Physics Imperfections Make Perfect

Northwestern University researchers have added a new dimension to the importance of diversity. For the first time, physicists have experimentally demonstrated that certain systems with interacting entities can synchronize only if the entities within the system are different from one another. [29]

It may seem surprising, but theories and formulas derived from physics turn out to be useful tools for understanding the ways democratic elections work, including how these systems break down and how they could be improved. [28]

Electrons whizzing around each other and humans crammed together at a political rally don’t seem to have much in common, but researchers at Cornell are connecting the dots. [27]

Now a group of actual physicists from Australia and Switzerland have proposed a device which uses the quantum tunneling of magnetic flux around a capacitor, breaking time-reversal symmetry. [26]

The arrow of time and the accelerated expansion are two fundamental empirical facts of the universe. [25]

The intensive, worldwide search for dark matter, the missing mass in the universe, has so far failed to find an abundance of dark, massive stars or scads of strange new weakly interacting particles, but a new candidate is slowly gaining followers and observational support. [24]

“We invoke a different theory, the self-interacting dark matter model or SIDM, to show that dark matter self-interactions thermalize the inner halo, which ties ordinary dark matter and dark matter distributions together so that they behave like a collective unit.” [23]

Technology proposed 30 years ago to search for dark matter is finally seeing the light. [22]

They’re looking for dark matter—the stuff that theoretically makes up a quarter of our universe. [21]
Results from its first run indicate that XENON1T is the most sensitive dark matter detector on Earth. [20]

Scientists at Johannes Gutenberg University Mainz (JGU) in Germany have now come up with a new theory on how dark matter may have been formed shortly after the origin of the universe. [19]

Map of dark matter made from gravitational lensing measurements of 26 million galaxies in the Dark Energy Survey. [18]

CfA astronomers Annalisa Pillepich and Lars Hernquist and their colleagues compared gravitationally distorted Hubble images of the galaxy cluster Abell 2744 and two other clusters with the results of computer simulations of dark matter haloes. [17]

In a paper published July 20 in the journal Physical Review Letters, an international team of cosmologists uses data from the intergalactic medium— the vast, largely empty space between galaxies— to narrow down what dark matter could be. [16]

But a new hypothesis might have gotten us closer to figuring out its identity, because physicists now suspect that dark matter has been changing forms this whole time - from ghostly particles in the Universe’s biggest structures, to a strange, superfluid state at smaller scales. And we might soon have the tools to confirm it. [15]

Superfluids may exist inside neutron stars, and some researchers have speculated that space-time itself may be a superfluid. So why shouldn’t dark matter have a superfluid phase, too? [14]

"The best result on dark matter so far—and we just got started." This is how scientists behind XENON1T, now the most sensitive dark matter experiment world-wide, commented on their first result from a short 30-day run presented today to the scientific community. [13]

The gravitational force attracting the matter, causing concentration of the matter in a small space and leaving much space with low matter concentration: dark matter and energy.
There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

SIMPs would resolve certain discrepancies between simulations of the distribution of dark matter, like this one, and the observed properties of the galaxies.

In particle physics and astrophysics, weakly interacting massive particles, or WIMPs, are among the leading hypothetical particle physics candidates for dark matter.
The Big Bang
The Big Bang caused acceleration created radial currents of the matter, and since the matter is composed of negative and positive charges, these currents are creating magnetic field and attracting forces between the parallel moving electric currents. This is the gravitational force experienced by the matter, and also the mass is result of the electromagnetic forces between the charged particles. The positive and negative charged currents attracts each other or by the magnetic forces or by the much stronger electrostatic forces?!

The gravitational force attracting the matter, causing concentration of the matter in a small space and leaving much space with low matter concentration: dark matter and energy.

There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

Physics shows that imperfections make perfect
Northwestern University researchers have added a new dimension to the importance of diversity.

For the first time, physicists have experimentally demonstrated that certain systems with interacting entities can synchronize only if the entities within the system are different from one another.

This finding offers a new twist to the previous understanding of how collective behavior found in nature—such as fireflies flashing in unison or pacemaker cells working together to generate a heartbeat—can arise even when the individual insects or cells are different.

Northwestern’s Adilson Motter, who led the research, explained that identical entities naturally behave identically—until they start interacting.

"When identical entities interact, they often behave differently from each other," said Motter, who is a professor of physics in Northwestern’s Weinberg College of Arts and Sciences. "But we identified scenarios in which the entities behave identically again if you make them suitably different from each other."
This discovery could help researchers optimize human-made systems, such as the power grid, in which many parts have to remain synchronized while interacting with one another. It also could potentially inform how groups of humans, such as juries, can coordinate to reach a consensus.

The research will publish on Monday, Jan. 20 in the journal *Nature Physics*. Motter coauthored the paper with Northwestern's Takashi Nishikawa and Ferenc Molnar, a former postdoctoral researcher at Northwestern who is now at Notre Dame University.

This work expands upon Nishikawa's and Motter's 2016 paper, which theoretically predicted the phenomenon.

Research shows how geese can coordinate to all move together in a flock or V formation even though each individual bird is different. Credit: Wendy Wei

"It is interesting that systems need to be asymmetric to exhibit behavioral symmetry," said Nishikawa, a research professor of physics in Weinberg. "This is remarkable mathematically, let alone physically. So, many colleagues thought that experimentally demonstrating this effect was impossible."

Motter and his collaborators made the seemingly impossible possible by using three identical electric generators. Each generator oscillated at a frequency of exactly 100 cycles per second. When separated, the identical generators behaved identically.

When connected to form a triangle, their frequencies diverged—but only until the generators were properly mismatched to have different energy dissipations. At that point, they synchronized again.

"This can be visualized by putting a small lamp between each pair of generators," Molnar explained. "When the generators are identical, the lamp flickers, meaning that the generators are not
synchronized. But when the generators' dissipation is tweaked to different levels, the flickering stop, indicating that the generator voltages are oscillating in sync."

The researchers dubbed this phenomenon "converse symmetry breaking" because it represents the opposite of the previously known phenomenon of symmetry breaking, which underlies superconductivity, the Higgs mechanism and even the appearance of zebra stripes.

In symmetry breaking, the dynamical equations have a symmetry that is not observed in the behavior of the system, while converse symmetry breaking concerns situations in which the behavior of the system has a given symmetry only when that symmetry is avoided in the dynamical equations.

"It might seem counterintuitive," Motter said. "But our theory predicts that this is true across many systems, not just electromechanical ones."

Motter’s team plans to explore the implications of their findings across social, technological and biological systems. In particular, the team is actively working on the design of a power grid that is more stable while allowing incorporation of an increasing share of energy from renewable sources. [29]

Study uses physics to explain democratic elections

It may seem surprising, but theories and formulas derived from physics turn out to be useful tools for understanding the ways democratic elections work, including how these systems break down and how they could be improved.

A new physics-based study finds that in the U.S., elections went through a transition in 1970, from a condition in which election results captured reasonably well the greater electorate’s political preferences, to a period of increasing instability, in which very small changes in voter preferences led to significant swings toward more extreme political outcomes in both directions.

The analysis also shows this instability can be associated with an unexpected situation in which outcomes swing in the opposite direction of how people’s true preferences are shifting. That is, a small move in prevailing opinions toward the left can result in a more right-wing outcome, and vice versa—a situation the researchers refer to as "negative representation."

The findings appear in the journal *Nature Physics*, in a paper by Alexander Siegenfeld, a doctoral student in physics at MIT, and Yaneer Bar-Yam, the president of the New England Complex Systems Institute.

"Our country seems more divided than ever, with election outcomes resembling a pendulum swinging with ever increasing force," Siegenfeld says. In this regime of "unstable" elections, he says, "a small change in electorate opinion can dramatically swing the election outcome, just as the
direction of a small push to a boulder perched on top of a hill can dramatically change its final location."

That's partly a result of an increasingly polarized electorate, he explains. The researchers drew from a previous analysis that went through the Republican and Democratic party platforms in every presidential election year since 1944 and counted the number of polarizing words using a combination of machine learning and human analysis. The numbers show a relatively stable situation before 1970 but a dramatic increase in polarization since then.

The team then found that the Ising model, which was developed to explain the behavior of ferromagnets and other physical systems, is mathematically equivalent to certain models of elections and accurately describes the onset of instability in electoral systems.

"What happened in 1970 is a phase transition like the boiling of water. Elections went from stable to unstable," explained Bar-Yam.

The increasing instability also results in part from the structure of party primary systems, which have greatly increased their role in candidate selection since the '70s. Because the voters in primaries tend to have more extreme partisan views than those of the general electorate, politicians are more inclined to take positions to appeal to those voters—positions that may be more extreme than those favored by more mainstream voters, and thus less likely to win in the general election.

This long-term shift from a stable to unstable electoral situation closely resembles what happens to a ferromagnetic metal exposed to a magnetic field, Siegenfeld says, and can be described by the same mathematical formulas. But why should formulas derived for such unrelated subject matter be relevant to this field?
Analyzing Republican and Democratic party platforms since 1944, the researchers found a dramatic increase in polarizing, divisive words used in those platforms, starting in 1970 and increasing since then, as shown in this graph. This has led to greater instability in election outcomes. Credit: Massachusetts Institute of Technology

Siegenfeld says that’s because in physics, it’s not always necessary to know the details of the underlying objects or mechanisms to be able to produce useful and meaningful results. He compares that to the way physicists were able to describe the behavior of sound waves—which are essentially the aggregate motions of atoms—with great precision, long before they knew about the existence of atoms.

"When we apply physics to understanding the fundamental particles of our universe, we don’t actually know the underlying details of the theories," he says. "Yet we can still make incredibly accurate predictions."

Similarly, he says, researchers don’t need to understand the motives and opinions of individual voters to be able to carry out a meaningful analysis of their collective behavior. As the paper states, "understanding the collective behavior of social systems can benefit from methods and concepts from physics, not because humans are similar to electrons, but because certain large-scale behaviors can be understood without an understanding of the small-scale details."

Another important finding from the study is the phenomenon of "negative representation." This is when an overall shift to the left in voter opinions results in a rightward shift in the election outcome, or vice versa.
This can happen, for example, if voters are faced with a choice between a center-left candidate and a far-right candidate. If the overall sentiments of the electorate move further to the left, that may result in more far-left voters deciding to stay home on election day because the centrist candidate's views are too far removed from their own. As a result, the far-right candidate ends up winning. Or, if a rightward swing in the electorate leads to the nomination of an extreme far-right candidate, that may increase the odds of a more liberal candidate winning the general election. "This negative representation undermines the entire purpose of democratic elections," Siegenfeld says.

The study finds that in unstable electoral systems, there is always negative representation. But a number of measures that could help to counter the trend toward instability and thus also reduce the incidence of negative representation, the authors say.

One such solution to reducing election instability would be a shift toward ranked-voting systems, such as those used in Australia, Maine, and the cities of San Francisco and Cambridge, Massachusetts. Such systems reduce the need to select "lesser of two evils" candidates, and allow people to vote for their real preference without the disruptions caused by third-party candidates, they say.

Another approach would be to increase voter turnout, either through incentives, publicity, or legislation (such as Australia's required voting). The lower the percentage of voter turnout, the greater the potential for instability, the researchers found.

"Most people say 'go vote' so your voice is heard," Siegenfeld says. "What is less appreciated is that when candidates can count on people voting, it is more likely that future elections will become more stable. Our research scientifically demonstrates that high voter turnout helps democracy, since low voter turnout destabilizes elections and results in negative representation."

"I love this research," says Soren Jordan, an assistant professor of political science at Auburn University in Alabama, who was not involved in this work and wrote a commentary piece in Nature about it. "The cross-over is exciting, and seeing physicists do mathematical heavy lifting that's really outside of the traditional scope and training of political science really enhances both disciplines."

He adds, "This model is an excellent heuristic for understanding some critical phenomena, like how slow-moving concepts like partisanship can still yield large-scale effects in aggregate outcomes."

Fruit flies and electrons: Researchers use physics to predict crowd behavior

Electrons whizzing around each other and humans crammed together at a political rally don't seem to have much in common, but researchers at Cornell are connecting the dots.

They've developed a highly accurate mathematical approach to predict the behavior of crowds of living creatures, using Nobel Prize-winning methods originally developed to study large collections
of quantum mechanically interacting electrons. The implications for the study of human behavior are profound, according to the researchers.

For example, by using publicly available video data of crowds in public spaces, their approach could predict how people would distribute themselves under extreme crowding. By measuring density fluctuations using a smartphone app, the approach could describe the current behavioral state or mood of a crowd, providing an early warning system for crowds shifting toward dangerous behavior.

Tomas Arias, professor of physics, is lead author of "Density-Functional Fluctuation Theory of Crowds," which published Aug. 30 in Nature Communications. Co-authors include Itai Cohen, professor of physics; and Yunus A. Kinkhabwala, a doctoral student in the field of engineering.

Interactions among individuals in a crowd can be complex and difficult to quantify mathematically; the large number of actors in a crowd results in a complex mathematical problem. The researchers sought to predict the behavior of crowds by using simple measurements of density to infer underlying interactions and to use those interactions to predict new behaviors.

To achieve this, they applied mathematical concepts and approaches from density-functional theory (DFT), a branch of many-body physics developed for quantum mechanical systems, to the behavior of crowds.

"This is one of the all-too-rare cases – particularly where living systems are involved – where the theory preceded the experiments, and the experiments, in precise mathematical detail, completely confirmed the theory," said Arias.

To test their theory, the researchers created a model system using walking fruit flies (Drosophila melanogaster). They first demonstrated a mathematical way to extract functions that quantify how much the flies like different locations in their environment – the "vexation" function – and how much they mind crowding together – the "frustration" function based on the details of how the population densities change as the flies more around.

They then showed that by mixing and matching this information with observations of a single fly in an entirely new environment, they could accurately predict, before any observations, how a large crowd of flies would distribute themselves in that new environment. They also tracked changes in the overall behavior of the crowd – i.e., its "mood" – by tracking evolution of the social preference "frustration" function.

While fruit flies were "a convenient, and ethical, first test system," Arias said, the behavior of a crowd at a political rally would provide a human example of DFT theory. Individuals will try to find the best location to stand – typically closest to the stage – while avoiding overcrowded areas. When new and better locations become available, individuals are likely to move toward them.

To develop a mathematically predictive theory, the researchers associated a number – the vexation function – with the intrinsic desirability of each location; the lowest value would be at the ideal location, closest to the stage. The frustration function accounts for the undesirability of crowding effects, and a behavioral rule accounts for the tendency of individuals to look for better locations.
"The remarkable mathematical discovery," Arias said, "is that precise values for vexation and frustration can be obtained instantly and automatically, simply by observing changes in crowding as the crowd mills around, without the need for any kind of survey to ask people in the crowd how they feel about different locations or crowding together."

By varying the social circumstances in their fly experiments – such as changing the ratio of male and female, or inducing hunger and thirst – and monitoring the frustration values of the crowd, the researchers showed they can detect changes in the "mood" of the crowd. The DFT approach, therefore, not only predicts crowd behaviors under new circumstances, but also can be used to quickly and automatically detect changes in social behaviors.

Another application, using cell-phone and census data, could analyze political or economic drivers and population pressures to describe and predict large-scale population flows, such as mass migrations. "The resulting predictions of migration during acute events would enable better planning by all levels of government officials, from local municipalities to international bodies, with the potential to save millions of human lives," note the researchers.

Other contributors included J. Felipe Méndez-Valderrama, professor of physics, University of Los Andes, Bogota, Colombia; and Jeffrey Silver, senior analyst at Metron Inc. [27]

Physicists invent flux capacitor, break time-reversal symmetry

In the popular movie franchise "Back to the Future", an eccentric scientist creates a time machine that runs on a flux capacitor.

Now a group of actual physicists from Australia and Switzerland have proposed a device which uses the quantum tunneling of magnetic flux around a capacitor, breaking time-reversal symmetry.

The research, published this week in *Physical Review Letters*, proposes a new generation of electronic circulators, which are devices that control the direction in which microwave signals move.

It represents a collaboration between two Australian Research Council Centres of Excellence: the Centre for Engineered Quantum Systems (EQUIS) and the Centre for Future Low-Energy Electronics Technologies (FLEET).

FLEET Associate Investigator Professor Jared Cole (working at RMIT University) said the proposed device is built from a superconductor, in which electricity can flow without electrical resistance.

Professor Cole added, "We propose two different possible circuits, one of which resembles the iconic three-pointed-star design of the cinematic flux capacitor. (See images.)

"In it, quantum 'tubes' of magnetic flux can move around a central capacitor by a process known as quantum tunneling, where they overcome classically insurmountable obstacles."
The combination of magnetic fields and electric charges leads to what the physicists call broken time-reversal symmetry. "Unfortunately this effect does not allow us to actually travel back in time," Professor Tom Stace (University of Queensland) said. "Instead, it means that signals circulate around the circuit in only one direction, much like cars on a roundabout," he said.

Such a device can be used for example to isolate parts of an experimental apparatus from each other, which is crucial when the individual parts are extremely sensitive quantum systems.

Lead author Dr Clemens Mueller (ETH Zurich) said this device is a crucial component for next-generation technologies, including the long sought-after quantum computer.

Dr Mueller said, "Our research makes an important step towards scaling up this technology, where researchers need to precisely direct control and measurement signals around a quantum computer."
The operation of the microwave circulator resembles the flux capacitor from Back to the Future. Credit: FLEET

In the nearer term, the research could find application in the development of better electronics for mobile phone and wifi antennas and improving radar.

The two participating ARC Centres of Excellence form part of Australia's significant strength in quantum research.

The ARC Centre of Excellence for Engineered Quantum Systems (EQUS) researchers are building quantum machines that harness the full spectrum of quantum physics.

The ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET) is developing a new generation of ultra low-energy electronics to address the increasing challenge of energy use in computation. [26]

Time arrow is influenced by the dark energy

The arrow of time and the accelerated expansion are two fundamental empirical facts of the universe. We advance the viewpoint that the dark energy (positive cosmological constant) accelerating the expansion of the universe also supports the time asymmetry. It is related to the decay of metastable states under generic perturbations, as we show on example of a microcanonical ensemble. These states will not be metastable without dark energy. The latter also ensures a hyperbolic motion leading to dynamic entropy production with the rate determined by the cosmological constant. [25]
MACHOs are dead. WIMPs are a no-show. Say hello to SIMPs: New candidate for dark matter

The intensive, worldwide search for dark matter, the missing mass in the universe, has so far failed to find an abundance of dark, massive stars or scads of strange new weakly interacting particles, but a new candidate is slowly gaining followers and observational support.

Called SIMPs - strongly interacting massive particles - they were proposed three years ago by University of California, Berkeley theoretical physicist Hitoshi Murayama, a professor of physics and director of the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) in Japan, and former UC Berkeley postdoc Yonit Hochberg, now at Hebrew University in Israel.

Murayama says that recent observations of a nearby galactic pile-up could be evidence for the existence of SIMPs, and he anticipates that future particle physics experiments will discover one of them.

Murayama discussed his latest theoretical ideas about SIMPs and how the colliding galaxies support the theory in an invited talk Dec. 4 at the 29th Texas Symposium on Relativistic Astrophysics in Cape Town, South Africa.

Astronomers have calculated that dark matter, while invisible, makes up about 85 percent of the mass of the universe. The solidest evidence for its existence is the motion of stars inside galaxies: Without an unseen blob of dark matter, galaxies would fly apart. In some galaxies, the visible stars are so rare that dark matter makes up 99.9 percent of the mass of the galaxy.

Theorists first thought that this invisible matter was just normal matter too dim to see: failed stars called brown dwarfs, burned-out stars or black holes. Yet so-called massive compact halo objects - MACHOs - eluded discovery, and earlier this year a survey of the Andromeda galaxy by the Subaru Telescope basically ruled out any significant undiscovered population of black holes. The researchers searched for black holes left over from the very early universe, so-called primordial black holes, by looking for sudden brightenings produced when they pass in front of background stars and act like a weak lens. They found exactly one - too few to contribute significantly to the mass of the galaxy.

The fundamental structure of the proposed SIMP (strongly interacting massive particle) is similar to that of a pion (left). Pions are composed of an up quark and a down antiquark, with a gluon (g) holding them together. A SIMP would be composed of a quark and an antiquark held together by a gluon (G). Credit: Kavli IPMU graphic

"That study pretty much eliminated the possibility of MACHOs; I would say it is pretty much gone," Murayama said.
WIMPs—weakly interacting massive particles—have fared no better, despite being the focus of researchers' attention for several decades. They should be relatively large - about 100 times heavier than the proton - and interact so rarely with one another that they are termed "weakly" interacting. They were thought to interact more frequently with normal matter through gravity, helping to attract normal matter into clumps that grow into galaxies and eventually spawn stars.

SIMPs interact with themselves, but not others
SIMPs, like WIMPs and MACHOs, theoretically would have been produced in large quantities early in the history of the universe and since have cooled to the average cosmic temperature. But unlike WIMPs, SIMPs are theorized to interact strongly with themselves via gravity but very weakly with normal matter. One possibility proposed by Murayama is that a SIMP is a new combination of quarks, which are the fundamental components of particles like the proton and neutron, called baryons. Whereas protons and neutrons are composed of three quarks, a SIMP would be more like a pion in containing only two: a quark and an antiquark.

The SIMP would be smaller than a WIMP, with a size or cross section like that of an atomic nucleus, which implies there are more of them than there would be WIMPs. Larger numbers would mean that, despite their weak interaction with normal matter - primarily by scattering off of it, as opposed to merging with or decaying into normal matter - they would still leave a fingerprint on normal matter, Murayama said.
He sees such a fingerprint in four colliding galaxies within the Abell 3827 cluster, where, surprisingly, the dark matter appears to lag behind the visible matter. This could be explained, he said, by interactions between the dark matter in each galaxy that slows down the merger of dark matter but not that of normal matter, basically stars.

Conventional WIMP theories predict a highly peaked distribution, or cusp, of dark matter in a small area in the center of every galaxy. SIMP theory predicts a spread of dark matter in the center, which is more typical of dwarf galaxies. "One way to understand why the dark matter is lagging behind the luminous matter is that the dark matter particles actually have finite size, they scatter against each other, so when they want to move toward the rest of the system they get pushed back," Murayama said. "This would explain the observation. That is the kind of thing predicted by my theory of dark matter being a bound state of new kind of quarks."

SIMPs also overcome a major failing of WIMP theory: the ability to explain the distribution of dark matter in small galaxies.

"There has been this longstanding puzzle: If you look at dwarf galaxies, which are very small with rather few stars, they are really dominated by dark matter. And if you go through numerical simulations of how dark matter clumps together, they always predict that there is a huge concentration towards the center. A cusp," Murayama said. "But observations seem to suggest that concentration is flatter: a core instead of a cusp. The core/cusp problem has been considered one of the major issues with dark matter that doesn't interact other than by gravity. But if dark matter has a finite size, like a SIMP, the particles can go 'clink' and disperse themselves, and that would
actually flatten out the mass profile toward the center. That is another piece of 'evidence' for this kind of theoretical idea."

Ongoing searches for WIMPs and axions

Ground-based experiments to look for SIMPs are being planned, mostly at accelerators like the Large Hadron Collider at CERN in Geneva, where physicists are always looking for unknown particles that fit new predictions. Another experiment at the planned International Linear Collider in Japan could also be used to look for SIMPs.

As Murayama and his colleagues refine the theory of SIMPs and look for ways to find them, the search for WIMPs continues. The Large Underground Xenon (LUX) dark matter experiment in an underground mine in South Dakota has set stringent limits on what a WIMP can look like, and an upgraded experiment called LZ will push those limits further. Daniel McKinsey, a UC Berkeley professor of physics, is one of the co-spokespersons for this experiment, working closely with Lawrence Berkeley National Laboratory, where Murayama is a faculty senior scientist.
This Hubble Space Telescope image of the galaxy cluster Abell 3827 shows the ongoing collision of four bright galaxies and one faint central galaxy, as well as foreground stars in our Milky Way galaxy and galaxies behind the cluster (Arc B ...more

Physicists are also seeking other dark matter candidates that are not WIMPs. UC Berkeley faculty are involved in two experiments looking for a hypothetical particle called an axion, which may fit the requirements for dark matter. The Cosmic Axion Spin-Precession Experiment (CASPER), led by Dmitry Budker, a professor emeritus of physics who is now at the University of Mainz in Germany, and theorician Surjeet Rajendran, a UC Berkeley professor of physics, is planning to look for perturbations in nuclear spin caused by an axion field. Karl van Bibber, a professor of nuclear engineering, plays a key role in the Axion Dark Matter eXperiment - High Frequency (ADMX-HF), which seeks to detect axions inside a microwave cavity within a strong magnetic field as they convert to photons.

"Of course we shouldn't abandon looking for WIMPs," Murayama said, "but the experimental limits are getting really, really important. Once you get to the level of measurement, where we will be in the near future, even neutrinos end up being the background to the experiment, which is unimaginable."

Neutrinos interact so rarely with normal matter that an estimated 100 trillion fly through our bodies every second without our noticing, something that makes them extremely difficult to detect.

"The community consensus is kind of, we don't know how far we need to go, but at least we need to get down to this level," he added. "But because there are definitely no signs of WIMPs appearing, people are starting to think more broadly these days. Let's stop and think about it again."

Physicists Create Theory on Self-Interacting Dark Matter
Just like identical twins, at first glance, two galaxies can often appear to be very similar, identical even. However, upon closer scrutiny, we see that simply isn’t the case. In terms of galaxies, these differences include inner regions that rotate at completely different speeds. So, although they may look the same on the outside, inside is a whole different story. One recent study, led by Hai-Bo Yu of the University of California, Riverside set out to provide us with an explanation for this diversity among galaxies.

Dark matter is the invisible casing that holds galaxies together. The distribution of it is inferred from the motion of gas particles and stars within the galaxy. In Yu’s research, the physicists report how the diverse curves and rotation speeds of these galaxies can be explained if dark matter particles do in fact collide with one another near the galaxy’s center, in a process called dark
matter self-interaction. “In the prevailing dark matter theory, called Cold Dark Matter or CDM, dark matter particles are assumed to be collisionless, aside from gravity,” confirmed Yu. “We invoke a different theory, the self-interacting dark matter model or SIDM, to show that dark matter self-interactions thermalize the inner halo, which ties ordinary dark matter and dark matter distributions together so that they behave like a collective unit.” In doing this, the self-interacting dark matter halo then becomes much more flexible and easier to accommodate the diverse rotation curves.

These dark matter collisions occur in the inner halo and when the particles collide they thermalize. In galaxies of low-luminosity, the thermalization reduces the density by pushing out the inner dark matter particles. In high-luminous galaxies, such as our very own Milky Way, the thermalization process increases the dark matter density by pulling the particles into the luminous matter. “Our work demonstrates that dark matter may have strong self-interactions, a radical deviation from the prevailing theory,” says Yu.

Around 85 percent of the Universe is dark matter, yet there is still so much we don’t know about it. However, what we do know is that it has an unmistakable gravitational imprint on both cosmological and astronomical observations. A lot of Yu’s work over the last decade has been on pioneering a new kind of research that will finally conclude what happens when dark matter interacts with itself. He has hypothesized that it would almost certainly affect the dark matter distribution in each halo.

Flip Tanedo is an assistant professor if theoretical particle physics at UC Riverside who’s not involved in the study. Here’s what he had to say about it: “The compatibility of this hypothesis with observations is a major advance in the field. The SIDM paradigm is a bridge between fundamental particle physics and observational astronomy. The consistency with observations is a big hint that this proposal has a chance of being correct and lays the foundation for future observational, experimental, numerical, and theoretical work. In this way, it is paving the way to new interdisciplinary research.” He also added that “Hai-Bo is the architect of modern self-interacting dark matter and how it merges multiple fields: theoretical high-energy physics, experimental high-energy physics, observational, astronomy, numerical simulations of astrophysics, and early universe cosmology and galaxy formation.” [23]

The hunt for light dark matter
Technology proposed 30 years ago to search for dark matter is finally seeing the light.

Scientists are using innovative sensors, called skipper CCDs (short for charge-coupled devices) in a new type of dark matter detection project. Scientists will use the project, known as SENSEI, to find the lightest dark matter particles anyone has ever looked for.

Dark matter—so named because it doesn’t absorb, reflect or emit light—constitutes 27 percent of the universe, but the jury is still out on what it’s made of. The primary theoretical suspect for the main component of dark matter is a particle scientists have descriptively named the weakly interactive massive particle, or WIMP.
But since none of these heavy particles, which are expected to have a mass 100 times that of a proton, have shown up in experiments, it might be time for researchers to think small.

"There is a growing interest in looking for different kinds of dark matter that are additives to the standard WIMP model," said Fermilab scientist Javier Tiffenberg, a leader of the SENSEI collaboration. "Lightweight, or low-mass, dark matter is a very compelling possibility, and for the first time, the technology is there to explore these candidates."

Low-mass dark matter would leave a tiny, difficult-to-see signature when it collides with material inside a detector. Catching these elusive particles requires a dark-matter-detecting master: SENSEI.

Sensing the unseen

In traditional dark matter experiments, scientists look for a transfer of energy that would occur if dark matter particles collided with an ordinary nucleus, but SENSEI is different. It looks for direct interactions of dark matter particles colliding with electrons.

"That is a big difference—you get a lot more energy transferred in this case because an electron is so light compared to a nucleus," Tiffenberg said.

If dark matter has low mass—much smaller than the WIMP model suggests—then it would be many times lighter than an atomic nucleus. So if it were to collide with a nucleus, the resulting energy transfer would be far too small to tell us anything. It would be like throwing a ping pong ball at a boulder: the heavy object isn't going anywhere, and there would be no sign the two had come into contact.

An electron is nowhere near as heavy as an atomic nucleus. In fact, a single proton has about 1,836 times more mass than an electron. So the collision of a low-mass dark matter particle with an electron has a much better chance of leaving a mark—more bowling ball than the nucleus's boulder.

Even so, the electron is still a bowling ball compared to the low-mass dark matter particle. An energy transfer between the two would leave only a blip of energy, one either too small for most detectors to pick up or easily overshadowed by noise in the data. There is a small exchange of energy, but, if the detector isn't sensitive enough, it could appear as though nothing happens.

"The bowling ball will move a very tiny amount," said Fermilab scientist Juan Estrada, a SENSEI collaborator. "You need a very precise detector to see this interaction of lightweight particles with something that is much heavier."

That's where SENSEI's sensitive skipper CCDs come in: They will pick up on that tiny transfer of energy.

CCDs have been used for other dark matter detection experiments, such as the Dark Matter in CCDs (or DAMIC) experiment operating at SNOLAB in Canada. These CCDs were a spinoff from sensors developed for use in the Dark Energy Camera in Chile and other dark energy search projects.
CCDs are typically made of silicon divided into pixels. When a dark matter particle passes through the CCD, it collides with silicon's electrons, knocking them free, leaving a net electric charge in each pixel the particle passes through. The electrons then flow through adjacent pixels and are ultimately read as a current in a device that measures the number of electrons freed from each CCD pixel. That measurement tells scientists about the mass and energy of the particle—in this case the dark matter particle—that got the chain reaction going. A massive particle, like a WIMP, would free a gusher of electrons, but a low-mass particle might free only one or two.

Typical CCDs can measure the charge left behind only once, which makes it difficult to decide if a tiny energy signal from one or two electrons is real or an error.

Skipper CCDs are a new generation of the technology that helps eliminate the "iffiness" of a measurement that has a one- or two-electron margin of error. That allows for much higher precision thanks to a unique design.

"In the past, detectors could measure the amount of charge of the energy deposited in each pixel only once," Tiffenberg said. "The big step forward for the skipper CCD is that we are able to measure this charge as many times as we want."

The charge left behind in the skipper CCD by dark matter knocking electrons free can be sampled multiple times and then averaged, a method that yields a more precise measurement of the charge deposited in each pixel than the measure-one-and-done technique. That's the rule of statistics: With more data, you get closer to a property's true value.

SENSEI scientists take advantage of the skipper CCD architecture, measuring the number of electrons in a single pixel a whopping 4,000 times and then averaging them. That minimizes the measurement's error—or noise—and clarifies the signal.

"This is a simple idea, but it took us 30 years to get it to work," Estrada said.

From idea, to reality, to beyond

A small SENSEI prototype is currently running at Fermilab in a detector hall 385 feet below ground, and it has demonstrated that this detector design will work in the hunt for dark matter.

After a few decades existing as only an idea, skipper CCD technology and SENSEI were brought to life by Laboratory Directed Research and Development (LDRD) funds at Fermilab and Lawrence Berkeley National Laboratory (Berkeley Lab). The Fermilab LDRDs were awarded only recently—less than two years ago—but close collaboration between the two laboratories has already yielded SENSEI's promising design, partially thanks to Berkeley lab's previous work in skipper CCD design.

Fermilab LDRD funds allow researchers to test the sensors and develop detectors based on the science, and the Berkeley Lab LDRD funds support the sensor design, which was originally proposed by Berkeley Lab scientist Steve Holland.

"It is the combination of the two LDRDs that really make SENSEI possible," Estrada said.
LDRD programs are intended to provide funding for development of novel, cutting-edge ideas for scientific discovery, and SENSEI technology certainly fits the bill—even beyond its search for dark matter.

Future SENSEI research will also receive a boost thanks to a recent grant from the Heising-Simons Foundation.

"SENSEI is very cool, but what's really impressive is that the skipper CCD will allow the SENSEI science and a lot of other applications," Estrada said. "Astronomical studies are limited by the sensitivity of their experimental measurements, and having sensors without noise is the equivalent of making your telescope bigger—more sensitive."

SENSEI technology may also be critical in the hunt for a fourth type of neutrino, called the sterile neutrino, which seems to be even more shy than its three notoriously elusive neutrino family members.

A larger SENSEI detector equipped with more skipper CCDs will be deployed within the year. It's possible it might not detect anything, sending researchers back to the drawing board in the hunt for dark matter. Or SENSEI might finally make contact with dark matter—and that would be SENSEItional. [22]

Looking at dark matter
The age of discovery is not over. Once, scurvy-riddled Europeans sailed into the unknown to claim foreign, fantastic parts of the world. Now, physicists sit in labs and ask, "Is this all there is?"

No, they aren't suffering a collective existential crisis. They're looking for dark matter—the stuff that theoretically makes up a quarter of our universe. And West Aussie researchers are at the forefront of this search, as part of an Australian-wide project to detect a particle called the axion.

What's the (dark) matter?
If dark matter exists, you are probably sitting in a soup of it right now.

Scientists predict it makes up 26.8% of the universe, which is pretty significant when you consider that everything else we can observe—from hydrogen atoms to black holes—makes up only 5%. (The other 69% is something scientists call dark energy. Don't worry about it.)

There's just one problem. It doesn't interact with electromagnetism—the force between positively and negatively charged particles. It's responsible for practically everything we can observe in daytoday life—with the exception of gravity.

Electromagnetic forces present between atoms and molecules in the ground is the reason Earth's gravity doesn't keep pulling us all the way down to its (molten hot) core. The light being emitted from your computer, allowing you to read this story, is generated by interactions of electrically charged particles in your monitor, otherwise known as electricity.

Ordinary matter looks like ordinary matter because of the electromagnetic forces between atoms and molecules. But dark matter doesn't interact with electromagnetism. That means we can't see,
smell, taste or touch it. So if dark matter is essentially undetectable, why do we think it exists? And what on Earth are we looking for?

In the dark
Let’s start with a basic assumption—gravity exists. Along with electromagnetism, gravity is one of the four basic forces that physicists use to explain almost everything. Gravity says that heavy things attract all other heavy things, so Earth’s gravitational pull is the reason we aren’t all floating aimlessly in space.

If we peer into all that space, we can see that our Milky Way galaxy is spiral shaped. Smack bang in the galactic centre is a big, bar-shaped bulge from which spiralling arms snake around in a flat circle. Earth sits somewhere in the middle of one of those arms and completes one lap of the galaxy every 225 to 250 million years.

If we think about the entire universe as a giant amusement park, we can imagine our Milky Way to be a carousel. Unlike normal carousels that have plastic ponies fixed in place by poles, the stars, moons and planets that make up our galaxy are disconnected and free to spin around at different speeds.

So if everything is disjointed and spinning, what’s keeping us orbiting neatly in our little spiral? Well if we continue with the theme park analogy, we can liken this phenomenon to a swing chair ride. When swinging in a chair around a tower, a metal chain provides a constant force into the centre of the ride that keeps you spinning round and around that central pole.

The same sort of thing occurs in space, except instead of a chain, we’ve got gravity. Gravity is provided by the mass of stuff—specifically, the mass of our galactic centre, which scientists believe to be a supermassive black hole. It has so much mass in so little space that it exerts a gravitational force so high it sucks in light.

When you move away from the centre and into the flat galactic halo, we see a lot less stuff. Less stuff means less mass, which means less gravity. We could therefore expect the stuff in the spiral arms to be spinning slower than the stuff closer to the middle.

What astrophysicists actually see is that things on the outer edge of the galaxy are spinning at the same rate as things near the centre of the galaxy—and that’s pretty damn fast. If this was the case in our theme park, we would have slipped into a nightmare scenario.

The spinning chair ride would be whirling around so fast that the chain would no longer provide enough force to keep you moving in a circle. The chain would break, and you would be flung to a death worthy of a B-grade horror movie.

Scientists predict the galaxy should rotate like the image on the right. Our galaxy is actually rotating much faster—as on the left. Why then haven’t we been flung into space? Probably because of dark matter. Credit: ESO/L. CALÇADA
The fact that Earth has not been slingshotted far and wide suggests that we are surrounded by a lot more mass, which provides a whole bunch of gravity and keeps our galaxy in shape. And most physicists think that mass might just be dark matter.

Dark candidates

Just for a second, forget everything you just read. We're going to stop staring at stars and instead investigate much smaller things—particles. Particle physics is home to this problem called the strong charge parity (CP) problem. It's a very big unexplainable problem in the otherwise successful theory of quantum chromodynamics. Don't worry about it.

Using mathematical equations, particle physicists in the 70s suggested we could solve this strong CP problem with the introduction of a theoretical particle called the axion. And if we do more maths and write a description of what the axion particle should look like, we would find that it has two very exciting qualities—a) it has mass and b) it does not interact with electromagnetism very much at all.

Which sounds suspiciously like the qualities of dark matter. The axion is what physicists call a 'promising candidate' for dark matter. It's like killing two birds with one theoretical, invisible stone.

And if axions are dark matter, we should be surrounded by them right now. If we could only build the right equipment, we could perhaps detect the mysterious mass that's holding our galaxy together. As it happens, some clever scientists at UWA are doing just that.

Dark matter turns light

Physicists at a UWA node of the ARC Centre of Excellence for Engineered Quantum Systems (EQuS) are employing a piece of equipment called a haloscope—so called because it searches for axions in the galactic halo (which you’re sitting in right now).

A haloscope is basically an empty copper can (a ‘resonant cavity’) placed in a very cold, very strong magnetic field. If axions are dark matter and exist all around us, one might enter the resonant cavity, react with the magnetic field and transform into a particle of light—a photon.

Whilst we wouldn't be able to see these photons, scientists are pretty good at measuring them. They're able to measure how much energy it has (its frequency) as it sits inside the resonant cavity. And that frequency corresponds to the mass of the axion that it came from.

The problem is, resonant cavities (those empty copper cans) are created to detect photons with specific frequencies. We don't know how heavy axions are, so we don't know what frequency photon they will produce, which means building the right resonator involves a bit of guesswork.

The search for the axion is more of a process of elimination. What have they been able to exclude so far? Well, mostly due to technical limitations, scientists have previously been looking for axions with a low mass. New theoretical models predict that the axion is a bit heavier. How heavy? We don't know. But Aussie researchers have just been awarded 7 years of funding to try and find out.
Scoping the halo
The Oscillating Resonant Group Axion (ORGAN) experiment is a nationwide collaboration between members of EQuS and is hosted at UWA. Part of the physicists' work over the next 7 years will be to design resonant cavities that are capable of detecting heavier axions.

They ran an initial experiment over Christmas 2016, the ORGAN Pathfinder, to confirm that their haloscopes were up to the task ahead and that the physicists were capable of analysing their results. This experiment yielded no results—but that doesn't mean that axions don't exist. It only means that they don't exist with the specific mass that they searched for in December 2016 and to a certain level of sensitivity.

The intrepid explorers at UWA will set sail into the next stages of the ORGAN experiment in 2018. And perhaps soon, we'll know exactly what the matter is. [21]

A silent search for dark matter
Results from its first run indicate that XENON1T is the most sensitive dark matter detector on Earth. The sensitivity of the detector—an underground sentinel awaiting a collision that would confirm a hypothesis—stems from both its size and its "silence." Shielded by rock and water, and purified with a sophisticated system, the detector demonstrated a new record low radioactivity level, many orders of magnitude below surrounding material on Earth.

"We are seeing very good quality data from this detector, which tells us that it is running perfectly," said Ethan Brown, a XENON1T Collaboration member, and assistant professor of physics, applied physics, and astronomy at Rensselaer Polytechnic Institute.

Dark matter is theorized as one of the basic constituents of the universe, five times more abundant than ordinary matter. But because it cannot be seen and seldom interacts with ordinary matter, its existence has never been confirmed. Several astronomical measurements have corroborated the existence of dark matter, leading to a worldwide effort to directly observe dark matter particle interactions with ordinary matter. Up to the present, the interactions have proven so feeble that they have escaped direct detection, forcing scientists to build ever-more-sensitive detectors.

Since 2006, the XENON Collaboration has operated three successively more sensitive liquid xenon detectors in the Gran Sasso Underground Laboratory (LNGS) in Italy, and XENON1T is its most powerful venture to date and the largest detector of its type ever built. Particle interactions in liquid xenon create tiny flashes of light, and the detector is intended to capture the flash from the rare occasion in which a dark matter particle collides with a xenon nucleus.

But other interactions are far more common. To shield the detector as much as possible from natural radioactivity in the cavern, the detector (a so-called Liquid Xenon Time Projection Chamber) sits within a cryostat submersed in a tank of water. A mountain above the underground laboratory further shields the detector from cosmic rays. Even with shielding from the outside world, contaminants seep into the xenon from the materials used in the detector. Among his contributions, Brown is responsible for a purification system that continually scrubs the xenon in the detector.
"If the xenon is dirty, we won’t see the signal from a collision with dark matter," Brown said. "Keeping the xenon clean is one of the major challenges of this experiment, and my work involves developing new techniques and new technologies to keep pace with that challenge."

Brown also aids in calibrating the detector to ensure that interactions which are recorded can be properly identified. In rare cases, for example, the signal from a gamma ray may approach the expected signal of a dark matter particle, and proper calibration helps to rule out similar false positive signals.

In the paper "First Dark Matter Search Results from the XENON1T Experiment" posted on arXiv.org and submitted for publication, the collaboration presented results of a 34-day run of XENON1T from November 2016 to January 2017. While the results did not detect dark matter particles—known as "weakly interacting massive particles" or "WIMPs" - the combination of record low radioactivity levels with the size of the detector implies an excellent discovery potential in the years to come.

"A new phase in the race to detect dark matter with ultralow background massive detectors on Earth has just began with XENON1T," said Elena Aprile, a professor at Columbia University and project spokesperson. "We are proud to be at the forefront of the race with this amazing detector, the first of its kind." [20]

3 knowns and 3 unknowns about dark matter

What’s known:
1. We can observe its effects.

While we can't see dark matter, we can observe and measure its gravitational effects. Galaxies have been observed to spin much faster than expected based on their visible matter, and galaxies move faster in clusters than expected, too, so scientists can calculate the "missing mass" responsible for this motion.

2. It is abundant.

It makes up about 85 percent of the total mass of the universe, and about 27 percent of the universe's total mass and energy.

3. We know more about what dark matter is not.

Increasingly sensitive detectors are lowering the possible rate at which dark mark matter particles can interact with normal matter.

What’s unknown
1. Is it made up of one particle or many particles?

Could dark matter be composed of an entire family of particles, such as a theorized "hidden valley" or "dark sector?"
2. Are there "dark forces" acting on dark matter?

Are there forces beyond gravity and other known forces that act on dark matter but not on ordinary matter, and can dark matter interact with itself?

3. Is there dark antimatter?

Could dark matter have an antimatter counterpart, as does normal matter, and is there a similar imbalance that favored dark matter over "dark antimatter" as with normal matter-antimatter? [20]

New theory on the origin of dark matter

Only a small part of the universe consists of visible matter. By far the largest part is invisible and consists of dark matter and dark energy. Very little is known about dark energy, but there are many theories and experiments on the existence of dark matter designed to find these as yet unknown particles. Scientists at Johannes Gutenberg University Mainz (JGU) in Germany have now come up with a new theory on how dark matter may have been formed shortly after the origin of the universe. This new model proposes an alternative to the WIMP paradigm that is the subject of various experiments in current research.

Dark matter is present throughout the universe, forming galaxies and the largest known structures in the cosmos. It makes up around 23 percent of our universe, whereas the particles visible to us that make up the stars, planets, and even life on Earth represent only about four percent of it. The current assumption is that dark matter is a cosmological relic that has essentially remained stable since its creation. "We have called this assumption into question, showing that at the beginning of the universe dark matter may have been unstable," explained Dr. Michael Baker from the Theoretical High Energy Physics (THEP) group at the JGU Institute of Physics. This instability also indicates the existence of a new mechanism that explains the observed quantity of dark matter in the cosmos.

The stability of dark matter is usually explained by a symmetry principle. However, in their paper, Dr. Michael Baker and Prof. Joachim Kopp demonstrate that the universe may have gone through a phase during which this symmetry was broken. This would mean that it is possible for the hypothetical dark matter particle to decay. During the electroweak phase transition, the symmetry that stabilizes dark matter would have been re-established, enabling it to continue to exist in the universe to the present day.

With their new theory, Baker and Kopp have introduced a new principle into the debate about the nature of dark matter that offers an alternative to the widely accepted WIMP theory. Up to now, WIMPs, or weakly interacting massive particles, have been regarded as the most likely components of dark matter, and experiments involving heavily shielded underground detectors have been carried out to look for them. "The absence of any convincing signals caused us to start looking for alternatives to the WIMP paradigm," said Kopp.

The two physicists claim that the new mechanism they propose may be connected with the apparent imbalance between matter and antimatter in the cosmos and could leave an imprint which would be detected in future experiments on gravitational waves. In their paper published in
the scientific journal Physical Review Letters, Baker and Kopp also indicate the prospects of finding proof of their new principle at CERN's LHC particle accelerator and other experimental facilities. [19]

Dark Energy Survey reveals most accurate measurement of dark matter structure in the universe

Imagine planting a single seed and, with great precision, being able to predict the exact height of the tree that grows from it. Now imagine traveling to the future and snapping photographic proof that you were right.

If you think of the seed as the early universe, and the tree as the universe the way it looks now, you have an idea of what the Dark Energy Survey (DES) collaboration has just done. In a presentation today at the American Physical Society Division of Particles and Fields meeting at the U.S. Department of Energy's (DOE) Fermi National Accelerator Laboratory, DES scientists will unveil the most accurate measurement ever made of the present large-scale structure of the universe.

These measurements of the amount and "clumpiness" (or distribution) of dark matter in the present-day cosmos were made with a precision that, for the first time, rivals that of inferences from the early universe by the European Space Agency's orbiting Planck observatory. The new DES result (the tree, in the above metaphor) is close to "forecasts" made from the Planck measurements of the distant past (the seed), allowing scientists to understand more about the ways the universe has evolved over 14 billion years.

"This result is beyond exciting," said Scott Dodelson of Fermilab, one of the lead scientists on this result. "For the first time, we're able to see the current structure of the universe with the same clarity that we can see its infancy, and we can follow the threads from one to the other, confirming many predictions along the way."

Most notably, this result supports the theory that 26 percent of the universe is in the form of mysterious dark matter and that space is filled with an also-unseen dark energy, which is causing the accelerating expansion of the universe and makes up 70 percent.

Paradoxically, it is easier to measure the large-scale clumpiness of the universe in the distant past than it is to measure it today. In the first 400,000 years following the Big Bang, the universe was filled with a glowing gas, the light from which survives to this day. Planck's map of this cosmic microwave background radiation gives us a snapshot of the universe at that very early time. Since then, the gravity of dark matter has pulled mass together and made the universe clumpier over time. But dark energy has been fighting back, pushing matter apart. Using the Planck map as a start, cosmologists can calculate precisely how this battle plays out over 14 billion years.

"The DES measurements, when compared with the Planck map, support the simplest version of the dark matter/dark energy theory," said Joe Zuntz, of the University of Edinburgh, who worked on the analysis. "The moment we realized that our measurement matched the Planck result within 7 percent was thrilling for the entire collaboration."
The primary instrument for DES is the 570-megapixel Dark Energy Camera, one of the most powerful in existence, able to capture digital images of light from galaxies eight billion light-years from Earth. The camera was built and tested at Fermilab, the lead laboratory on the Dark Energy Survey, and is mounted on the National Science Foundation's 4-meter Blanco telescope, part of the Cerro Tololo Inter-American Observatory in Chile, a division of the National Optical Astronomy Observatory. The DES data are processed at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign.

Scientists on DES are using the camera to map an eighth of the sky in unprecedented detail over five years. The fifth year of observation will begin in August. The new results released today draw from data collected only during the survey's first year, which covers 1/30th of the sky.

"It is amazing that the team has managed to achieve such precision from only the first year of their survey," said National Science Foundation Program Director Nigel Sharp. "Now that their analysis techniques are developed and tested, we look forward with eager anticipation to breakthrough results as the survey continues."

DES scientists used two methods to measure dark matter. First, they created maps of galaxy positions as tracers, and second, they precisely measured the shapes of 26 million galaxies to directly map the patterns of dark matter over billions of light-years, using a technique called gravitational lensing.

To make these ultraprecise measurements, the DES team developed new ways to detect the tiny lensing distortions of galaxy images, an effect not even visible to the eye, enabling revolutionary advances in understanding these cosmic signals. In the process, they created the largest guide to spotting dark matter in the cosmos ever drawn (see image). The new dark matter map is 10 times the size of the one DES released in 2015 and will eventually be three times larger than it is now.

"It's an enormous team effort and the culmination of years of focused work," said Erin Sheldon, a physicist at the DOE's Brookhaven National Laboratory, who co-developed the new method for detecting lensing distortions.

These results and others from the first year of the Dark Energy Survey will be released today online and announced during a talk by Daniel Gruen, NASA Einstein fellow at the Kavli Institute for Particle Astrophysics and Cosmology at DOE's SLAC National Accelerator Laboratory, at 5 p.m. Central time. The talk is part of the APS Division of Particles and Fields meeting at Fermilab and will be streamed live.

The results will also be presented by Kavli fellow Elisabeth Krause of the Kavli Institute for Particle Astrophysics and Cosmology at SLAC at the TeV Particle Astrophysics Conference in Columbus, Ohio, on Aug. 9; and by Michael Troxel, postdoctoral fellow at the Center for Cosmology and AstroParticle Physics at Ohio State University, at the International Symposium on Lepton Photon Interactions at High Energies in Guanzhou, China, on Aug. 10. All three of these speakers are coordinators of DES science working groups and made key contributions to the analysis.

"The Dark Energy Survey has already delivered some remarkable discoveries and measurements, and they have barely scratched the surface of their data," said Fermilab Director Nigel Lockyer.
"Today's world-leading results point forward to the great strides DES will make toward understanding dark energy in the coming years." [18]

Mapping dark matter

About eighty-five percent of the matter in the universe is in the form of dark matter, whose nature remains a mystery. The rest of the matter in the universe is of the kind found in atoms. Astronomers studying the evolution of galaxies in the universe find that dark matter exhibits gravity and, because it is so abundant, it dominates the formation of large-scale structures in the universe like clusters of galaxies. Dark matter is hard to observe directly, needless to say, and it shows no evidence of interacting with itself or other matter other than via gravity, but fortunately it can be traced by modeling sensitive observations of the distributions of galaxies across a range of scales.

Galaxies generally reside at the centers of vast clumps of dark matter called haloes because they surround the clusters of galaxies. Gravitational lensing of more distant galaxies by dark matter haloes offers a particularly unique and powerful probe of the detailed distribution of dark matter. So-called strong gravitational lensing creates highly distorted, magnified and occasionally multiple images of a single source; so-called weak lensing results in modestly yet systematically deformed shapes of background galaxies that can also provide robust constraints on the distribution of dark matter within the clusters.

CfA astronomers Annalisa Pillepich and Lars Hernquist and their colleagues compared gravitationally distorted Hubble images of the galaxy cluster Abell 2744 and two other clusters with the results of computer simulations of dark matter haloes. They found, in agreement with key predictions in the conventional dark matter picture, that the detailed galaxy substructures depend on the dark matter halo distribution, and that the total mass and the light trace each other. They also found a few discrepancies: the radial distribution of the dark matter is different from that predicted by the simulations, and the effects of tidal stripping and friction in galaxies are smaller than expected, but they suggest these issues might be resolved with more precise simulations. Overall, however, the standard model of dark matter does an excellent and reassuring job of describing galaxy clustering. [17]

Dark matter is likely 'cold,' not 'fuzzy,' scientists report after new simulations

Dark matter is the aptly named unseen material that makes up the bulk of matter in our universe. But what dark matter is made of is a matter of debate.

Scientists have never directly detected dark matter. But over decades, they have proposed a variety of theories about what type of material—from new particles to primordial black holes—could comprise dark matter and explain its many effects on normal matter. In a paper published July 20 in the journal Physical Review Letters, an international team of cosmologists uses data from the intergalactic medium—the vast, largely empty space between galaxies—to narrow down what dark matter could be.
The team's findings cast doubt on a relatively new theory called "fuzzy dark matter," and instead lend credence to a different model called "cold dark matter." Their results could inform ongoing efforts to detect dark matter directly, especially if researchers have a clear idea of what sorts of properties they should be seeking.

"For decades, theoretical physicists have tried to understand the properties of the particles and forces that must make up dark matter," said lead author Vid Iršič, a postdoctoral researcher in the Department of Astronomy at the University of Washington. "What we have done is place constraints on what dark matter could be—and 'fuzzy dark matter,' if it were to make up all of dark matter, is not consistent with our data."

Scientists had drawn up both the "fuzzy" and "cold" dark-matter theories to explain the effects that dark matter appears to have on galaxies and the intergalactic medium between them.

Cold dark matter is the older of these two theories, dating back to the 1980s, and is currently the standard model for dark matter. It posits that dark matter is made up of a relatively massive, slow-moving type of particle with "weakly interacting" properties. It helps explain the unique, largescale structure of the universe, such as why galaxies tend to cluster in larger groups.

But the cold dark matter theory also has some drawbacks and inconsistencies. For example, it predicts that our own Milky Way Galaxy should have hundreds of satellite galaxies nearby. Instead, we have only a few dozen small, close neighbors.

The newer fuzzy dark matter theory addressed the deficiencies of the cold dark matter model. According to this theory, dark matter consists of an ultralight particle, rather than a heavy one, and also has a unique feature related to quantum mechanics. For many of the fundamental particles in our universe, their large-scale movements—traveling distances of meters, miles and beyond—can be explained using the principles of "classic" Newtonian physics. Explaining small-scale movements, such as at the subatomic level, requires the complex and often contradictory principles of quantum mechanics. But for the ultralight particle predicted in the fuzzy dark matter theory, movements at incredibly large scales—such as from one end of a galaxy to the other—also require quantum mechanics.

With these two theories of dark matter in mind, Iršič and his colleagues set out to model the hypothetical properties of dark matter based on relatively new observations of the intergalactic medium, or IGM. The IGM consists largely of dark matter—whatever that may be—along with hydrogen gas and a small amount of helium. The hydrogen within IGM absorbs light emitted from distant, bright objects, and astronomers have studied this absorption for decades using Earth-based instruments.

The team looked at how the IGM interacted with light emitted by quasars, which are distant, massive, starlike objects. One set of data came from a survey of 100 quasars by the European Southern Observatory in Chile. The team also included observations of 25 quasars by the Las Campanas Observatory in Chile and the W.M. Keck Observatory in Hawaii.

Using a supercomputer at the University of Cambridge, Iršič and co-authors simulated the IGM—and calculated what type of dark matter particle would be consistent with the quasar data. They discovered that a typical particle predicted by the fuzzy dark matter theory is simply too light to
account for the hydrogen absorption patterns in the IGM. A heavier particle—similar to predictions of the traditional cold dark matter theory—is more consistent with their simulations.

"The mass of this particle has to be larger than what people had originally expected, based on the fuzzy dark matter solutions for issues surrounding our galaxy and others," said Iršic.

An ultralight "fuzzy" particle could still exist. But it cannot explain why galactic clusters form, or other questions like the paucity of satellite galaxies around the Milky Way, said Iršic. A heavier "cold" particle remains consistent with the astronomical observations and simulations of the IGM, he added.

The team’s results do not address all of the longstanding drawbacks of the cold dark matter model. But Iršic believes that further mining of data from the IGM can help resolve the type—or types—of particles that make up dark matter. In addition, some scientists believe that there are no problems with the cold dark matter theory. Instead, scientists may simply not understand the complex forces at work in the IGM, Iršic added.

"Either way, the IGM remains a rich ground for understanding dark matter," said Iršic.

Co-authors on the paper are Matteo Viel of the International School for Advanced Studies in Italy, the Astronomical Observatory of Trieste and the National Institute for Nuclear Physics in Italy; Martin Haehnelt of the University of Cambridge; James Bolton of the University of Nottingham; and George Becker of the University of California, Riverside. The work was funded by the National Science Foundation, the National Institute for Nuclear Physics in Italy, the European Research Council, the National Institute for Astrophysics in Italy, the Royal Society in the United Kingdom and the Kavli Foundation. [16]

This New Explanation For Dark Matter Could Be The Best One Yet

It makes up about 85 percent of the total mass of the Universe, and yet, physicists still have no idea what dark matter actually is.

But a new hypothesis might have gotten us closer to figuring out its identity, because physicists now suspect that dark matter has been changing forms this whole time - from ghostly particles in the Universe's biggest structures, to a strange, superfluid state at smaller scales. And we might soon have the tools to confirm it.

Dark matter is a hypothetical substance that was proposed almost a century ago to account for the clear imbalance between the amount of matter in the Universe, and the amount of gravity that holds our galaxies together.

We can't directly detect dark matter, but we can see its effects on everything around us - the way galaxies rotate and the way light bends as it travels through the Universe suggests there's far more at play than we're able to pick up.

And now two physicists propose that dark matter has been changing the rules this whole time, and that could explain why it's been so elusive.
"It's a neat idea," particle physicist Tim Tait from the University of California, Irvine, who wasn't involved in the study, told Quanta Magazine.

"You get to have two different kinds of dark matter described by one thing."

The traditional view of dark matter is that it's made up of weakly interacting particles such as axions, which are influenced by the force of gravity in ways that we can observe at large scales.

This 'cold' form of dark matter can be used to predict how massive clusters of galaxies will behave, and fits into what we know about the 'cosmic web' of the Universe - scientists suggest that all galaxies are connected within a vast intergalactic web made up of invisible filaments of dark matter.

But when we scale down to individual galaxies and the way their stars rotate in relation to the galactic centre, something just doesn't add up.

"Most of the mass [in the Universe], which is dark matter, is segregated from where most of the ordinary matter lies," University of Pennsylvania physicist Justin Khoury explains in a press statement.

"On a cosmic web scale, this does well in fitting with the observations. On a galaxy cluster scale, it also does pretty well. However, when on the scale of galaxies, it does not fit."

Khoury and his colleague Lasha Berezhiani, now at Princeton University, suggest that the reason we can't reconcile dark matter's behaviour on both large and small scales in the Universe is because it can shift forms.

We've got the 'cold' dark matter particles for the massive galaxy clusters, but on a singular galactic scale, they suggest that dark matter takes on a superfluid state.

Superfluids are a form of cold, densely packed matter that has zero friction and viscosity, and can sometimes become a Bose-Einstein condensate, referred to as the 'fifth state of matter'.

And as strange as they sound, superfluids are starting to appear more accessible than ever before, with researchers announcing just last week that they were able to create light that acts like a liquid - a form of superfluid - at room temperature for the first time.

The more we come to understand superfluids, the more physicists are willing to entertain the idea that they could be far more common in the Universe than we thought.

"Recently, more physicists have warmed to the possibility of superfluid phases forming naturally in the extreme conditions of space," Jennifer Ouellette explains for Quanta Magazine.

"Superfluids may exist inside neutron stars, and some researchers have speculated that space-time itself may be a superfluid. So why shouldn't dark matter have a superfluid phase, too?"

The idea is that the 'halos' of dark matter that exist around individual galaxies create the conditions necessary to form a superfluid - the gravitational pull of the galaxy ensures that it's densely packed, and the coldness of space keeps the temperature suitably low.
Zoom out to a larger scale, and this gravitational pull becomes too weak to form a superfluid.

The key here is that the existence of superfluid dark matter could explain the strange behaviours of individual galaxies that gravity alone can't explain - it could be creating a second, as-yet-undefined force that acts just like gravity within the dark matter halos surrounding them.

As Ouellette explains, when you disturb an electric field, you get radio waves, and when you disturb a gravitational field, you get gravitational waves. When you disturb a superfluid? You get phonons (sound waves), and this extra force could work in addition to gravity.

"It's nice because you have an additional force on top of gravity, but it really is intrinsically linked to dark matter," Khoury told her. "It's a property of the dark matter medium that gives rise to this force."

We should be clear that this hypothesis is yet to be peer-reviewed, so this is all squarely in the realm of the hypothetical for now. But it's been published on the pre-print website arXiv.org for researchers in the field to pick over.

A big thing it has going for it is the fact that it could also explain 'modified Newtonian dynamics' (MOND) - a theory that says a modification of Newton's laws is needed to account for specific properties that have been observed within galaxies.

"In galaxies, there is superfluid movement of dark matter and MOND applies. However, in galaxy clusters, there is no superfluid movement of dark matter and MOND does not apply," the team suggests in a press statement.

We'll have to wait and see where this hypothesis goes, but the Khoury and Berezhiani say they're close to coming up with actual, testable ways that we can confirm their predictions based on superfluid dark matter.

And if their predictions bear out - we might finally be onto something when it comes to this massive cosmic mystery.

The research is available online at arXiv.org. [15]

Dark Matter Recipe Calls for One Part Superfluid

For years, dark matter has been behaving badly. The term was first invoked nearly 80 years ago by the astronomer Fritz Zwicky, who realized that some unseen gravitational force was needed to stop individual galaxies from escaping giant galaxy clusters. Later, Vera Rubin and Kent Ford used unseen dark matter to explain why galaxies themselves don’t fly apart.

Yet even though we use the term “dark matter” to describe these two situations, it’s not clear that the same kind of stuff is at work. The simplest and most popular model holds that dark matter is made of weakly interacting particles that move about slowly under the force of gravity. This so-called “cold” dark matter accurately describes large-scale structures like galaxy clusters. However, it doesn’t do a great job at predicting the rotation curves of individual galaxies. Dark matter seems to act differently at this scale.
In the latest effort to resolve this conundrum, two physicists have proposed that dark matter is capable of changing phases at different size scales. Justin Khoury, a physicist at the University of Pennsylvania, and his former postdoc Lasha Berezhiani, who is now at Princeton University, say that in the cold, dense environment of the galactic halo, dark matter condenses into a superfluid—an exotic quantum state of matter that has zero viscosity. If dark matter forms a superfluid at the galactic scale, it could give rise to a new force that would account for the observations that don’t fit the cold dark matter model. Yet at the scale of galaxy clusters, the special conditions required for a superfluid state to form don’t exist; here, dark matter behaves like conventional cold dark matter.

“It’s a neat idea,” said Tim Tait, a particle physicist at the University of California, Irvine. “You get to have two different kinds of dark matter described by one thing.” And that neat idea may soon be testable. Although other physicists have toyed with similar ideas, Khoury and Berezhiani are nearing the point where they can extract testable predictions that would allow astronomers to explore whether our galaxy is swimming in a superfluid sea.

Impossible Superfluids

Here on Earth, superfluids aren’t exactly commonplace. But physicists have been cooking them up in their labs since 1938. Cool down particles to sufficiently low temperatures and their quantum nature will start to emerge. Their matter waves will spread out and overlap with one other, eventually coordinating themselves to behave as if they were one big “superatom.” They will become coherent, much like the light particles in a laser all have the same energy and vibrate as one. These days even undergraduates create so-called Bose-Einstein condensates (BECs) in the lab, many of which can be classified as superfluids.

Superfluids don’t exist in the everyday world—it’s too warm for the necessary quantum effects to hold sway. Because of that, “probably ten years ago, people would have balked at this idea and just said ‘this is impossible,’” said Tait. But recently, more physicists have warmed to the possibility of superfluid phases forming naturally in the extreme conditions of space. Superfluids may exist inside neutron stars, and some researchers have speculated that space-time itself may be a superfluid. So why shouldn’t dark matter have a superfluid phase, too?

To make a superfluid out of a collection of particles, you need to do two things: Pack the particles together at very high densities and cool them down to extremely low temperatures. In the lab, physicists (or undergraduates) confine the particles in an electromagnetic trap, then zap them with lasers to remove the kinetic energy and lower the temperature to just above absolute zero. [14]

XENON1T, the most sensitive detector on Earth searching for WIMP dark matter, releases its first result

"The best result on dark matter so far—and we just got started." This is how scientists behind XENON1T, now the most sensitive dark matter experiment world-wide, commented on their first result from a short 30-day run presented today to the scientific community.

Dark matter is one of the basic constituents of the universe, five times more abundant than ordinary matter. Several astronomical measurements have corroborated the existence of dark matter, leading to a world-wide effort to observe dark matter particle interactions with ordinary
matter in extremely sensitive detectors, which would confirm its existence and shed light on its properties. However, these interactions are so feeble that they have escaped direct detection up to this point, forcing scientists to build detectors that are increasingly sensitive. The XENON Collaboration, that with the XENON100 detector led the field for years in the past, is now back on the frontline with the XENON1T experiment. The result from a first short 30-day run shows that this detector has a new record low radioactivity level, many orders of magnitude below surrounding materials on Earth. With a total mass of about 3200kg, XENON1T is the largest detector of this type ever built. The combination of significantly increased size with much lower background implies excellent dark matter discovery potential in the years to come.

The XENON Collaboration consists of 135 researchers from the U.S., Germany, Italy, Switzerland, Portugal, France, the Netherlands, Israel, Sweden and the United Arab Emirates. The latest detector of the XENON family has been in science operation at the LNGS underground laboratory since autumn 2016. The only things you see when visiting the underground experimental site now are a gigantic cylindrical metal tank filled with ultra-pure water to shield the detector at his center, and a three-story-tall, transparent building crowded with equipment to keep the detector running.

The XENON1T central detector, a so-called liquid xenon time projection chamber (LXeTPC), is not visible. It sits within a cryostat in the middle of the water tank, fully submersed in order to shield it as much as possible from natural radioactivity in the cavern. The cryostat keeps the xenon at a temperature of -95°C without freezing the surrounding water. The mountain above the laboratory further shields the detector, preventing perturbations by cosmic rays. But shielding from the outer world is not enough since all materials on Earth contain tiny traces of natural radioactivity. Thus, extreme care was taken to find, select and process the materials of the detector to achieve the lowest possible radioactive content. Laura Baudis, professor at the University of Zürich and professor Manfred Lindner from the Max-Planck-Institute for Nuclear Physics in Heidelberg, emphasize that this allowed XENON1T to achieve record "silence," which is necessary to listen for the very weak voice of dark matter.

A particle interaction in liquid xenon leads to tiny flashes of light. This is what the XENON scientists are recording and studying to infer the position and the energy of the interacting particle, and whether or not it might be dark matter. The spatial information allows the researchers to select interactions occurring in the one-ton central core of the detector.

XENON1T, the most sensitive detector on Earth searching for WIMP dark matter, releases its first result

The surrounding xenon further shields the core xenon target from all materials that already have tiny surviving radioactive contaminants. Despite the shortness of the 30-day science run, the sensitivity of XENON1T has already overcome that of any other experiment in the field, probing unexplored dark matter territory. "WIMPs did not show up in this first search with XENON1T, but we also did not expect them so soon," says Elena Aprile, Professor at Columbia University and spokesperson for the project. "The best news is that the experiment continues to accumulate excellent data, which will allow us to test quite soon the WIMP hypothesis in a region of mass and cross-section with normal atoms as never before. A new phase in the race to detect dark matter with ultra-low background massive detectors on Earth has just began with XENON1T. We are proud to be at the forefront of the race with this amazing detector, the first of its kind." [13]
Out with the WIMPs, in with the SIMPs?

Like cops tracking the wrong person, physicists seeking to identify dark matter—the mysterious stuff whose gravity appears to bind the galaxies—may have been stalking the wrong particle. In fact, a particle with some properties opposite to those of physicists' current favorite dark matter candidate—the weakly interacting massive particle, or WIMP—would do just as good a job at explaining the stuff, a quartet of theorists says. Hypothetical strongly interacting massive particles—or SIMPs—would also better account for some astrophysical observations, they argue.

SIMPs can also provide just the right amount of dark matter, assuming the theorists add a couple of wrinkles. The SIMPs must disappear primarily through collisions in which three SIMPs go in and only two SIMPs come out. These events must be more common than ones in which two SIMPs annihilate each other to produce two ordinary particles. Moreover, the theorists argue, SIMPs must interact with ordinary matter, although much more weakly than WIMPs. That's because the three-to-two collisions would heat up the SIMPs if they could not interact and share heat with ordinary matter.

Moreover, the fact that SIMPs must interact with ordinary matter guarantees that, in principle, they should be detectable in some way, Hochberg says. Whereas physicists are now searching for signs of WIMPs colliding with massive atomic nuclei, researchers would probably have to look for SIMPs smacking into lighter electrons because the bantamweight particles would not pack enough punch to send a nucleus flying.

Compared with WIMPy dark matter, SIMPy dark matter would also have another desirable property. As the universe evolved, dark matter coalesced into clumps, or halos, in which the galaxies then formed. But computer simulations suggest that dark matter that doesn't interact with itself would form myriad little clumps that are very dense in the center. And little "dwarf galaxies" aren't as abundant and the centers of galaxies aren't as dense as the simulations suggest. But strongly interacting dark matter would smooth out the distribution of dark matter and solve those problems, Hochberg says. "This isn't some independent thing that we've just forced into the model," she says. "It just naturally happens."

The new analysis "has the flavor of the WIMP miracle, which is nice," says Jonathan Feng, a theorist at UC Irvine who was not involved in the work. Feng says he's been working on similar ideas and that the ability to reconcile the differences between dark matter simulations and the observed properties of galaxies makes strongly interacting dark matter attractive conceptually.

However, he cautions, it may be possible that, feeble as they may be, the interactions between dark and ordinary matter might smooth out the dark matter distribution on their own. And Feng says he has some doubts about the claim that SIMPs must interact with ordinary matter strongly enough to be detected. So the SIMP probably won't knock WIMP off its perch as the best guess for the dark matter particle just yet, Feng says: "At the moment, it's not as well motivated as the WIMP, but it's definitely worth exploring." [12]
The WIMP (Weakly interactive massive particles) form a class of heavy particles, interacting slightly with matter, and constitute excellent candidates with the nonbaryonic dark matter. The neutralino postulated by the supersymmetric extensions of the standard model of particle physics. The idea of supersymmetry is to associate each boson to a fermion and vice versa. Each particle is then given a super-partner, having identical properties (mass, load), but with a spin which differs by 1/2. Thus, the number of particles is doubled. For example, the photon is accompanied by a photino, the graviton by a gravitino, the electron of a selectron, etc. Following the impossibility to detect a 511 keV boson (the electron partner), the physicists had to re-examine the idea of an exact symmetry. Symmetry is 'broken' and superpartners have a very important mass. One of these superparticles called LSP (Lightest Supersymmetric Particle) is the lightest of all. In most of the supersymmetric theories (without violation of the R-parity) the LSP is a stable particle because it cannot disintegrate in a lighter element. It is of neutral color and electric charge and is then only sensitive to weak interaction (weak nuclear force). It is then an excellent candidate for the not-baryonic dark matter.

Weakly interacting massive particles

In particle physics and astrophysics, weakly interacting massive particles, or WIMPs, are among the leading hypothetical particle physics candidates for dark matter. The term “WIMP” is given to a dark matter particle that was produced by falling out of thermal equilibrium with the hot dense plasma of the early universe, although it is often used to refer to any dark matter candidate that interacts with standard particles via a force similar in strength to the weak nuclear force. Its name comes from the fact that obtaining the correct abundance of dark matter today via thermal production requires a self-annihilation cross section, which is roughly what is expected for a new particle in the 100 GeV mass range that interacts via the electroweak force. This apparent coincidence is known as the “WIMP miracle”. Because supersymmetric extensions of the standard model of particle physics readily predict a new particle with these properties, a stable supersymmetric partner has long been a prime WIMP candidate. However, recent null results from direct detection experiments including LUX and SuperCDMS, along with the failure to produce evidence of supersymmetry in the Large Hadron Collider (LHC) experiment has cast doubt on the simplest WIMP hypothesis. Experimental efforts to detect WIMPs include the search for products of WIMP annihilation, including gamma rays, neutrinos and cosmic rays in nearby galaxies and galaxy clusters; direct detection experiments designed to measure the collision of WIMPs with nuclei in the laboratory, as well as attempts to directly produce WIMPs in colliders such as the LHC.

Evidence for an accelerating universe

One of the observational foundations for the big bang model of cosmology was the observed expansion of the universe. Measurement of the expansion rate is a critical part of the study, and it has been found that the expansion rate is very nearly “flat”. That is, the universe is very close to
the critical density, above which it would slow down and collapse inward toward a future "big crunch". One of the great challenges of astronomy and astrophysics is distance measurement over the vast distances of the universe. Since the 1990s it has become apparent that type Ia supernovae offer a unique opportunity for the consistent measurement of distance out to perhaps 1000 Mpc. Measurement at these great distances provided the first data to suggest that the expansion rate of the universe is actually accelerating. That acceleration implies an energy density that acts in opposition to gravity which would cause the expansion to accelerate. This is an energy density which we have not directly detected observationally and it has been given the name "dark energy".

The type Ia supernova evidence for an accelerated universe has been discussed by Perlmutter and the diagram below follows his illustration in Physics Today.

![Distant Type Ia Supernovae](https://example.com/diagram)

The data summarized in the illustration above involve the measurement of the redshifts of the distant supernovae. The observed magnitudes are plotted against the redshift parameter z. Note that there are a number of Type Ia supernovae around $z=0.6$, which with a Hubble constant of 71 km/s/mpc is a distance of about 5 billion light years.

Equation

The cosmological constant Λ appears in Einstein's field equation [5] in the form of
where \(R \) and \(g \) describe the structure of spacetime, \(T \) pertains to matter and energy affecting that structure, and \(G \) and \(c \) are conversion factors that arise from using traditional units of measurement. When \(\Lambda \) is zero, this reduces to the original field equation of general relativity. When \(T \) is zero, the field equation describes empty space (the vacuum).

The cosmological constant has the same effect as an intrinsic energy density of the vacuum, \(\rho_{\text{vac}} \) (and an associated pressure). In this context it is commonly moved onto the right-hand side of the equation, and defined with a proportionality factor of \(8\pi \): \(\Lambda = 8\pi \rho_{\text{vac}} \), where unit conventions of general relativity are used (otherwise factors of \(G \) and \(c \) would also appear). It is common to quote values of energy density directly, though still using the name "cosmological constant".

A positive vacuum energy density resulting from a cosmological constant implies a negative pressure, and vice versa. If the energy density is positive, the associated negative pressure will drive an accelerated expansion of the universe, as observed. (See dark energy and cosmic inflation for details.)

Explanatory models

Models attempting to explain accelerating expansion include some form of dark energy, dark fluid or phantom energy. The most important property of dark energy is that it has negative pressure which is distributed relatively homogeneously in space. The simplest explanation for dark energy is that it is a cosmological constant or vacuum energy; this leads to the Lambda-CDM model, which is generally known as the Standard Model of Cosmology as of 2003-2013, since it is the simplest model in good agreement with a variety of recent observations.

Dark Matter and Energy

Dark matter is a type of matter hypothesized in astronomy and cosmology to account for a large part of the mass that appears to be missing from the universe. Dark matter cannot be seen directly with telescopes; evidently it neither emits nor absorbs light or other electromagnetic radiation at any significant level. It is otherwise hypothesized to simply be matter that is not reactant to light. Instead, the existence and properties of dark matter are inferred from its gravitational effects on visible matter, radiation, and the large-scale structure of the universe. According to the Planck mission team, and based on the standard model of cosmology, the total mass–energy of the known universe contains 4.9% ordinary matter, 26.8% dark matter and 68.3% dark energy. Thus, dark matter is estimated to constitute 84.5% of the total matter in the universe, while dark energy plus dark matter constitute 95.1% of the total content of the universe. [6]

Cosmic microwave background

The cosmic microwave background (CMB) is the thermal radiation assumed to be left over from the "Big Bang" of cosmology. When the universe cooled enough, protons and electrons combined to
form neutral atoms. These atoms could no longer absorb the thermal radiation, and so the universe became transparent instead of being an opaque fog. [7]

Thermal radiation

Thermal radiation is electromagnetic radiation generated by the thermal motion of charged particles in matter. All matter with a temperature greater than absolute zero emits thermal radiation. When the temperature of the body is greater than absolute zero, interatomic collisions cause the kinetic energy of the atoms or molecules to change. This results in charge-acceleration and/or dipole oscillation which produces electromagnetic radiation, and the wide spectrum of radiation reflects the wide spectrum of energies and accelerations that occur even at a single temperature. [8]

![Graph showing the emission spectrum of thermal radiation at different temperatures](image)

Electromagnetic Field and Quantum Theory

Needless to say that the accelerating electrons of the steady stationary current are a simple demystification of the magnetic field, by creating a decreasing charge distribution along the wire, maintaining the decreasing U potential and creating the A vector potential experienced by the electrons moving by v velocity relative to the wire. This way it is easier to understand also the time dependent changes of the electric current and the electromagnetic waves as the resulting fields moving by c velocity.

It could be possible something very important law of the nature behind the self maintaining F accelerating force by the accelerated electrons. The accelerated electrons created electromagnetic fields are so natural that they occur as electromagnetic waves traveling with velocity c. It shows that the electric charges are the result of the electromagnetic waves diffraction.

One of the most important conclusions is that the electric charges are moving in an accelerated way and even if their velocity is constant, they have an intrinsic acceleration anyway, the so called spin, since they need at least an intrinsic acceleration to make possible they movement. The bridge between the classical and quantum theory is based on this intrinsic acceleration of the spin, explaining also the Heisenberg Uncertainty Principle. The particle – wave duality of the
electric charges and the photon makes certain that they are both sides of the same thing. Basing the gravitational force on the accelerating Universe caused magnetic force and the Planck Distribution Law of the electromagnetic waves caused diffraction gives us the basis to build a Unified Theory of the physical interactions. [4]

Lorentz transformation of the Special Relativity
In the referential frame of the accelerating electrons the charge density lowering linearly because of the linearly growing way they takes every next time period. From the referential frame of the wire there is a parabolic charge density lowering.

The difference between these two referential frames, namely the referential frame of the wire and the referential frame of the moving electrons gives the relativistic effect. Important to say that the moving electrons presenting the time coordinate, since the electrons are taking linearly increasing way every next time period, and the wire presenting the geometric coordinate. The Lorentz transformations are based on moving light sources of the Michelson - Morley experiment giving a practical method to transform time and geometric coordinates without explaining the source of this mystery.

The real mystery is that the accelerating charges are maintaining the accelerating force with their charge distribution locally. The resolution of this mystery that the charges are simply the results of the diffraction patterns, that is the charges and the electric field are two sides of the same thing. Otherwise the charges could exceed the velocity of the electromagnetic field.

The increasing mass of the electric charges the result of the increasing inductive electric force acting against the accelerating force. The decreasing mass of the decreasing acceleration is the result of the inductive electric force acting against the decreasing force. This is the relativistic mass change explanation, especially importantly explaining the mass reduction in case of velocity decrease.

The Classical Relativistic effect
The moving charges are self maintain the electromagnetic field locally, causing their movement and this is the result of their acceleration under the force of this field.

In the classical physics the charges will distributed along the electric current so that the electric potential lowering along the current, by linearly increasing the way they take every next time period because this accelerated motion.

Electromagnetic inertia and Gravitational attraction
Since the magnetic induction creates a negative electric field as a result of the changing acceleration, it works as an electromagnetic inertia, causing an electromagnetic mass.
It looks clear that the growing acceleration results the relativistic growing mass - limited also with the velocity of the electromagnetic wave.

Since $E = h\nu$ and $E = mc^2$, $m = h\nu/c^2$ that is the m depends only on the ν frequency. It means that the mass of the proton and electron are electromagnetic and the result of the electromagnetic induction, caused by the changing acceleration of the spinning and moving charge! It could be that the m_i inertial mass is the result of the spin, since this is the only accelerating motion of the electric charge. Since the accelerating motion has different frequency for the electron in the atom and the proton, they masses are different, also as the wavelengths on both sides of the diffraction pattern, giving equal intensity of radiation.

If the mass is electromagnetic, then the gravitation is also electromagnetic effect caused by the accelerating Universe! The same charges would attract each other if they are moving parallel by the magnetic effect.

The Planck distribution law explains the different frequencies of the proton and electron, giving equal intensity to different lambda wavelengths! Also since the particles are diffraction patterns they have some closeness to each other – can be seen as a gravitational force.

Electromagnetic inertia and mass

Electromagnetic Induction

Since the magnetic induction creates a negative electric field as a result of the changing acceleration, it works as an electromagnetic inertia, causing an electromagnetic mass. [1]

Relativistic change of mass

The increasing mass of the electric charges the result of the increasing inductive electric force acting against the accelerating force. The decreasing mass of the decreasing acceleration is the result of the inductive electric force acting against the decreasing force. This is the relativistic mass change explanation, especially importantly explaining the mass reduction in case of velocity decrease.

The frequency dependence of mass

Since $E = h\nu$ and $E = mc^2$, $m = h\nu/c^2$ that is the m depends only on the ν frequency. It means that the mass of the proton and electron are electromagnetic and the result of the electromagnetic induction, caused by the changing acceleration of the spinning and moving charge! It could be that the m_i inertial mass is the result of the spin, since this is the only accelerating motion of the electric charge. Since the accelerating motion has different frequency for the electron in the atom and the proton, they masses are different, also as the wavelengths on both sides of the diffraction pattern, giving equal intensity of radiation.

Electron – Proton mass rate

The Planck distribution law explains the different frequencies of the proton and electron, giving equal intensity to different lambda wavelengths! Also since the particles are diffraction patterns they have some closeness to each other – can be seen as a gravitational force. [1]
There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

Gravity from the point of view of quantum physics

The Gravitational force
The gravitational attractive force is basically a magnetic force.

The same electric charges can attract one another by the magnetic force if they are moving parallel in the same direction. Since the electrically neutral matter is composed of negative and positive charges they need 2 photons to mediate this attractive force, one per charges. The Bing Bang caused parallel moving of the matter gives this magnetic force, experienced as gravitational force.

Since graviton is a tensor field, it has spin = 2, could be 2 photons with spin = 1 together.

You can think about photons as virtual electron – positron pairs, obtaining the necessary virtual mass for gravity.

The mass as seen before a result of the diffraction, for example the proton – electron mass rate $M_p=1840$ Me. In order to move one of these diffraction maximum (electron or proton) we need to intervene into the diffraction pattern with a force appropriate to the intensity of this diffraction maximum, means its intensity or mass.

The Big Bang caused acceleration created radial currents of the matter, and since the matter is composed of negative and positive charges, these currents are creating magnetic field and attracting forces between the parallel moving electric currents. This is the gravitational force experienced by the matter, and also the mass is result of the electromagnetic forces between the charged particles. The positive and negative charged currents attracts each other or by the magnetic forces or by the much stronger electrostatic forces!?

The Graviton
In physics, the graviton is a hypothetical elementary particle that mediates the force of gravitation in the framework of quantum field theory. If it exists, the graviton is expected to be massless (because the gravitational force appears to have unlimited range) and must be a spin-2 boson. The spin follows from the fact that the source of gravitation is the stress-energy tensor, a second-rank tensor (compared to electromagnetism's spin-1 photon, the source of which is the four-current, a first-rank tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a force indistinguishable from gravitation, because a massless spin-2 field must couple to (interact with) the stress-energy tensor in the same way that the gravitational field does. This result suggests that, if a massless spin-2 particle is discovered, it must be the graviton, so that the only
experimental verification needed for the graviton may simply be the discovery of a massless spin-2 particle. [2]

Conclusions
SIMPs would resolve certain discrepancies between simulations of the distribution of dark matter, like this one, and the observed properties of the galaxies.
In particle physics and astrophysics, weakly interacting massive particles, or WIMPs, are among the leading hypothetical particle physics candidates for dark matter.

The gravitational force attracting the matter, causing concentration of the matter in a small space and leaving much space with low matter concentration: dark matter and energy.
There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
The electric currents causing self maintaining electric potential is the source of the special and general relativistic effects. The Higgs Field is the result of the electromagnetic induction. The Graviton is two photons together. [3]

References
[1] 3 Dimensional String Theory
Author: George Rajna
Publisher: Academia.edu
http://www.academia.edu/3834454/3_Dimensional_String_Theory

[3] Higgs Field and Quantum Gravity
Author: George Rajna
Publisher: Academia.edu
http://www.academia.edu/4158863/Higgs_Field_and_Quantum_Gravity

Author: George Rajna
Publisher: Academia.edu
https://www.academia.edu/3833335/The_Magnetic_field_of_the_Electric_current
[21] Looking at dark matter
https://phys.org/news/2017-09-dark.html

[23] Physicists Create Theory on Self-Interacting Dark Matter

[24] MACHOs are dead. WIMPs are a no-show. Say hello to SIMPs: New candidate for dark matter

[25] Time arrow is influenced by the dark energy
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.052125

[26] Physicists invent flux capacitor, break time-reversal symmetry

[27] Fruit flies and electrons: Researchers use physics to predict crowd behavior

[28] Study uses physics to explain democratic elections

[29] Physics shows that imperfections make perfect