Review of Global Warming Urban Heat Island Forcing Issues Unaddressed by IPCC Goals
Including CO₂ Doubling Estimates

Alec. Feinberg, DfRSoft

Key Words: Urban Heat Islands, Albedo Forcing, Hydro-hotspots, Highly Evaporating Surfaces, CO₂, Humidity
Forcing, Rainwater management, Albedo Modeling, Ocean Evaporation, City Evaporation Rates

Abstract
In this paper we provide a review Urban Heat Island (UHI) important forcing effects related to albedo, humidity and rain water management issues unaddressed by IPCC goals. We first review historical global warming forcing trends by comparing CO₂ prediction to Urban Heat Islands (UHIs) complex forcing influences. We provide a timeline of CO₂ doubling theory and UHI global warming estimates which show that UHI warming effects should be more accurately accounted for by the IPCC. We review both CO₂ and UHI forcing influence by a number of authors indicating that both predict similar warming trends. In order to investigate this independently we present a simplified global weighted albedo model that includes UHI solar surface area assessments. In so doing, we show discrepancies with IPCC UHI quoted global areas. We then reviewed many other complex issues of UHIs pointing out additional related solar heating problems including humidity forcing and warm rain-water management from highly evaporating hot city surfaces. Our review concludes that IPCC CO₂ goals will likely not stop global warming trends without addressing UHI albedo problems.

1. Goal of this Paper
In this paper we review Urban Heat Island (UHI) important forcing effects that are unaccounted for in IPCC goals, It is apparent that the IPCC is focusing mainly on CO₂ reduction as the key global warming solution [1]. While UHIs have been studied for years [2-5], and the IPCC certainly recognizes many UHI issues, they have yet to address albedo reduction of cities and roads as part of their international goals in terms of global warming reduction efforts [1]. Possibly some studies have been short-sighted with push-back concerns of albedo changes to cities [6-9] which might create a need for more fossil fuel use in winter time periods. These studies likely did not take into account the complex warming issues related solar surface area increases, Hydro-HotSpot (HHS) activity and have assumed that CO₂ is the dominant issue in global warming. Here we term HHS as water evaporation from Highly Evaporating Hot Surfaces (HEHS). The IPCC goals may not be adequate as discussed in this review article since UHI pose a number of these complex issues that need serious attention especially in the area of albedo forcing. Some studies conservatively recognize that without adaptive urban design such as cool roofs [10], for example, that by 2100 cities could cause global temperatures rises of 1 to 2°C [11,12]. Specifically a study in California calculated an offset of 1.31-1.47 °C with 100% deployment of “cool roofs” [11,12]. While such studies are helpful, we feel they may be far off in timing, as UHIs, as will be reviewed here, are already likely significantly contributing to current global warming trends.

To investigate the urgency for the need of UHI albedo corrective actions by the IPCC, the goal of this paper is to review the following UHI global warming issues:

• The magnitude of the temperature forcing created by UHI decreases to the global albedo trend with increases of tall building and large solar heating areas since 1950
• The UHI area and radiative forcing quoted by the IPCC in its latest release
• The possible sources of changes to observed humidity
• Humidity forcing issues from HHS
• Yearly storm water cycling of higher temperature water to local streams, lakes and ocean raising local water surface temperatures and evaporation rates
• RainWater Management (RWM) issues that can lead to increases in dry days and possibly drought
• Loss of natural vegetation evapotranspiration and associated dryness

Timeline of CO₂ Doubling Theory and UHI Estimates
Greenhouse theory and early predictions started as far back as 1856 with CO₂ experiments by Foote, Tyndall in 1859, and what has become very popular, doubling theory by Arrhenius in 1896 [13,14]. Since Arrhenius, doubling temperature estimations based on theory and linked to environmental trends, have shown some decreasing effect and historically unaccounted UHI effects in CO₂ doubling theory. This is illustrated in Table 1 that summarizes some of the key CO₂ history and predictions with the next to last row calculated based on current data in the Reference Column 1 and Equation 1.

\[
13.9°C (57.02°F)+2.36°C \frac{\ln(412/311.8)}{\ln 2}=14.85°C (58.73°F), 0.95°C (1.7°F) \text{ Rise}
\]
We would expect the doubling temperature to drop if one takes into account any UHI contribution to global warming. This is shown in the last row due to an assessment in Appendix C where we estimate the doubling temperature decrease to 1.15°C if we take into account that UHI contribute 33% to global warming trends. The word “conflicting” (Column 2) indicates that UHI warming estimate by the author(s) are currently not taken into account in CO₂ doubling theory by IPCC estimates and goals; this is part of our review.

2. IPCC 2020 Goals and Risks
The IPCC report SYR_AR5 [1] recommendations are to meet a goal of less than 2°C rise. This to be achieved by focusing on CO₂ reduction:

“Multi-model results show that limiting total human-induced warming to less than 2°C relative to the period 1861–1880 with a probability of >66% would require total CO₂ emissions from all anthropogenic sources since 1870 to be limited to about 2900 Gt CO₂ when accounting for non-CO₂ forcing as in the RCP2.6 scenario, with a range of 2550 to 3150 GtCO₂ arising from variations in non-CO₂ climate drivers across the scenarios considered by WGIII. About 1900 [1650 to 2150] Gt CO₂ were emitted by 2011, leaving about 1000 Gt CO₂ to be consistent with this temperature goal”

3.1 IPCC Report and the Attention Given to UHI Radiative Albedo Forcing
A review of the IPCC report indicates that UHI concerns occupy a very small portion of the report which does not recognize UHI concerns. One paragraph discusses it

• In WG1-AR4 (Chapter 2) city areas indicates that UHI occupy only 0.046% of the Earth’s surface and uses a reference by Loveland et al. (2000) as verification, and shows only 0.03 W-m⁻² heat flux (reference to Nakicenovic, 1998).

The actual paragraph and statements made about UHI is narrow in scope. The assessment of the area does not look at the solar city area adjustment for building and appears to disagree with a 2005 GRUMP [20-22] study by a factor of about 10-20 (see Appendix A) and needs to be updated. Their statement on energy per unit area relates to anthropogenic activities of local appliance and building heating flux, possibly pointing to concerns related to CO₂ emissions. Since fossil fuel heating accounts for <0.1 Watt/M² then the argument would need to be updated in order to properly address global warming concerns. We note that the area referenced of Loveland et. al. study is not meant to take into account cites’ solar heating area so it is not the best estimate. This seems to be the only area in the IPCC report providing some consideration to UHI effects. The minor assessment is apparently incomplete and leads one to believe that UHIs do not contribute significantly to global warming.

2. Independent UHI Albedo Forcing Assessment
Of the numerous studies on Urban Heat Island (UHI) effects, a few publications given in Table 1, conflict with the IPCC views and found UHIs are significantly contributing to global warming. McKitrick and Michaels [17] found that half of global warming trends from 1979 to 2002 is caused by UHI. Research in China [18, 19] indicates that UHI effects contribute to climate warming by about 30%. Another study found that UHI changes the climate in area 2–4
times larger than its own area [23]. These references reported issues as early as 2007, but do not appear in the IPCC report or are reflected in their goals.

In order to investigate independently to see if these authors’ estimates were reasonable and come to an independent assessment for this review, we developed a simplified global weighted albedo model with solar surface area assessed in Appendix A and formulated an albedo model in Appendix B. Table 1 illustrates what basic assumptions would be needed for albedo changes of city and their solar surface areas to support estimates since the 3rd industrial revolution (~1950). Column 2, 3, and 4, indicate numbers that did not seem unreasonable, to obtain such results, supporting the opinion that one-third of warming trends could be due to cities and roads, in agreement with these authors [17-19]. However, much of these results hinge upon the city solar area. Appendix A describes some of the difficulties of estimating even the basic non solar surface area since there is some disagreement in the literature. However, the disagreement, the IPCC city surface areas are not up to date. The results of Table 2 indicate the importance of coming up with solar city area estimates. If these numbers are ballpark reasonable, then it conflicts with IPCC estimates and CO$_2$ doubling theory. Using the estimates, we were also able to provide (last row), a corrective action “what if” scenario for albedo increase to 0.5 in cities and roads.

Table 2 Results of GW Temperature Budget Change With City Surface Areas and Albedos

<table>
<thead>
<tr>
<th>Year</th>
<th>Solar Surface Area of Cities*</th>
<th>Albedo Roads</th>
<th>Albedo Cities</th>
<th>Global Albedo</th>
<th>Temperature**</th>
<th>UHI Radiative Forcing</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPCC</td>
<td>0.046%</td>
<td>0.04</td>
<td>0.12</td>
<td>28.92</td>
<td>0.33°F</td>
<td>0.14 W/m2</td>
</tr>
<tr>
<td>1950</td>
<td>1.20%*</td>
<td>0.04</td>
<td>0.12</td>
<td>29%</td>
<td>0.2°F</td>
<td>3.46 W/m2</td>
</tr>
<tr>
<td>2019</td>
<td>2.95%*</td>
<td>0.04</td>
<td>0.12</td>
<td>28.72</td>
<td>0.65°F</td>
<td>8.45 W/m2</td>
</tr>
<tr>
<td>2019</td>
<td>2.95%*</td>
<td>0.5</td>
<td>0.5</td>
<td>29.45</td>
<td>-0.53°F</td>
<td>4.9 W/m2</td>
</tr>
</tbody>
</table>

*Area assessment in Appendix A, **where Temp is given by: $P_{Total}=1361 W/m^2 \left(0.25 \times (1-Albedo)\right)=\sigma T^4$

We note that the model finds that only a 0.31% global albedo changes would need to have occurred since 1950. Such a small change would likely be hard to verify from satellites due to cloud coverage. Since city urban areas are not very well known and certainly, the solar heating surface area is even more complex to estimate, it is likely that a more complex albedo weighted model would be unhelpful without detailed area data. However, from our estimates for this review we find:

- The IPCC (first row) would underestimate the radiative forcing based on their area estimates
- Actual shift from 1950 may be 0.45°F (0.65-0.2) due to Cities & Road increases, which is about 33% responsible for global warming in agreement with the quoted authors [17-19].
- A “what if” corrective action results shows if we can change city albedos to 0.5 and roads, total shift is 1.2°F = (0.65 - (-0.53)). This almost equates to the observed global warming.

This UHI albedo radiative forcing model provided above for cities and roads (in support of other authors [17-19]) indicate that IPCC global warming goals are insufficient at the present time.

3. Review of UHI Atmospheric Humidity Forcing Issues from Cities

It is well known that overall, water vapor in the atmosphere has increased over land and ocean since the 1970s as indicated by a rise in specific humidity [24,25], while the relative humidity is dropping [24,25]. Some highlights of this type of data are illustrated in Table 2. We also include in the next to last row some indication showing road growth from 2009 and 2012, a factor growth of five in just the 4 year period identified for low albedo surface area changes. As well in the last row showing, we see a factor of 3.75 growth in road and building materials from 1950 to 2006 to support the high rate of city growth occurring in general.

Table 3 Specific Humidity, Relative Humidity, and Warm Mixed Asphalt changes

<table>
<thead>
<tr>
<th>Source</th>
<th>Change</th>
<th>Period of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Humidity Change [24]</td>
<td>Specific Humidity Change Land & Ocean about the same Increase of 0.45 g kg$^{-1}$</td>
<td>1960-2013</td>
</tr>
<tr>
<td>Relative Humidity Change [24]</td>
<td>Δ%RH (land)-1% decrease Δ%RH (ocean)-0.5% decrease</td>
<td>1960-2013</td>
</tr>
<tr>
<td>Albedo Change [24]</td>
<td>ΔAlbedo (land)-4 units Units not defined (possibly reflectivity %)</td>
<td>2003-2012</td>
</tr>
<tr>
<td>US Warm Mixed Asphalt [26]</td>
<td>16.8 to 86.7 Million Tons</td>
<td>2009-2012</td>
</tr>
</tbody>
</table>
The IPCC and its authors have asserted that two-thirds of global warming trends are caused by increased moisture content in the atmosphere [1,28-33] due to ocean evaporation feedback. Here CO2 creates initial warming raising ocean temperatures with warmer air that holds more water vapor (i.e., per the Clausius-Clapeyron relation).

In this section, we review the sources to the actual increase in specific humidity. That is, where does the moisture originate from? Is it all ocean feedback or in part humidity forcing related to UHI?

- Instead of mainly ocean feedback scenario, we should consider that impermeable surfaces of cities and roads create HHS with Highly Evaporating Hot Surfaces (HEHS) which also can contribute to increases in specific humidity.

To investigate atmospheric humidity contribution to global warming, we looked at the evaporation rate as a metric. We investigate the rate of evaporation growth since 1950 from cities’ HHS and compared to the ocean evaporation rate increase since 1950 in Appendix D.

- What we estimated was that the evaporation rate increased of UHI, (mostly due to increase in surface area since 1950), compared to Ocean evaporation rate increase (mostly due to increase in water temperature increase since 1950) shows a 29% increase of cities evaporation rate compared to the ocean. This indicates that cities and roads HHS are also a likely source contributor to humidity forcing especially in light of the fact that UHI are a source of warming from albedo forcing effects.

3.1 Urban Local Greenhouse Amplification Effect from Hydro-Hotspots

Atmospheric moisture source is a complex issue from warm air effects that increase moisture greenhouse gas. This is also true of active HHS during precipitation periods which one might expect could help to trap city heat, increasing infrared radiation during these periods. For example, (using the Clausius-Clapeyron relation) if the ambient condition when it rains is 25°C/98%RH and the HHS surface temperature is 60°C (1000Watt/m², albedo=0.3, prior to rain cooling) then the local relative humidity at the hotspot surface is reduced from 98%RH to 15.6%RH. This can increase temporarily locally specific humidity atmospheric concentration building up and could trap UHI heat effectively amplifying IR radiation which can contribute to warming anomalies due to city surface albedo problems.

3.1 Highly Evaporation Surfaces and Rainwater Management HHS Feedback Mechanisms

In this section, we briefly review UHI related global warming issues by summarizing issues with the aid of Figures 1a and 1b. Figure 1a which shows Hydro-HotSpots (HHS) from Highly Evaporating Surfaces (HES) feedback and Figure 1b illustrate RainWater Management (RWM) feedback contributions to global warming.

![Figure 1](image-url)

Figure 1 a) HHS- HES feedback view of contribution to global warming, b) HHS Rainwater Management (RWM) high temperature water cycling in Climate Change

Figure 1a shows HHS-HEHS feedback that may be summarized:
- Low albedo cities and roads emitting infrared radiation (IR), increased warming (approx. 1/3)
- Precipitation occurs, followed by evaporation of HHS-HES moisture, lower %RH increase specific humidity GreenHouse gas in warmed city area
• Local heat amplification, less local cooling with increased specific humidity amplifies heat index
• Local warming radiates heat increasing Global warming (with the 1/3 estimate)
• Evaporation increases in cities and ocean primarily from UHI and roads creates lower %RH and higher specific humidity globally along with \(CO_2\) increase creating more humidity issues

Figure 1b Shows HHS-RWM feedback that may be summarized:
• Higher temperature storm water is collected off of HHS buildings, streets and hot cars
• A large percentage is drained to nearby rivers, lakes or ocean
• Warmer air allows for increase in specific humidity
• The impermeable city building and roads have replaced vegetative land creating lost area that would have stored cooler water in soil keeping the land moist with less generated heat compared to HHS runoff.
• This increases land dryness and can mean less land evaporation and more ocean rain since precipitation often follows evaporation areas as discussed below.
• The RWM is often warmer from HHS activity raising storm water temperatures from hot city buildings and street cycling each year billions of gallons of rainwater to local streams, lakes and ocean contributing to local surface water temperature increases depending on location. These runoffs affect atmospheric warming trends and GH gases (see Sec. 4).

3.2 Global Warming Alternate Contributing Estimates to IPCC
Typical \(CO_2\) doubling theories [1,28-32] asserts that 1/3 of global warming is roughly due to \(CO_2\) and 2/3 due to increases in atmospheric greenhouse moisture from ocean evaporation feedback. However, if we consider 1/3 warming comes instead from UHI, then clearly adjustments would be needed. For example, one could estimate that this leaves only 1/3 due to increase in ocean moisture (instead of 2/3). This scenario is modeled in Appendix C. Table 3 summarized the results for a possible alternate estimates (to IPCC [1]) contributions with UHI albedo effects substantially included. Note in \(CO_2\) theory the doubling temperature is found to drop down (Appendix C) to 1.15°C. The results (ignoring other greenhouse gases) are from 1951 to 2019. All estimates are detailed in Appendix C.

<table>
<thead>
<tr>
<th>Forced Effect</th>
<th>Contributing Change</th>
<th>Temperature Increase</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albedo (Cities & Roads)</td>
<td>0.29 to 0.287</td>
<td>0.57°F (0.317°C)</td>
<td>33.33%</td>
</tr>
<tr>
<td>Water Vapor</td>
<td>183 PPM increase</td>
<td>0.57°F (0.317°C)</td>
<td>33.33%</td>
</tr>
<tr>
<td>(CO_2)</td>
<td>100 PPM increase</td>
<td>0.57°F (0.317°C)</td>
<td>33.33%</td>
</tr>
<tr>
<td>Greenhouse Gas Increase</td>
<td>1.46%±60.8%-59.32%</td>
<td>(-0.63°C, (H_2O+CO_2))</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>283PPM</td>
<td>1.71°F (0.95°C)</td>
<td>100%</td>
</tr>
</tbody>
</table>

We note that the percent of moisture greenhouse gas is about 64.6% leaving \(CO_2\) greenhouse gas controlling about 35.4% of the global warming effect as estimate in this updated to the doubling theory. This is close to 1/3 estimate modeled in Appendix C and shown in the last column. That is, in this update, 1/3 of global warming by \(CO_2\) is responsible for the 0.317°C rise (Column 3), is controlled by the upper troposphere effect and in the lower troposphere 1/3 is due to moisture greenhouse gas and 1/3 due to UHI albedo effects. We suggest in this review, that the IPCC should re-asses their \(CO_2\) doubling estimates in order to take into account UHI effects and provide new estimates as exemplified. Historically, UHI warming effects have and are conflicted with \(CO_2\) doubling theory (Table 1) indicating concerns.

4. Data Information on Rainwater Management (RWM), Drought, Global Warming Trends
Rainwater management is an important factor as it too can influence global warming trends. It can also impact where it rains! Rain sometimes follows local evapotranspiration. Apart from precipitation, evapotranspiration is the major component in the hydrologic budget.

When it rains in a city, much of the land in urban areas is covered by pavement or asphalt. These impermeable surfaces in urban cities commonly estimated around 55% runoff, with 30% for evapotranspiration, 10% shallow soil infiltration, 5% deep soil infiltration. Water temperatures from runoffs are often hotter due to HHS. For example,
• The New York Environment Report, in 2014 reported [34], “Every year, old sewers flooded by storm water release more than 27 billion gallons of untreated sewage into New York Harbor.”
• Fry et al. [35] reported that in February of 2019 California estimated that 18 trillion gallons of rain in February alone had most of the water going to the Pacific Ocean. The article goes on to point out the LA dept. of water captured 22 billion gallons of water during recent storm.
• In August 2001, rains over Cedar Rapids, Iowa, led to a 10.5°C rise in the nearby stream within one hour, which led to a fish kill. Similar events have been documented across the American Midwest, as well as Oregon and California [36]
• Sydney Paper reported [37]: “Every year around 132 billion gallons of storm water – enough to fill Sydney Harbor – runs from Sydney to the sea.”

It is of course very difficult to tell the global thermodynamic influences of higher temperature water cycling. However, Australia might be a good extreme example, on the Sydney-Melbourne South-East side, the Tasman Sea is about 1 to 2 deciles range warmer (NOAA Sea Map [38]) than the South-West coast of Australia and about 5 deciles range warmer that the far south west coast. This might in part be an example of cyclic ocean heating. We tend to think of the ocean as an infinite temperature sink, but over 70 years of cycling, it can take a toll and perhaps this is somewhat of what we are seeing on the Sydney – Melbourne side and coastal issues.

4. Data Information on Rainwater Management (RWM) Dry Day Increases
As an example of the importance in losing wet land (water storage), Cao et. al. [39] did a study on wet land reduction in China and correlation to drought with the following conclusion
• “The wetland distributions and areas of the five provinces of southwestern China in the 1970s, 1990, 2000 and 2008 show that the total reduction of wetland area was 3553.21 km² in the five provinces of southwestern China from 1970 to 2008, accounting for about 17% of the ground area, and thus the average annual reduction area is about 88.83 km². The reduction rate was comparatively fast from 2000 to 2008 with an average annual reduction of 329.31 km². The changes to the wetland area show a negative correlation with temperature (i.e. wetland decrease, increase in temperature), and a positive correlation with precipitation (i.e. wetland decrease, precipitation decrease).” [39]

Hirshi et al. [40] did the following study
• “We analyzed observational indices based on measurements at 275 meteorological stations in central and southeastern Europe, and on publicly available gridded observations. We find a relationship between soil-moisture deficit, as expressed by the standardized precipitation index, and summer hot extremes in southeastern Europe. This relationship is stronger for the high end of the distribution of temperature extremes. We compare our results with simulations of current climate models and find that the models correctly represent the soil-moisture impacts on temperature extremes in southeastern Europe, but overestimate them in central Europe.”

In Hirshi et. al study [40] they observed a negative linear relationship between wet land decrease and dry days increase.

6. Summary - Solutions
From a review of data and its analysis presented, it is our opinion that the IPCC goals focused solely on CO₂ reduction appears not to be enough to stop global warming trends from occurring. Our conclusion is that albedo reduction of UHI is needed to help stop global warming anomalies. This will also reduce HHS contribution to atmospheric moisture issues. Of course, we also feel more studies are needed to assess these impacts such as better estimates of global UHI solar surface areas. In this review we exemplified CO₂ doubling theory which one would anticipate that the doubling temperature would be reduced given any additional source of UHI global warming. The results indicated a drop from 2.36 to about 1.15°C found in the doubling temperature in our suggested model. Since the doubling temperature significantly drops as one might expect upon recognizes UHI warming influences, one might anticipate concerns in CO₂ doubling theory. Below we provide suggestions and corrective actions related to Albedo and HHS reduction that includes:

• Creating new IPCC goals to include and recognize albedo forcing issue of UHI and roads
• Recommending changes for albedo of roads and cities to reducing HHS and the area effect dramatically, i.e. paint roads and building with reflective colors (have minimally albedo requirements, 0.25 – 0.5)
• Mandating future albedo design requirements of city and roads
• Roads to be more HHS eco-friendly
• Reduce driving speeds during rain to reduce evaporation rates can also reduce KE molecules
• Change to electric cars with HHS - cooler hoods
• Requiring all cars to be silver or white
• Thoroughly assess and making goals for rain water management issues including evapotranspiration and rainwater runoff allowed temperatures released into streams, rivers, lakes and oceans
• Requiring negative population growth to reduce increase HHS-HES surfaces and fossil fuel use
• Improve HHS-HES irrigation to soil
• Improving vegetation in runoff areas
• Adopting Low Impact Development in city planning and improvements for design approach aiming to mimic naturalized water balances with semi-permeable surfaces
• Requiring severe HHS-RWM changes to reduce runoff into the ocean worldwide that can cause loss of wet lands and local increase in dry days and increase in evaporation rates
• Providing new studies on albedo and humidity forcing from UHI to better understand their effects, address conflicts with CO\textsubscript{2} theory. Providing updated UHI radiative forcing contribution to GW. Provide a modern microclimate doubling experiment if possible to verify doubling claims.

Appendix A: Solar City Surface Area Estimates

One of the main criteria needed for UHI albedo modeling are estimates of solar surface areas covered by cities and roads. The effect of area increase by a factor of 3 in 2019 Column 2 compared to 6 in Table A1 is somewhat supported by Decheng et al. [23] that found UHI changes the climate in area 2–4 times larger than its own area. We have used an average factor of 3. Certainly, estimating solar city areas of cities globally from 1950 to 2019 is a difficult task. Therefore, we use this estimate of Decheng et al [23] and illustrate how this estimate could be justified.

<table>
<thead>
<tr>
<th>Year</th>
<th>Urban Area Percent</th>
<th>Buildings % Coverage</th>
<th>Surface area & Height factor</th>
<th>Solar surface Area %</th>
<th>50% Illumination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>0.62</td>
<td>0.50</td>
<td>7</td>
<td>2.48</td>
<td>1.2</td>
</tr>
<tr>
<td>2019</td>
<td>1.10</td>
<td>0.50</td>
<td>10</td>
<td>6.05</td>
<td>3.0</td>
</tr>
</tbody>
</table>

To further justify the rough factor of 3, we use a 2010, estimates from a GRUMP [20] 2005 study (and its critics [41] of the study) indicate just the surface area relative to the Earth’s coverage is somewhere between 0.85% and 2.7%. Another 2010 study indicates its much lower to 0.3% [42]. We will take a round number of 1% coverage of the Earth surface area in 2010. The growth rate of cities is taken from the U.S. Census of 0.8% per year [43]. We are interested in Global Warming trends from 1950 to 2019. The extrapolation using this growth rate is shown in Column 2 of 1. We then need to make a rough estimate that buildings occupied 50% of the urban land (Column 3). Finally we add a multiplication factor to assume each building sides equates to 7 times the bottom surface area in 1950. As well since buildings have become taller [44] we increase the height factor from 7 to 10 times in 2019 (Column 4). The estimates are shown in Table A1 for example the 1950 estimate is 0.62x0.5+0.62x.5x7=2.48 (column 5) and then we take 50% illumination factor (Column 6). This agrees more or less with Decheng et al. [23].

Appendix B: Simplified Weighted Albedo Model 1950 & 2020

Below is a simplified author’s Albedo model to estimate the Earth’s total albedo decrease with increase in city and road solar areas and a decrease in grass lands. A simplified global albedo model is really all that is needed to illustrate the sensitivity of global albedo change from 1950 to 2019 when illustrating feasibility.

Results of the simplified weighted model are exemplified in Table B1-B3 with the full estimates provided in Table 2. Equation B1 is the weighted albedo by area,

\[
Earth \text{ Weighted Albedo} = \sum_i \left\{ (\% \text{ Earth Area}_i \times (1 - \text{Surface Item Albedo}_i)) \right\} \quad (B1)
\]

Equation B2 is the average weighted albedo with clouds.

\[
Global \text{ Weighted Albedo} = \text{Average}\{((1 - \text{Clouds Albedo}) \times \% \text{ Coverage}) + (1 - \text{Earth Weighted Albedo})\} \quad (B2)
\]
Below we show a “what if” scenario illustrating if roads and urban coverage could have an increase albedo to 0.5.

Table B3: Albedo=0.294, “what if”

<table>
<thead>
<tr>
<th>Surface</th>
<th>Enter % of Earth Area</th>
<th>Enter Albedo (0-1)</th>
<th>Weighted Albedo % Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>71</td>
<td>2.40</td>
<td></td>
</tr>
<tr>
<td>Snow</td>
<td>12</td>
<td>0.8</td>
<td>0.77</td>
</tr>
<tr>
<td>Ice</td>
<td>10</td>
<td>0.8</td>
<td>0.77</td>
</tr>
<tr>
<td>Open Ocean</td>
<td>49</td>
<td>0.46</td>
<td>36.36</td>
</tr>
<tr>
<td>Land</td>
<td>25.1</td>
<td>0.04</td>
<td>0.4</td>
</tr>
<tr>
<td>Roads (0.04)</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Urban Cov (0.12)</td>
<td></td>
<td>1.2</td>
<td>0.17</td>
</tr>
<tr>
<td>Forest (0.17)</td>
<td></td>
<td>2.6</td>
<td>0.36</td>
</tr>
<tr>
<td>Grass lands (0.26)</td>
<td></td>
<td>9.9</td>
<td>9.54</td>
</tr>
<tr>
<td>Desert (0.4)</td>
<td></td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>Sum % of Earth Area</td>
<td>100.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighted Earth</td>
<td></td>
<td>26.27</td>
<td></td>
</tr>
<tr>
<td>Clouds (0.47)</td>
<td>60</td>
<td>0.472</td>
<td>28.98</td>
</tr>
</tbody>
</table>

Global Average Clouds & Weighted Earth %

<table>
<thead>
<tr>
<th>Surface</th>
<th>Enter % of Earth Area</th>
<th>Enter Albedo (0-1)</th>
<th>Weighted Albedo % Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>69.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow</td>
<td>11.39</td>
<td>0.8</td>
<td>2.28</td>
</tr>
<tr>
<td>Ice</td>
<td>9.63</td>
<td>0.6</td>
<td>3.55</td>
</tr>
<tr>
<td>Open Ocean</td>
<td>48.43</td>
<td>0.06</td>
<td>45.52</td>
</tr>
<tr>
<td>Land</td>
<td>25.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roads (0.04)</td>
<td></td>
<td>0.78</td>
<td>0.44</td>
</tr>
<tr>
<td>Urban Cov (0.12)</td>
<td></td>
<td>0.78</td>
<td>0.44</td>
</tr>
<tr>
<td>Forest (0.17)</td>
<td></td>
<td>1.2</td>
<td>1.48</td>
</tr>
<tr>
<td>Grass lands (0.26)</td>
<td></td>
<td>6.4</td>
<td>6.39</td>
</tr>
<tr>
<td>Desert (0.4)</td>
<td></td>
<td>9.72</td>
<td>5.83</td>
</tr>
<tr>
<td>Sum % of Earth Area</td>
<td>99.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighted Earth</td>
<td></td>
<td>27.24</td>
<td></td>
</tr>
<tr>
<td>Clouds (0.47)</td>
<td>60</td>
<td>0.472</td>
<td>31.68</td>
</tr>
</tbody>
</table>

Global Average Clouds & Weighted Earth %

<table>
<thead>
<tr>
<th>Surface</th>
<th>Enter % of Earth Area</th>
<th>Enter Albedo (0-1)</th>
<th>Weighted Albedo % Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>69.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow</td>
<td>11.39</td>
<td>0.8</td>
<td>2.28</td>
</tr>
<tr>
<td>Ice</td>
<td>9.63</td>
<td>0.6</td>
<td>3.55</td>
</tr>
<tr>
<td>Open Ocean</td>
<td>48.43</td>
<td>0.06</td>
<td>45.52</td>
</tr>
<tr>
<td>Land</td>
<td>25.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roads (0.04)</td>
<td></td>
<td>0.78</td>
<td>0.44</td>
</tr>
<tr>
<td>Urban Cov (0.12)</td>
<td></td>
<td>0.78</td>
<td>0.44</td>
</tr>
<tr>
<td>Forest (0.17)</td>
<td></td>
<td>1.2</td>
<td>1.48</td>
</tr>
<tr>
<td>Grass lands (0.26)</td>
<td></td>
<td>6.4</td>
<td>6.39</td>
</tr>
<tr>
<td>Desert (0.4)</td>
<td></td>
<td>9.72</td>
<td>5.83</td>
</tr>
<tr>
<td>Sum % of Earth Area</td>
<td>99.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighted Earth</td>
<td></td>
<td>27.24</td>
<td></td>
</tr>
<tr>
<td>Clouds (0.47)</td>
<td>60</td>
<td>0.472</td>
<td>31.68</td>
</tr>
</tbody>
</table>

Global Average Clouds & Weighted Earth %

Appendix C1: Table 4 Temperature Estimates

In this appendix, we assume that one-third of global warming is due to UHIs and roads. Using this estimate, it is logical to use a model that splits warming trends between CO_2, albedo forcing mechanisms and the warming increase due to atmospheric greenhouse moisture content as follows:

- $1/3 CO_2$
- $1/3$ UHI albedo forcing
- $1/3$ moisture

The full temperature summary from 1951 to December of 2019 is then

$$0.57^\circ F (0.317^\circ C) (H_2O) + 0.57^\circ F (0.317^\circ C) (CO_2) + 0.57^\circ F (0.317^\circ C) (Albedo)=1.71^\circ F (0.95^\circ C) \quad \text{(C-1)}$$

This yields the 2019 (December) global average temperature of 14.85°C (58.73°F).

Appendix C2: Table 1 CO_2 Doubling Estimate with UHI warming effects included

To estimate the CO_2 doubling temperature we will simply split the forcing trend between UHI and CO_2 where both warming trends create increase in global specific humidity (via Clausius-Clapeyron relation). Therefore, we take the temperature rise to be $0.57^\circ F/0.57^\circ F/0.57^\circ F/0.57^\circ F/0.57^\circ F$ due to CO_2 greenhouse gas where $0.57^\circ F$ is directly due to CO_2 warming and we split the other $0.57^\circ F$ (moisture effect) between albedo forcing and CO_2 forcing. Therefore using doubling theory due to CO_2 we now have

$$13.9^\circ C (57^\circ F)+ 1.15^\circ C Ln[414/311.8]/Ln2=14.36^\circ C (57.85^\circ F)$$
This indicates that the doubling temperature would drop down to 1.15°C from 2.36°C noted in Table 1. As the table indicates, this is in conflict with CO₂ doubling estimates and would indicate a necessity for new evaluations by the IPCC.

Appendix C3: Table 4 Greenhouse Gas Estimates

Here we review the change in greenhouse gas from 1950 to 2019. We first note that the Earth’s energy budget in 1950 due to the estimated global albedo of 0.29 is 241.58 Watts/m² (where \(P_{\text{Total}} = 1361 \text{ Watts/m}^2 \{0.25 \times (1-0.29)\} \)). In 1950 the average temperature was 57°F. This yields 384.93 Watts/m² \((P=\sigma T^4) \). This leaves 143.3 Watts/m² of power emitted back by GH gases which is 59.34% of the 241.58 Watts/m². In 2019 Earth energy budget is 242.63 (\(P_{\text{Total}} = 1361 \text{ Watts/m}^2 \{0.25 \times (1-0.2869)\} \)), the average temperature is taken as 58.73°F yielding 390.1 Watts/m² which leaves 147.47 Watts/m² above the Earth’s energy budget or 60.8% emitted back by GreenHouse (GH) gases. The difference of the emitted back radiation is 3.1 Watts/m² (note we took into account an albedo change in 2019 in the Earth’s energy budget that makes this estimate lower than the 4.1 Watts/m² typical found) and the difference in the percent of emitted back Greenhouse gases is

\[
1.46\% = 147.47/242.63-143.3/241.58=60.8%-59.32\%
\]

Therefore, this must be the percent of GH gases required to increase global temperatures to 1.14°F (0.317+0.317=0.634°C).

Using 312 PPM in 1951 and 412PPM of CO₂ in 2019 and an average of 25,000 PPM for water vapor in our atmosphere [46], the 1.48% GH gas increase is estimated as \(\frac{1}{2} \) of 1.48% from moisture and CO₂ as

\[
25,000 \text{ PPM x } \frac{1}{2} \text{ of } 1.46\% = 183 \text{ PPM (} H_2O \uparrow \text{)}
\]

\[
\frac{1}{2} \text{ of } 1.46\% = 100 \text{ PPM } CO_2 \uparrow \text{ (doubling theory)}
\]

\[
183 \text{ PPM (} H_2O \uparrow \text{)} + 100 \text{ PPM (} CO_2 \uparrow \text{)} = 283 \text{ PPM}
\]

We note that the percent of moisture greenhouse gas is about 64.6% leaving CO₂ greenhouse gas controlling about 35.4% of the global warming effect as estimate in this updated doubling theory. This is close to 1/3 estimate. That is, in this update, 1/3 of global warming by CO₂, the 0.317C rise it creates is controlled by the upper troposphere effect and in the lower troposphere 1/3 is due to moisture greenhouse gas and 1/3 due to UHI albedo effects.

Appendix D: Evaporation Rate of Cities Vs. Ocean Feedback

It is important to note the assess urban growth as a source of moisture greenhouse gas. Therefore, in this example, the evaporation rate increase of HHS simulated area in Cities (Ec) vs that of the Ocean (Eo), we make comparison between 1950 and 2019 relative to a possible average hydro-hotspot temperature of 50°C (using average range from 25°C-75°C) for simulated area growth. We find that the evaporation rate increase is higher in cities compared to Oceans.

In this assessment, we will first ignore the evaporation wind effect. The comparisons for the effects are:

\[
HHS_{\text{effect-0}}(1950) = \frac{E_o}{E_C} = \frac{A_o}{A_C} R(T_o,T_{\text{HHS}}) = \frac{E_{wO} \cdot RH_C}{E_{wC} \cdot RH_o} = 40.8 \times \frac{1}{6.69} \times 100 \times 0.5 = 304.9
\]

D-1

and

\[
HHS_{\text{effect-0}}(2019) = \frac{E_o}{E_C} = \frac{A_o}{A_C} R(T_o,T_{\text{HHS}}) = \frac{E_{wO} \cdot RH_C}{E_{wC} \cdot RH_o} = 16.3 \times \frac{1}{6.28} \times 100 \times 0.5 = 129.8
\]

D-2

Where:

- \(E_o, E_C \) = Evaporation Rate of Ocean, Evaporation Rate of Cities
- \(A_o, A_C \) = Surface Area of Ocean, simulated proportional Area of City Surfaces growth rate (\(A_o/AC=49%/3%=16.3 \) in 2019, \(A_o/AC=49%/1.2%=40.8 \) in 1950)
- \(T_o \) = Average ocean temperature, 16C, 1950, 17C 2019
- \(T_{\text{HHS}} \) = average temperature of hydro-hotspots, 50C
- \(R(T_o,T_{\text{HHS}}) \) = Temp. rate factor Ocean to City HHS ~6.69
- \(R(T_o,T_{\text{HHS}}) \) = Temp. rate factor Ocean to City HHS ~6.28,
- \(E_a=0.45eV \) [47] \(\text{ where } R = \exp \left(\frac{E_a}{k_B T_{\text{HHS}}} - 1 \right), E_a=0.45eV \)
10

From Eq. D-1 and D-2, we find the percent increase in evaporation rate from HHS relative to the ocean since 1950 (ignoring wind) as:

$$\text{Increase} = \frac{304.9 - 129.8}{304.9} \times 100\% = 195.7\%$$

We might consider the wind effect in cities to have decreased by a maximum value of 50% due to tall building and growth, this would yield a 29% growth rate in evaporation compared to the ocean effect.

In summary, humidity forcing from HHS shows a strong evaporation growth rate compared to ocean changes in evaporation rate from 1950 to 2019. This supports reasonable strong feasibility that the 1.46% increase (Appendix C3) in greenhouse gas due to moisture contribution (Table 4) has contributions from UHI humidity forcing and ocean evaporation due to the Clausius-Clapeyron effect.
24. Zhou, Decheng; Zhao, Shuqing; Zhang, Liangxia; Sun, Ge; Liu, Yongqiang (10 June 2015). "The footprint of urban heat island effect in China". Scientific Reports. 5: 11160.
35. H. Fry, A. Reyes-Velarde, California wastes most of its rainwater, which simply goes down the drain, LA Times, Feb. 2019.
36. Wikipedia, Urban Heat Island
42. 2010, Demographia World Urban Areas and Population Projections accounts for more than 50% of world urbanization and includes all identified urban areas with 500,000 population or more. These urban areas cover only 0.3% of the world's land area.
44. J. M. Barr, the Economics of Skyscraper Height (Part IV): Construction Costs Around the World, 2019 https://buildingtheskyline.org/skyscraper-height-iv/

Biography
Alec Feinberg is the founder of DfRSoft. He has a Ph.D. in Physics and is the principal author of the books, Design for Reliability and Thermodynamic Degradation Science: Physics of Failure, Accelerated Testing, Fatigue, and Reliability Applications. Alec has presented numerous technical papers and won the 2003 RAMS best tutorial award for the topic, “Thermodynamic Reliability Engineering.” Alec has studied degradation systems for his entire professional career.