 1, 2, ..., n$, then $\vee_{i=1}^n F_i$ is a fuzzy lower contra-continuous multifunction.

Proof. Let μ be a fuzzy closed set of Y. We will show that $(\vee_{i=1}^n F_i)^-(\mu) = \{x \in X : (\vee_{i=1}^n F_i)(x)\mu\}$ is open in X. Let $x \in (\vee_{i=1}^n F_i)^-(\mu)$. Then $(\vee_{i=1}^n F_i)(x)\mu$ and hence $F_{i_0}(x)\mu$ for an i_0. Since $F_{i_0} : X \to Y$ is fuzzy lower contra-continuous multifunction, then there exists an open set U_x containing x such
that for all \(z \in U \), \(F_{i_0}(z) \mu U \). Then \((\bigvee_{i=1}^{n} F_i)(z) \mu U \) and hence \(U \subset (\bigvee_{i=1}^{n} F_i)^{(\mu)} \). Thus, \((\bigvee_{i=1}^{n} F_i)^{(\mu)} \) is open and hence \(\bigvee_{i=1}^{n} F_i \) is a fuzzy lower contra-continuous multifunction. ■

Theorem 16 Let \(F : X \rightarrow Y \) be a fuzzy multifunction and \(\{ U_i : i \in I \} \) be an open cover for \(X \). Then the following are equivalent:

1. \(F_i = F |_{U_i} \) is a fuzzy lower contra-continuous multifunction for all \(i \in I \),
2. \(F \) is fuzzy lower contra-continuous.

Proof. (1) \(\Rightarrow \) (2): Let \(x \in X \) and \(\mu \) be a fuzzy closed set in \(Y \) with \(x \in F^{-}(\mu) \). Since \(\{ U_i : i \in I \} \) is an open cover for \(X \), then \(x \in U_{i_0} \) for an \(i_0 \in I \). We have \(F(x) = F_{i_0}(x) \) and hence \(x \in F_{i_0}^{-}(\mu) \). Since \(F |_{U_{i_0}} \) is fuzzy lower contra-continuous, then there exists an open set \(B = G \cap U_{i_0} \) in \(U_{i_0} \) such that \(x \in B \) and \(F^{-}(\mu) \cap U_{i_0} = F |_{U_{i_0}}^{-}(\mu) \cap B = G \cap U_{i_0} \), where \(G \) is open in \(X \). We have \(x \in B = G \cap U_{i_0} \subset F |_{U_{i_0}}^{-}(\mu) = F^{-}(\mu) \cap U_{i_0} \subset F^{-}(\mu) \). Hence, \(F \) is fuzzy lower contra-continuous.

(2) \(\Rightarrow \) (1): Let \(x \in X \) and \(x \in U_i \). Let \(\mu \) be a fuzzy closed set in \(Y \) with \(F_i(x) \mu U \). Since \(F \) is lower contra-continuous and \(F(x) = F_i(x) \), then there exists an open set \(U \) containing \(x \) such that \(U \subset F^{-}(\mu) \). Take \(B = U_i \cap U \). Then \(B \) is open in \(U_i \) containing \(x \). We have \(B \subset F_i^{-}(\mu) \). Thus, \(F_i \) is a fuzzy lower contra-continuous.

Theorem 17 Let \(F : X \rightarrow Y \) be a fuzzy multifunction and \(\{ U_i : i \in I \} \) be an open cover for \(X \). Then the following are equivalent:

1. \(F_i = F |_{U_i} \) is a fuzzy upper contra-continuous multifunction for all \(i \in I \),
2. \(F \) is fuzzy upper contra-continuous.

Proof. It is similar to that of Theorem 16. ■

Recall that for a multifunction \(F_1 : X \rightarrow Y \) and a fuzzy multifunction \(F_2 : Y \rightarrow Z \), the fuzzy multifunction \(F_2 \circ F_1 : X \rightarrow Z \) is defined by \((F_2 \circ F_1)(x) = F_2(F_1(x)) \) for \(x \in X \).

Definition 18 Let \(X \) and \(Y \) be topological spaces. A multifunction \(F : X \rightarrow Y \) is called

1. lower semi-continuous [21] if for each open subset \(A \subset Y \) with \(x \in F^{-}(A) \), there exists an open set \(B \) in \(X \) containing \(x \) such that \(B \subset F^{-}(A) \).
2. upper semi-continuous [21] if for each open subset \(A \subset Y \) with \(x \in F^{+}(A) \), there exists an open set \(B \) in \(X \) containing \(x \) such that \(B \subset F^{+}(A) \).

Theorem 19 If \(F_1 : X \rightarrow Y \) is an upper semi-continuous multifunction and \(F_2 : Y \rightarrow Z \) is a fuzzy upper contra-continuous multifunction, then \(F_2 \circ F_1 \) is fuzzy upper contra-continuous.
Proof. Let \(x \in X \) and \(\mu \) be a fuzzy closed set in \(Z \). We have \((F_2 \circ F_1)^+(\mu) = F_1^+(F_2^+(\mu))\). Since \(F_2 \) is fuzzy upper contra-continuous, then \(F_2^+(\mu) \) is open in \(Y \). Since \(F_1 \) is upper semi-continuous, then \(F_1^+(F_2^+(\mu)) = (F_2 \circ F_1)^+(\mu) \) is open in \(X \). Thus, \(F_2 \circ F_1 \) is fuzzy upper contra-continuous. \(\blacksquare \)

Definition 20 A fuzzy set \(\mu \) in a fuzzy topological space \(X \) is called a fuzzy \(cl \)-neighbourhood of a fuzzy point \(x \) in \(X \) if there exists a fuzzy closed set \(\rho \) in \(X \) such that \(x \in \rho \leq \mu \).

Theorem 21 If \(F : X \rightarrow Y \) is a fuzzy upper contra-continuous multifunction, then for each point \(x \) of \(X \) and each fuzzy \(cl \)-neighbourhood \(\mu \) of \(F(x) \), \(F^+(\mu) \) is a neighbourhood of \(x \).

Proof. Let \(x \in X \) and \(\mu \) be a fuzzy \(cl \)-neighbourhood of \(F(x) \). There exists a fuzzy closed set \(\rho \) in \(Y \) such that \(F(x) \leq \rho \leq \mu \). We have \(x \in F^+(\rho) \leq F^+(\mu) \). Since \(F^+(\rho) \) is an open set, \(F^+(\mu) \) is a neighbourhood of \(x \). \(\blacksquare \)

Remark 22 ([26]) A subset \(A \) of a topological space \((X, \tau)\) can be considered as a fuzzy set with characteristic function defined by

\[
A(x) = \begin{cases}
1 & , x \in A \\
0 & , x \notin A
\end{cases}
\]

Let \((Y, \sigma)\) be a fuzzy topological space. The fuzzy sets of the form \(A \times \rho \) with \(A \in \tau \) and \(\rho \in \sigma \) form a basis for the product fuzzy topology \(\tau \times \sigma \) on \(X \times Y \), where for any \((x, y) \in X \times Y \),

\[
(A \times \rho)(x, y) = \min\{A(x), \rho(y)\}
\]

Definition 23 ([15]) For a fuzzy multifunction \(F : X \rightarrow Y \), the fuzzy graph multifunction \(G_F : X \rightarrow X \times Y \) of \(F \) is defined by \(G_F(x) = x_1 \times F(x) \) for every \(x \in X \).

Theorem 24 If the fuzzy graph multifunction \(G_F \) of a fuzzy multifunction \(F : X \rightarrow Y \) is fuzzy lower contra-continuous, then \(F \) is fuzzy lower contra-continuous.

Proof. Suppose that \(G_F \) is fuzzy lower contra-continuous and \(x \in X \). Let \(\mu \) be a fuzzy closed set in \(Y \) such that \(F(x) \mu \). Then there exists \(y \in Y \) such that \((F(x))(y) + \mu(y) > 1\). Then \((G_F(x))(x, y) + (X \times \mu)(x, y) = (F(x))(y) + \mu(y) > 1\). Hence, \(G_F(x)q(X \times \mu) \). Since \(G_F \) is fuzzy lower contra-continuous, there exists an open set \(B \) in \(X \) such that \(x \in B \) and \(G_F(b)q(X \times \mu) \) for all \(b \in B \).

Let there exists a \(b_0 \in B \) such that \(F(b_0) \mu \). Then for all \(y \in Y \), \((F(b_0))(y) + \mu(y) \leq 1\). For any \((a, c) \in X \times Y \), we have \((G_F(b_0))(a, c) \leq (F(b_0))(c) \) and \((X \times \mu)(a, c) \leq \mu(c) \). Since for all \(y \in Y \), \((F(b_0))(y) + \mu(y) \leq 1\), then \((G_F(b_0))(a, c) + \)
Thus, if the upper inverse image of fuzzy closed sets containing F is not fuzzy upper contra-continuous is identical with the union of the frontier equivalent:

Theorem 28

Let all points of $(G \mu)$ be fuzzy closed in Y with $x \in F^-(\rho)$, the net $(x_i)_{i \in I}$ is eventually in $F^-(\rho)$.

Proof. (1) \Rightarrow (2) : Let x_i be a net converging to x in X and ρ be any fuzzy closed set in Y with $x \in F^-(\rho)$. Since F is fuzzy lower contra-continuous, then there exists an open set $A \subset X$ containing x such that $A \subset F^-(\rho)$. Since $x_i \rightarrow x$, then there exists an index $i_0 \in I$ such that $x_i \in A$ for every $i \geq i_0$. Hence, $(x_i)_{i \in I}$ is eventually in $F^-(\rho)$.

(2) \Rightarrow (1) : Suppose that F is not fuzzy lower contra-continuous. There exists a point x and a fuzzy closed set μ containing x with $x \in F^-(\mu)$ such that $B \notin F^-(\mu)$ for each open set $B \subset X$ containing x. Let $x_i \in B$ and $x_i \notin F^-(\mu)$ for each open set $B \subset X$ containing x. Then the neighborhood net (x_i) converges to x but $(x_i)_{i \in I}$ is not eventually in $F^-(\mu)$. This is a contradiction. ■

Theorem 27

Let $F : X \rightarrow Y$ be a fuzzy multifunction. Then the following are equivalent:

(1) F is fuzzy upper contra-continuous,

(2) For each $x \in X$ and each net $(x_i)_{i \in I}$ converging to x in X and each fuzzy closed set ρ in Y with $x \in F^+(\rho)$, the net $(x_i)_{i \in I}$ is eventually in $F^+(\rho)$.

Proof. The proof is similar to that of Theorem 26. ■

Recall that the frontier of a subset A of a topological space X, denoted by $Fr(A)$, is defined by $Fr(A) = Cl(A) \cap Cl(X \setminus A) = Cl(A) \setminus Int(A)$.

Theorem 28

The set all points of X at which a fuzzy multifunction $F : X \rightarrow Y$ is not fuzzy upper contra-continuous is identical with the union of the frontier of the upper inverse image of fuzzy closed sets containing $F(x)$.
Proof. Suppose F is not fuzzy upper contra-continuous at $x \in X$. Then there exists a fuzzy closed set η in Y containing $F(x)$ such that $A \cap (X \setminus F^+(\eta)) \neq \emptyset$ for every open set A containing x. We have $x \in Cl(X \setminus F^+(\eta)) = X \setminus Int(F^+(\eta))$ and $x \in F^+(\eta)$. Thus, $x \in Fr(F^+(\eta))$.

Conversely, let η be a fuzzy closed set in Y containing $F(x)$ with $x \in Fr(F^+(\eta))$. Suppose that F is fuzzy upper contra-continuous at x. There exists an open set A containing x such that $A \subset F^+(\eta)$. We have $x \in Int(F^+(\eta))$. This is a contradiction. Thus, F is not fuzzy upper contra-continuous at x. $lacksquare$

Theorem 29 The set all points of X at which a fuzzy multifunction $F : X \to Y$ is not fuzzy lower contra-continuous is identical with the union of the frontier of the lower inverse image of fuzzy closed sets which are quasi-coincident with $F(x)$.

Proof. It is similar to that of Theorem 28. $lacksquare$

Theorem 30 If $F : X \to Y$ is a fuzzy upper contra-continuous point closed multifunction and $F(x) \land F(y) = \emptyset$ for each distinct pair $x, y \in X$, then X is a T_2 space.

Proof. Let x and y be any two distinct points in X. We have $F(x) \land F(y) = \emptyset$. Since F is fuzzy upper contra-continuous and point closed, $F^+(F(x))$ and $F^+(F(y))$ are disjoint fuzzy open sets containing x and y, respectively. Hence, X is T_2. $lacksquare$

Definition 31 A fuzzy topological space X is called fuzzy strongly S-closed [2] if every fuzzy closed cover of X has a finite subcover.

Theorem 32 Let $F : X \to Y$ be a fuzzy upper contra-continuous surjective multifunction. Suppose that $F(x)$ is fuzzy strongly S-closed for each $x \in X$. If X is compact, then Y is fuzzy strongly S-closed.

Proof. Let $\{\mu_k\}_{k \in I}$ be a fuzzy closed cover of Y. Since $F(x)$ is fuzzy strongly S-closed for each $x \in X$, there exists a finite subset I_x of I such that $F(x) \leq \bigvee_{k \in I_x} \mu_k$. Take $\mu_x = \bigvee_{k \in I_x} \mu_k$. Since F is fuzzy upper contra-continuous, there exists a fuzzy open set U_x of X containing x such that $F(U_x) \leq \mu_x$. Then $\{U_x\}_{x \in X}$ is an open cover of X. Since X is compact, there exist $x_1, x_2, x_3, \ldots, x_n$ in X such that $X = \bigvee_{i=1}^n U_{x_i}$. We have $Y = F(X) = F(\bigcup_{i=1}^n U_{x_i}) \leq \bigvee_{i=1}^n F(U_{x_i}) \leq \bigvee_{i=1}^n \mu_{x_i} = \bigvee_{i=1}^n \bigvee_{k \in I_{x_i}} \mu_k$. Thus, Y is fuzzy strongly S-closed. $lacksquare$

Definition 33 A fuzzy topological space X is said to be disconnected [26] if $X = \mu \land \eta$, where μ and η are nonempty fuzzy open sets in X such that $\mu \land \eta = \emptyset$.

8
Theorem 34 Let $F : X \rightarrow Y$ be a fuzzy upper contra-continuous punctually fuzzy connected surjective multifunction. If X is connected, then Y is a fuzzy connected space.

Proof. Suppose that Y is not fuzzy connected. Let $Y = \mu \cup \eta$ be a partition of Y. Then, μ and η are fuzzy open and closed in Y. Since $F(x)$ is fuzzy connected for each $x \in X$, $F(x) \leq \mu$ or $F(x) \leq \eta$. This implies that $x \in F^+(\mu) \cup F^+(\eta)$. We have $F^+(\mu) \cup F^+(\eta) = X$ and $F^+(\mu) \cap F^+(\eta) = \emptyset$. Since F is fuzzy upper contra-continuous, $F^+(\mu)$ and $F^+(\eta)$ are open in X. Thus, $X = F^+(\mu) \cup F^+(\eta)$ is a partition of X. This is a contradiction.

Theorem 35 Let $F : X \rightarrow Y$ be a fuzzy lower contra-continuous punctually fuzzy connected surjective multifunction. If X is connected, then Y is a fuzzy connected space.

Proof. Suppose that Y is not fuzzy connected. Let $Y = \mu \cup \eta$ be a partition of Y. Then μ and η are fuzzy open and closed in Y. Since F is fuzzy lower contra-continuous multifunction, $F^+(\mu)$ and $F^+(\eta)$ are closed. Since $X = F^+(\mu) \cup F^+(\eta)$ and $F^+(\mu) \cap F^+(\eta) = \emptyset$, then X is not connected. This is a contradiction.

4 Acknowledgment

The first and forth authors of this paper are partially supported by the Research Center in Algebraic Hyperstructures and Fuzzy Mathematics, University of Mazandaran, Babolsar, Iran.

References

M. ALIMOHAMMADY
Department of Mathematics, University of Mazandaran,
Babolsar, Iran
E-mail: amohsen@umz.ac.ir

E. EKICI
Department of Mathematics,
Canakkale Onsekiz Mart University,
Terzioglu Campus,
17020 Canakkale/TURKEY
E-mail: eekici@comu.edu.tr

S. JAFARI
College of Vestjaelland South,
Herrestraede 11,
4200 Slagelse, Denmark
E-mail: jafari@stofanet.dk

M. ROOHI
Islamic Azad University-Ghaemshahr branch, Iran
E-mail: mehdi.roohi@gmail.com