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Abstract. In this paper, we consider the class of α[γ,γ
′
]-generalized

closed set in topological spaces and investigate some of their properties.
We also present and study new separation axioms by using the notions
of α-open and α-bioperations. Also, we analyze the relations with some
well known separation axioms.

1. Introduction

The study of α-open sets was initiated by Nj̊astad [3]. Maheshwari [8] and
Maki [9] introduced and studied a new separation axiom called α-separation
axiom. Kasahara [2] defined the concept of an operation on topological
spaces and introduced α-closed graphs of an operation. Ogata [4] called
the operation α as γ operation and introduced the notion of γ-open sets
and used it to investigate some new separation axioms. For two operations
on τ some bioperation-separation axioms were defined [7], [5]. Moreover,
Hariwan [6] defined the concept of an operation on αO(X, τ) and introduced
αγ-open sets and αγ-Ti (i = 0, 12 , 1, 2) in topological spaces. In this paper,
In Section 3, we introduce the concept of α[γ,γ′ ]-generalized closed sets and

investigate some of its important properties. The notion of new bioperation
α-separation axioms is introduced in section 4. We compare these separation
axioms with the separation axioms in [10], [4], [6], [7] and [5].

2. Preliminaries

Throughout this paper, (X, τ) and (Y, σ) represent non-empty topolog-
ical spaces on which no separation axioms are assumed, unless otherwise
mentioned. Let (X, τ) be a topological space and A be a subset of X. The
closure of A and the interior of A are denoted by Cl(A) and Int(A), re-
spectively. A subset A of a topological space (X, τ) is said to be α-open
[3] if A ⊆ Int(Cl(Int(A))). The complement of an α-open set is said to
be α-closed. The intersection of all α-closed sets containing A is called the
α-closure of A and is denoted by αCl(A). The family of all α-open (resp.
α-closed) sets in a topological space (X, τ) is denoted by αO(X, τ) (resp.
αC(X, τ)). An operation γ [2] on a topology τ is a mapping from τ in to
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power set P (X) of X such that V ⊆ V γ for each V ∈ τ , where V γ denotes
the value of γ at V . A subset A of X with an operation γ on τ is called
γ-open [4] if for each x ∈ A, there exists an open set U such that x ∈ U and
Uγ ⊆ A. An operation γ : αO(X, τ)→ P (X) [6] is a mapping satisfying the
following property, V ⊆ V γ for each V ∈ αO(X, τ). We call the mapping
γ an operation on αO(X, τ). A subset A of X is called an αγ-open set
[6] if for each point x ∈ A, there exists an α-open set U of X containing
x such that Uγ ⊆ A. We denote the set of all αγ-open sets of (X, τ) by
αO(X, τ)γ . An operation γ on αO(X, τ) is said to be α-regular [6] if for
every α-open sets U and V containing x ∈ X, there exists an α-open set W
of X containing x such that W γ ⊆ Uγ ∩ V γ . An operation γ on αO(X, τ)
is said to be α-open [6] if for every α-open set U of each x ∈ X, there exists
an αγ-open set V such that x ∈ V and V ⊆ Uγ . A subset A of X is said
to be α[γ,γ′ ]-open [1] if for each x ∈ A there exist α-open sets U and V of

X containing x such that Uγ ∩ V γ′ ⊆ A. The set of all α[γ,γ′ ]-open sets

of (X, τ) is denoted by αO(X, τ)[γ,γ′ ]. A subset F of (X, τ) is said to be

α[γ,γ′ ]-closed if its complement X \ F is α[γ,γ′ ]-open. The intersection of all

α[γ,γ′ ]-closed sets containing A is called the α[γ,γ′ ]-closure of A and denoted

by α[γ,γ′ ]-Cl(A). The union of all α[γ,γ′ ]-open sets contained in A is called

the α[γ,γ′ ]-interior of A and denoted by α[γ,γ′ ]-Int(A).

In the remainder of this section all the definitions and results are from
[1].

Proposition 2.1. Let A be any subset of a topological space (X, τ). Then,
X \ α[γ,γ′ ]-Int(A) = α[γ,γ′ ]-Cl(X \A).

Theorem 2.2. If γ and γ
′

are α-open operations and A a subset of (X, τ).
Then, we have αCl[γ,γ′ ](αCl[γ,γ′ ](A)) = αCl[γ,γ′ ](A).

Proposition 2.3. Let A be any subset of a topological space (X, τ). If A is

[γ, γ
′
]-open [5], then A is α[γ,γ′ ]-open.

Remark 2.4. If γ and γ
′

are α-regular operations, then αO(X, τ)[γ,γ′ ] form

a topology on X.

Proposition 2.5. Let A and B be any subsets of a topological space (X, τ).
If A is αγ-open and B is αγ′ -open, then A ∩B is α[γ,γ′ ]-open.

Definition 2.6. A function f : (X, τ)→ (Y, σ) is said to be (α[γ,γ′ ], α[β,β′ ])-

continuous if for each point x ∈ X and each α-open sets W and S of Y
containing f(x) there exist α-open sets U and V of X containing x such

that f(Uγ ∩ V γ
′
) ⊆W β ∩ Sβ′

.

Definition 2.7. A function f : (X, τ)→ (Y, σ) is said to be (α[γ,γ′ ], α[β,β′ ])-

closed if for α[γ,γ′ ]-closed set A of X, f(A) is α[β,β′ ]-closed in Y .
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3. α[γ,γ′ ]-g.Closed Sets

In this section, we define and study some properties of α[γ,γ′ ]-g.closed sets.

Definition 3.1. A subset A of X is said to be an α[γ,γ′ ]-generalized closed

(briefly, α[γ,γ′ ]-g.closed) set if α[γ,γ′ ]-Cl(A) ⊆ U whenever A ⊆ U and U is

an α[γ,γ′ ]-open set in (X, τ).

Remark 3.2. It is clear that every α[γ,γ′ ]-closed set is α[γ,γ′ ]-g.closed. But

the converse is not true in general as it is shown in the following example.

Example 3.3. Let X = {a, b, c} and τ = {φ, {a}, {b}, {a, b}, {a, c}, X}. For

each A ∈ αO(X), we define two operations γ and γ
′
, respectively, by

Aγ = Aγ
′

=

{
A if A = {b} or {a, c},
X otherwise.

Now, if we let A = {a}, since the only α[γ,γ′ ]-open supersets of A are {a, c}
and X, then A is α[γ,γ′ ]-g.closed. But it is easy to see that A is not α[γ,γ′ ]-

closed.

Proposition 3.4. If A is γ-open and α[γ,γ′ ]-g.closed then A is α[γ,γ′ ]-closed.

Proof. Suppose that A is γ-open and α[γ,γ′ ]-g.closed. As every γ-open is

α[γ,γ′ ]-open and A ⊆ A, we have α[γ,γ′ ]-Cl(A) ⊆ A, also A ⊆ α[γ,γ′ ]-Cl(A),

therefore α[γ,γ′ ]-Cl(A) = A. That is A is α[γ,γ′ ]-closed. �

Remark 3.5. If A is α[γ,γ′ ]-open and α[γ,γ′ ]-g.closed then A is α[γ,γ′ ]-closed.

Proposition 3.6. The intersection of an α[γ,γ′ ]-g.closed set and an α[γ,γ′ ]-

closed set is always α[γ,γ′ ]-g.closed.

Proof. Let A be α[γ,γ′ ]-g.closed and F be α[γ,γ′ ]-closed. Assume that U is

α[γ,γ′ ]-open set such that A∩F ⊆ U , set G = X \F . Then A ⊆ U ∪G, since

G is α[γ,γ′ ]-open, then U ∪ G is α[γ,γ′ ]-open and since A is α[γ,γ′ ]-g.closed,

then α[γ,γ′ ]-Cl(A) ⊆ U ∪G. Now, α[γ,γ′ ]-Cl(A∩F ) ⊆ α[γ,γ′ ]-Cl(A)∩α[γ,γ′ ]-

Cl(F ) = α[γ,γ′ ]-Cl(A)∩F ⊆ (U∪G)∩F = (U∩F )∪(G∩F ) = (U∩F )∪φ ⊆
U . �

Remark 3.7. The intersection of two α[γ,γ′ ]-g.closed sets need not be α[γ,γ′ ]-

g.closed in general. It is shown by the following example.

Example 3.8. Let X = {a, b, c} and τ be a discrete topology on X. For

each A ∈ αO(X) we define two operations γ and γ
′
, respectively, by

Aγ = Aγ
′

=

{
A if A = {a},
X if A 6= {a}.

Set A = {a, b} and B = {a, c}. Clearly, A and B are α[γ,γ′ ]-g.closed sets,

since X is their only α[γ,γ′ ]-open superset. But C = {a} = A ∩ B is not

α[γ,γ′ ]-g.closed, since C ⊆ {a} ∈ αO(X, τ)[γ,γ′ ] and α[γ,γ′ ]-Cl(C) = X 6⊆ {a}.
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Proposition 3.9. If γ ana γ
′

are α-regular operations on αO(X). Then
the finite union of α[γ,γ′ ]-g.closed sets is always an α[γ,γ′ ]-g.closed set.

Proof. Let A and B be two α[γ,γ′ ]-g.closed sets, and let A ∪ B ⊆ U , where

U is α[γ,γ
′
]-open. Since A and B are α[γ,γ

′
]-g.closed sets, therefore α[γ,γ

′
]-

Cl(A) ⊆ U and α[γ,γ′ ]-Cl(B) ⊆ U implies α[γ,γ′ ]-Cl(A) ∪ α[γ,γ′ ]-Cl(B) ⊆ U .

But, we have α[γ,γ′ ]-Cl(A) ∪ α[γ,γ′ ]-Cl(B) = α[γ,γ′ ]-Cl(A ∪ B). Therefore

α[γ,γ′ ]-Cl(A ∪B) ⊆ U . Hence A ∪B is an α[γ,γ′ ]-g.closed set. �

Remark 3.10. The union of two α[γ,γ′ ]-g.closed sets need not be α[γ,γ′ ]-

g.closed in general. It is shown by the following example.

Example 3.11. Let X = {a, b, c} and τ be a discrete topology on X. For

each A ∈ αO(X) we define two operations γ and γ
′
, respectively, by

Aγ =

{
A if A = {a, b} or {a, c} or {b, c},
X otherwise,

and Aγ
′

= X. Let A = {a} and B = {b}. Here A and B are α[γ,γ′ ]-g.closed

but A ∪ B = {a, b} is not α[γ,γ′ ]-g.closed, since {a, b} is α[γ,γ′ ]-open and

α[γ,γ′ ]-Cl({a, b}) = X.

Proposition 3.12. If a subset A of X is α[γ,γ′ ]-g.closed and A ⊆ B ⊆
α[γ,γ′ ]-Cl(A), then B is an α[γ,γ′ ]-g.closed set in X.

Proof. Let A be an α[γ,γ′ ]-g.closed set such that A ⊆ B ⊆ α[γ,γ′ ]-Cl(A). Let

U be an α[γ,γ
′
]-open set of X such that B ⊆ U . Since A is α[γ,γ

′
]-g.closed,

we have α[γ,γ′ ]-Cl(A) ⊆ U . Now α[γ,γ′ ]-Cl(A) ⊆ α[γ,γ′ ]-Cl(B) ⊆ α[γ,γ′ ]-

Cl[α[γ,γ′ ]-Cl(A)] = α[γ,γ′ ]-Cl(A) ⊆ U . That is α[γ,γ′ ]-Cl(B) ⊆ U , where U

is α[γ,γ′ ]-open. Therefore B is an α[γ,γ′ ]-g.closed set in X. �

Proposition 3.13. For each x ∈ X, {x} is α[γ,γ′ ]-closed or X \ {x} is

α[γ,γ′ ]-g.closed in (X, τ).

Proof. Suppose that {x} is not α[γ,γ′ ]-closed, then X \ {x} is not α[γ,γ′ ]-

open. Let U be any α[γ,γ′ ]-open set such that X \ {x} ⊆ U , implies U = X.

Therefore α[γ,γ′ ]-Cl(X \ {x}) ⊆ U . Hence X \ {x} is α[γ,γ′ ]-g.closed. �

Proposition 3.14. A subset A of X is α[γ,γ′ ]-g.closed if and only if α[γ,γ′ ]-

Cl({x}) ∩A 6= φ, holds for every x ∈ α[γ,γ′ ]-Cl(A).

Proof. Let U be an α[γ,γ′ ]-open set such that A ⊆ U and let x ∈ α[γ,γ′ ]-

Cl(A). By assumption, there exists a point z ∈ α[γ,γ′ ]-Cl({x}) and z ∈ A ⊆
U . It follows that U ∩{x} 6= φ, hence x ∈ U , this implies α[γ,γ′ ]-Cl(A) ⊆ U .

Therefore A is α[γ,γ′ ]-g.closed.

Conversely, suppose that x ∈ α[γ,γ′ ]-Cl(A) such that α[γ,γ′ ]-Cl({x})∩A = φ.

Since, α[γ,γ′ ]-Cl({x}) is α[γ,γ′ ]-closed. Therefore, X \ α[γ,γ′ ]-Cl({x}) is an
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α[γ,γ′ ]-open set in X. Since A ⊆ X\(α[γ,γ′ ]-Cl({x})) and A is α[γ,γ′ ]-g.closed

implies that α[γ,γ′ ]-Cl(A) ⊆ X \α[γ,γ′ ]-Cl({x}) holds, and hence x /∈ α[γ,γ′ ]-

Cl(A). This is a contradiction. Therefore α[γ,γ′ ]-Cl({x}) ∩A 6= φ. �

Proposition 3.15. A set A of a space X is α[γ,γ′ ]-g.closed if and only if

α[γ,γ′ ]-Cl(A) \A does not contain any non-empty α[γ,γ′ ]-closed set.

Proof. Necessity. Suppose that A is an α[γ,γ′ ]-g.closed set in X. We prove

the result by contradiction. Let F be an α[γ,γ′ ]-closed set such that F ⊆
α[γ,γ′ ]-Cl(A)\A and F 6= φ. Then F ⊆ X\A which implies A ⊆ X\F . Since

A is α[γ,γ′ ]-g.closed and X \F is α[γ,γ′ ]-open, therefore α[γ,γ′ ]-Cl(A) ⊆ X \F ,

that is F ⊆ X \ α[γ,γ′ ]-Cl(A). Hence F ⊆ α[γ,γ′ ]-Cl(A) ∩ (X \ α[γ,γ′ ]-

Cl(A)) = φ. This shows that, F = φ which is a contradiction. Hence
α[γ,γ′ ]-Cl(A) \A does not contain any non-empty α[γ,γ′ ]-closed set in X.

Sufficiency. Let A ⊆ U , where U is α[γ,γ′ ]-open in X. If α[γ,γ′ ]-Cl(A)

is not contained in U , then α[γ,γ′ ]-Cl(A) ∩ X \ U 6= φ. Now, since α[γ,γ′ ]-

Cl(A)∩X \U ⊆ α[γ,γ′ ]-Cl(A) \A and α[γ,γ′ ]-Cl(A)∩X \U is a non-empty

α[γ,γ′ ]-closed set, then we obtain a contradication and therefore A is α[γ,γ′ ]-

g.closed. �

Proposition 3.16. If A is an α[γ,γ′ ]-g.closed set of a space X, then the

following are equivalent:

(1) A is α[γ,γ′ ]-closed.

(2) α[γ,γ′ ]-Cl(A) \A is α[γ,γ′ ]-closed.

Proof. (1) ⇒ (2). If A is an α[γ,γ′ ]-g.closed set which is also α[γ,γ′ ]-closed,

then by Proposition 3.15, α[γ,γ′ ]-Cl(A) \A = φ, which is α[γ,γ′ ]-closed.

(2) ⇒ (1). Let α[γ,γ′ ]-Cl(A) \ A be an α[γ,γ′ ]-closed set and A be α[γ,γ′ ]-

g.closed. Then by Proposition 3.15, α[γ,γ′ ]-Cl(A) \ A does not contain any

non-empty α[γ,γ′ ]-closed subset. Since α[γ,γ′ ]-Cl(A) \ A is α[γ,γ′ ]-closed and

α[γ,γ′ ]-Cl(A) \A = φ, this shows that A is α[γ,γ′ ]-closed. �

Proposition 3.17. For a space (X, τ), the following are equivalent:

(1) Every subset of X is α[γ,γ′ ]-g.closed.

(2) αO(X, τ)[γ,γ′ ] = αC(X, τ)[γ,γ′ ].

Proof. (1) ⇒ (2). Let U ∈ αO(X, τ)[γ,γ′ ]. Then by hypothesis, U is

α[γ,γ′ ]-g.closed which implies that α[γ,γ′ ]-Cl(U) ⊆ U , so, α[γ,γ′ ]-Cl(U) = U ,

therefore U ∈ αC(X, τ)[γ,γ′ ]. Also let V ∈ αC(X, τ)[γ,γ′ ]. Then X \
V ∈ αO(X, τ)[γ,γ′ ], hence by hypothesis X \ V is α[γ,γ′ ]-g.closed and then

X \ V ∈ αC(X, τ)[γ,γ′ ], thus V ∈ αO(X, τ)[γ,γ′ ] according to the above we

have αO(X, τ)[γ,γ′ ] = αC(X, τ)[γ,γ′ ].

(2) ⇒ (1). If A is a subset of a space X such that A ⊆ U where U ∈
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αO(X, τ)[γ,γ′ ], then U ∈ αC(X, τ)[γ,γ′ ] and therefore α[γ,γ′ ]-Cl(U) ⊆ U

which shows that A is α[γ,γ′ ]-g.closed. �

Definition 3.18. A subset A of X is α[γ,γ′ ]-g.open if its complement X \A
is α[γ,γ′ ]-g.closed in X.

Remark 3.19. It is clear that every α[γ,γ′ ]-open set is α[γ,γ′ ]-g.open. But

the converse is not true in general as it is shown in the following example.

Example 3.20. Consider Example 3.3, if A = {b, c} then A is α[γ,γ′ ]-g.open

but not α[γ,γ′ ]-open.

Proposition 3.21. A subset A of X is α[γ,γ′ ]-g.open if and only if F ⊆
α[γ,γ′ ]-Int(A) whenever F ⊆ A and F is α[γ,γ′ ]-closed in (X, τ).

Proof. Let A be α[γ,γ′ ]-g.open and F ⊆ A where F is α[γ,γ′ ]-closed. Since

X \ A is α[γ,γ′ ]-g.closed and X \ F is an α[γ,γ′ ]-open set containing X \ A
implies α[γ,γ′ ]-Cl(X \A) ⊆ X \ F . By Proposition 2.1, X \ α[γ,γ′ ]-Int(A) ⊆
X \ F . That is F ⊆ α[γ,γ′ ]-Int(A).

Conversely, suppose that F is α[γ,γ′ ]-closed and F ⊆ A implies F ⊆ α[γ,γ′ ]-

Int(A). Let X\A ⊆ U where U is α[γ,γ′ ]-open. Then X\U ⊆ A where X\U
is α[γ,γ′ ]-closed. By hypothesis X \ U ⊆ α[γ,γ′ ]-Int(A). That is X \ α[γ,γ′ ]-

Int(A) ⊆ U . By Proposition 2.1, α[γ,γ′ ]-Cl(X \A) ⊆ U . This implies X \A
is α[γ,γ′ ]-g.closed and A is α[γ,γ′ ]-g.open. �

Remark 3.22. The union of two α[γ,γ′ ]-g.open sets need not be α[γ,γ′ ]-

g.open in general. It is shown by the following example.

Example 3.23. Consider Example 3.8, if A = {b} and B = {c} then A and
B are α[γ,γ′ ]-g.open sets in X, but A∪B = {b, c} is not an α[γ,γ′ ]-g.open set

in X.

Proposition 3.24. Let γ and γ
′

be an α-regular operations on αO(X), and
let A and B be two α[γ,γ′ ]-g.open sets in a space X. Then A ∩ B is also
α[γ,γ′ ]-g.open.

Proof. If A and B are α[γ,γ
′
]-g.open sets in a space X, then X \A and X \B

are α[γ,γ′ ]-g.closed sets in X. By Proposition 3.9, X \ A ∪ X \ B is also

an α[γ,γ′ ]-g.closed set in X. That is X \ A ∪ X \ B = X \ (A ∩ B) is an

α[γ,γ′ ]-g.closed set in X. Therefore A ∩B is an α[γ,γ′ ]-g.open set in X. �

Proposition 3.25. Every singleton point set in a space X is either α[γ,γ′ ]-

g.open or α[γ,γ′ ]-closed.

Proof. Suppose that {x} is not α[γ,γ′ ]-g.open, then by definition X \ {x} is

not α[γ,γ′ ]-g.closed. This implies that by Proposition 3.13, the set {x} is

α[γ,γ′ ]-closed. �
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Proposition 3.26. If α[γ,γ′ ]-Int(A) ⊆ B ⊆ A and A is α[γ,γ′ ]-g.open, then

B is α[γ,γ
′
]-g.open.

Proof. α[γ,γ′ ]-Int(A) ⊆ B ⊆ A implies X \A ⊆ X \B ⊆ X \ α[γ,γ′ ]-Int(A).

That is, X \A ⊆ X \B ⊆ α[γ,γ′ ]-Cl(X \A) by Proposition 2.1. Since X \A
is α[γ,γ′ ]-g.closed, by Proposition 3.12, X \ B is α[γ,γ′ ]-g.closed and B is

α[γ,γ′ ]-g.open. �

4. α[γ,γ′ ]-Separations Spaces

In this section we introduce α[γ,γ′ ]-Ti spaces (i = 0, 12 , 1, 2) and investigate

relations among these spaces.

Definition 4.1. A topological space (X, τ) is said to be α[γ,γ′ ]-T 1
2

if every

α[γ,γ′ ]-g.closed set is α[γ,γ′ ]-closed.

Remark 4.2. It follows from Remark 3.2 that (X, τ) is α[γ,γ′ ]-T 1
2

if and

only if the α[γ,γ
′
]-g.closedness coincides with the α[γ,γ

′
]-closedness.

Definition 4.3. A topological space (X, τ) is said to be α[γ,γ′ ]-T0 if for each

pair of distinct points x, y in X, there exist an α-open sets U and V such

that x ∈ U ∩ V and y /∈ Uγ ∩ V γ
′
, or y ∈ U ∩ V and x /∈ Uγ ∩ V γ

′
.

Definition 4.4. A topological space (X, τ) is said to be α[γ,γ′ ]-T1 if for each

pair of distinct points x, y in X, there exist α-open sets U and V containing

x and α-open sets W and S containing y such that y /∈ Uγ ∩ V γ
′

and

x /∈W γ ∩ Sγ
′
.

Definition 4.5. A topological space (X, τ) is said to be α[γ,γ′ ]-T2 if for each

pair of distinct points x, y in X, there exist α-open sets U and V containing x

and α-open sets W and S containing y such that (Uγ∩V γ
′
)∩(W γ∩Sγ

′
) = φ.

Remark 4.6. For given two distinct points x and y, the α[γ,γ
′
]-T0-axiom

requires that there exist α-open sets U , V , W and S satisfying one of con-
ditions (1), (2), (3) and (4):

(1) x ∈ U ∩ V , y ∈W ∩ S, y /∈ Uγ ∩ V γ
′

and x /∈W γ ∩ Sγ
′
.

(2) x ∈ U ∩ V , x ∈W ∩ S, y /∈ Uγ ∩ V γ
′

and y /∈W γ ∩ Sγ
′
.

(3) y ∈ U ∩ V , y ∈W ∩ S, x /∈ Uγ ∩ V γ
′

and x /∈W γ ∩ Sγ
′
.

(4) y ∈ U ∩ V , x ∈W ∩ S, x /∈ Uγ ∩ V γ
′

and y /∈W γ ∩ Sγ
′
.

Remark 4.7. A space X is α[γ,γ′ ]-T0 if and only if for each pair of distinct

points x, y in X, there exists an α-open sets W such that x ∈ W and

y /∈W γ ∩W γ
′
, or y ∈W and x /∈W γ ∩W γ

′
.

Proposition 4.8. A topological space (X, τ) is α[γ,γ′ ]-T 1
2

if and only if for

each x ∈ X, {x} is either α[γ,γ
′
]-closed or α[γ,γ

′
]-open.



8 ALIAS B. KHALAF, SAEID JAFARI, AND HARIWAN Z. IBRAHIM

Proof. Necessity. Suppose {x} is not α[γ,γ′ ]-closed. Then by Proposition

3.13, X \ {x} is α[γ,γ′ ]-g.closed. Since (X, τ) is α[γ,γ′ ]-T 1
2
, X \ {x} is α[γ,γ′ ]-

closed, that is {x} is α[γ,γ′ ]-open.

Sufficiency. Let A be any α[γ,γ′ ]-g.closed set in (X, τ) and x ∈ α[γ,γ′ ]-

Cl(A). It suffices to prove it for the following two cases:
Case 1. Suppose that {x} is α[γ,γ′ ]-closed, then x /∈ A will imply x ∈

α[γ,γ′ ]-Cl(A) \ A, which is not possible by Proposition 3.15. Hence x ∈ A.

Therefore, α[γ,γ′ ]-Cl(A) = A, that is A is α[γ,γ′ ]-closed.

Case 2. Suppose that {x} is α[γ,γ′ ]-open then as x ∈ α[γ,γ′ ]-Cl(A), {x} ∩
A 6= φ. Hence x ∈ A and A is α[γ,γ′ ]-closed. So, (X, τ) is α[γ,γ′ ]-T 1

2
. �

Proposition 4.9. Let γ and γ
′

be α-open operations. Then, a topological
space (X, τ) is α[γ,γ′ ]-T0 if and only if for each pair of distinct points x, y of

X, αCl[γ,γ′ ]({x}) 6= αCl[γ,γ′ ]({y}).

Proof. Necessity. Let (X, τ) be an α[γ,γ′ ]-T0 space and x, y be any two

distinct points of X, then there exist an α-open sets U and V such that

x ∈ U ∩ V and y /∈ Uγ ∩ V γ
′
. Then (Uγ ∩ V γ′) ∩ {y} = φ this implies that

x /∈ αCl[γ,γ′ ]({y}). Consequently αCl[γ,γ′ ]({x}) 6= αCl[γ,γ′ ]({y}).
Sufficiency. Suppose that x, y ∈ X, x 6= y and αCl[γ,γ′ ]({x}) 6= αCl[γ,γ′ ]({y}).
Let z be a point of X such that z ∈ αCl[γ,γ′ ]({x}) but z /∈ αCl[γ,γ′ ]({y}). We

claim that x /∈ αCl[γ,γ′ ]({y}). For, if x ∈ αCl[γ,γ′ ]({y}) then αCl[γ,γ′ ]({x}) ⊆
αCl[γ,γ′ ]({y}) by Theorem 2.2. This contradicts the fact that z /∈ αCl[γ,γ′ ]({y}).
Consequently x /∈ αCl[γ,γ′ ]({y}), then there exist an α-open sets U and V

such that x ∈ U∩V and (Uγ∩V γ′)∩{y} = φ, this implies that y /∈ Uγ∩V γ
′
.

Therefore, (X, τ) is α[γ,γ′ ]-T0.

�

Proposition 4.10. A topological space (X, τ) is α[γ,γ′ ]-T1 if and only if for

each x ∈ X, {x} is α[γ,γ′ ]-closed.

Proof. Let (X, τ) be α[γ,γ′ ]-T1 and x any point of X. Suppose y ∈ X \ {x},
then x 6= y and so there exist α-open sets W and S containing y and

x /∈ W γ ∩ Sγ
′
. Consequently y ∈ W γ ∩ Sγ

′
⊆ X \ {x}, that is X \ {x} is

α[γ,γ′ ]-open.

Conversely, suppose {p} is α[γ,γ′ ]-closed for every p ∈ X. Let x, y ∈ X

with x 6= y. Now x 6= y implies y ∈ X \ {x} and x ∈ X \ {y}. Hence
X \ {y} is an α[γ,γ′ ]-open set contains x, so there exist α-open sets U and

V containing x such that Uγ ∩ V γ
′
⊆ X \ {y}. Similarly X \ {x} is an

α[γ,γ
′
]-open set contains y, so there exist α-open sets W and S containing y

such that W γ ∩ Sγ
′
⊆ X \ {x}. Accordingly X is an α[γ,γ

′
]-T1 space. �
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Proposition 4.11. The following statements are equivalent for a topological
space (X, τ) with an operations γ and γ

′
on αO(X):

(1) X is α[γ,γ′ ]-T2.

(2) Let x ∈ X. For each y 6= x, there exist an α-open sets U and V

containing x such that y /∈ αCl[γ,γ′ ](U
γ ∩ V γ

′
).

(3) For each x ∈ X, ∩{αCl[γ,γ′ ](U
γ ∩ V γ

′
) : U, V ∈ αO(X) and x ∈

U ∩ V } = {x}.

Proof. (1) ⇒ (2). Since X is α[γ,γ′ ]-T2, there exist α-open sets U and V

containing x and α-open sets W and S containing y such that (Uγ ∩ V γ
′
)∩

(W γ ∩ Sγ
′
) = φ, implies that y /∈ αCl[γ,γ′ ](U

γ ∩ V γ
′
).

(2) ⇒ (3). If possible for some y 6= x, we have y ∈ αCl[γ,γ′ ](U
γ ∩ V γ

′
) for

every α-open sets U and V containing x, which then contradicts (2).
(3) ⇒ (1). Let x, y ∈ X and x 6= y. Then there exist α-open sets U and V

containing x such that y /∈ αCl[γ,γ′ ](U
γ ∩ V γ

′
), implies that (Uγ ∩ V γ

′
) ∩

(W γ ∩ Sγ
′
) = φ for some α-open sets W and S containing y. �

Proposition 4.12. (1) If (X, τ) is α[γ,γ′ ]-T2, then it is α[γ,γ′ ]-T1.

(2) If (X, τ) is α[γ,γ′ ]-T1, then it is α[γ,γ′ ]-T 1
2
.

(3) If (X, τ) is α[γ,γ
′
]-T 1

2
, then it is α[γ,γ′ ]-T0.

Proof. (1) The proof is straightforward from the Definitions 4.4 and 4.5.
(2) The proof is obvious by Proposition 4.10.
(3) Let x and y be any two distinct points of X. By Proposition 4.8,

the singleton set {x} is α[γ,γ′ ]-closed or α[γ,γ′ ]-open.

(a) If {x} is α[γ,γ′ ]-closed, then X \ {x} is α[γ,γ′ ]-open containing

y and there exist α-open sets W and S containing y such that

W γ ∩Sγ
′
⊆ X \ {x}, implies that y ∈W ∩S and x /∈W γ ∩Sγ

′
.

(b) If {x} is α[γ,γ′ ]-open, then there exist α-open sets U and V

containing x such that Uγ ∩ V γ
′
⊆ {x}, implies that x ∈ U ∩ V

and y /∈ Uγ ∩ V γ
′
. Therefore, we have X is α[γ,γ′ ]-T0.

�

Remark 4.13. The following series of examples show that all converses of
Proposition 4.12 can not be reserved.

Example 4.14. Let (X, τ), γ and γ
′

be the same space and the same
operations as in Example 3.11. Then, it is shown directly that each singleton
is α[γ,γ′ ]-closed in (X, τ). By Proposition 4.10, (X, τ) is α[γ,γ′ ]-T1. But, we

can show that (Uγ ∩ V γ
′
)∩ (W γ ∩ Sγ

′
) 6= φ holds for any α-open sets U, V,

W and S. This implies (X, τ) is not α[γ,γ′ ]-T2
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Example 4.15. Let X = {a, b, c} and τ = {φ,X, {a}, {a, b}, {a, c}} be a

topology on X. For each A ∈ αO(X) we define two operations γ and γ
′
,

respectively, by Aγ = Aγ
′

= A. Then, it is shown directly that each singleton
is α[γ,γ′ ]-closed or α[γ,γ′ ]-open in (X, τ). By Proposition 4.8, (X, τ) is α[γ,γ′ ]-

T 1
2
. However, by Proposition 4.10, (X, τ) is not α[γ,γ′ ]-T1, in fact, a singleton

{a} is not α[γ,γ′ ]-closed.

Example 4.16. Let X = {a, b, c} and τ = {φ,X, {a}, {a, b}} be a topology

on X. For each A ∈ αO(X) we define two operations γ and γ
′
, respectively,

by Aγ = Aγ
′

= A. Then, (X, τ) is not α[γ,γ′ ]-T 1
2

because a singleton {b}
is neither α[γ,γ′ ]-open nor α[γ,γ′ ]-closed. It is shown directly that (X, τ) is

α[γ,γ′ ]-T0.

Remark 4.17. From Proposition 4.12 and Examples 4.14, 4.15 and 4.16,
the following implications hold and none of the implications is reversible:

α[γ,γ′ ]-T2
// α[γ,γ′ ]-T1

// α[γ,γ′ ]-T 1
2

// α[γ,γ′ ]-T0,

where A→ B represents that A implies B.

Proposition 4.18. If (X, τ) is α[γ,γ′ ]-Ti, then it is α-Ti, where i = 0, 12 , 1, 2.

Proof. The proofs for i = 0, 2 follow from definitions.
The proof for i = 1 (resp. i = 1

2) follows from Proposition 4.10 (resp.
Proposition 4.8). �

Remark 4.19. The following of example show that all converses of Propo-
sition 4.18 can not be reserved.

Example 4.20. Let X = {a, b, c} and τ be a discrete topology on X. For

each A ∈ αO(X) we define two operations γ and γ
′
, respectively, by Aγ =

Aγ
′

= X. Then, (X, τ) is α-Ti but it is not α[γ,γ′ ]-Ti, where i = 0, 12 , 1, 2.

Proposition 4.21. If (X, τ) is αγ-Ti, then it is α[γ,γ′ ]-Ti, where i = 0, 12 , 1, 2.

Proof. The proofs for i = 0, 1, 2 follow from Definitions 4.3, 4.4, 4.5 and [[6];
Definition 3.6].
The proof for i = 1

2 is obtained as follows: Let x ∈ X. Then,{x} is αγ-
open or αγ-closed by [[6]; Theorem 3.2]. So, {x} is α[γ,γ′ ]-open or α[γ,γ′ ]-

closed because every αγ-open is α[γ,γ′ ]-open. The proof is completed from

Proposition 4.8. �

Remark 4.22. The following series of examples show that all converses of
Proposition 4.21 can not be reserved.

Example 4.23. Let X = {a, b, c} and τ be a discrete topology on X. For

each A ∈ αO(X) we define two operations γ and γ
′
, respectively, by

Aγ = Aγ
′

=

{
A if A = {a, b} or {a, c} or {b, c},
X otherwise.
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Then, (X, τ) is α[γ,γ′ ]-T2 but not αγ-T2.

Example 4.24. Let X = {a, b, c} and τ be a discrete topology on X. For

each A ∈ αO(X) we define two operations γ and γ
′
, respectively, by

Aγ =

{
A if A = {a, b} or {a, c},
X otherwise,

and

Aγ
′

=

{
A if A = {b, c},
X otherwise.

Then, (X, τ) is α[γ,γ′ ]-Ti but not αγ-Ti, where i = 1
2 , 1.

Example 4.25. Let X = {a, b, c} and τ be a discrete topology on X. For

each A ∈ αO(X) we define two operations γ and γ
′
, respectively, by

Aγ =

{
A if A = {a},
X otherwise,

and

Aγ
′

=

{
A if A = {b},
X otherwise.

Then, (X, τ) is α[γ,γ′ ]-T0 but not αγ-T0.

Proposition 4.26. If (X, τ) is [γ, γ
′
]-Ti, then it is α[γ,γ′ ]-Ti, where i =

0, 12 , 1, 2.

Proof. The proofs for i = 0, 2 follow from Definitions 4.3, 4.5 and [[5]; Defi-
nitions 5.2, 5.4].
The proof for i = 1 (resp. i = 1

2) follows from [[5]; Proposition 5.8] (resp.
[5]; Proposition 5.7]) and Proposition 2.3. �

Remark 4.27. The following example show that the converses of Proposi-
tion 4.26 can not be reserved, for i = 0, 12 .

Example 4.28. Let X = {a, b, c} and τ = {φ,X, {a}} be a topology on X.

For each A ∈ αO(X) we define two operations γ and γ
′
, respectively, by

Aγ = Aγ
′

= A. Then, (X, τ) is α[γ,γ′ ]-Ti but not [γ, γ
′
]-Ti, where i = 0, 12 .

Proposition 4.29. If (X, τ) is (γ, γ
′
)-Ti, then it is α[γ,γ′ ]-Ti, where i =

0, 12 , 1, 2.

Proof. The proofs follow from [[5]; Proposition 6.12] and Proposition 4.26.
�

Remark 4.30. The converse of Proposition 4.29 can not reversible by [[5];
Remark 6.13, Examples 6.14 and 6.15] and Proposition 4.26.

Proposition 4.31. If (X, τ) is γ-Ti, then it is α[γ,γ′ ]-Ti, where i = 0, 12 , 1, 2.

Proof. The proofs follow from [[5]; Proposition 6.1] and Proposition 4.26. �
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Remark 4.32. The converse of Proposition 4.31 can not reversible by [[5];
Remark 6.2, Examples 6.3, 6.4 and 6.6] and Proposition 4.26.

Remark 4.33. From Propositions 4.12, 4.18, 4.21, 4.26, 4.29, 4.31, [[10];

Remark 2.1], and [[4]; p.180], for distinct operations γ and γ
′

we have the
following diagram. We note that none of the implications in the following
diagram is reversible by Remarks 4.13, 4.19, 4.22, 4.30 and 4.32:

γ-T 1
2

//

��999999999999999999
γ-T0

��99999999999999999999

γ-T1

44iiiiiiiiiiiiiiiiiiiiiiii

**TTTTTTTTTTTTTTTTTTTTTT (γ, γ
′
)-T2 //

��

(γ, γ
′
)-T1 ////

��

(γ, γ
′
)-T 1

2

��

// (γ, γ
′
)-T0

��
γ-T2 //

OO

[γ, γ
′
]-T2 //

��

[γ, γ
′
]-T1 // //

��

[γ, γ
′
]-T 1

2

��

// [γ, γ
′
]-T0

��
αγ-T2

��

// α[γ,γ′ ]-T2
//

��

α[γ,γ′ ]-T1
//

��

α[γ,γ′ ]-T 1
2

��

// α[γ,γ′ ]-T0

��
αγ-T1

44iiiiiiiiiiiiiiiiiiiii

**UUUUUUUUUUUUUUUUUUUUUUU α-T2 // α-T1 // α-T 1
2

// α-T0,

αγ-T 1
2

//

AA������������������
αγ-T0

AA�������������������

where A→ B represents that A implies B.

Remark 4.34. We propose the following two questions since we could not
find counter examples :

Are the spaces α[γ,γ′ ]-T1 and [γ, γ
′
]-T1 equivalent or not? What about

α[γ,γ′ ]-T2 and [γ, γ
′
]-T2?

Proposition 4.35. Suppose that γ and γ
′

are α-regular operations on αO(X).
A space (X, τ) is α[γ,γ′ ]-Ti if and only if an associated space (X,αO(X, τ)[γ,γ′ ])

is Ti, where i = 1, 1/2.

Proof. It follows from Remark 2.4 that a subset A is α[γ,γ
′
]-open in (X, τ) if

and only if A is open in (X,αO(X, τ)[γ,γ′ ]). Therefore, the proof for i = 1
2

(resp. i = 1) follows from Propositions 4.8 ( resp. Proposition 4.10). �

Proposition 4.36. If γ and γ
′

are α-regular operations on αO(X) and
(X,αO(X, τ)[γ,γ′ ]) is T2, then (X, τ) is α[γ,γ′ ]-T2

Proof. This follows from the Hausdorffness of (X,αO(X, τ)[γ,γ′ ]) and defi-

nition of α[γ,γ′ ]-open and Definition 4.5. �
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Proposition 4.37. If γ and γ
′

are α-regular and α-open and (X, τ) is
α[γ,γ′ ]-T2, then (X,αO(X, τ)[γ,γ′ ]) is T2.

Proof. Let x and y be distinct points of X. By assumptions there ex-
ist αγ-open sets U,W and αγ′ -open sets V, S such that x ∈ U ∩ V , y ∈
W ∩ S and (U ∩ V ) ∩ (W ∩ S) = φ. It follows from Proposition 2.5 that
U ∩ V ∈ αO(X, τ)[γ,γ′ ] and W ∩ S ∈ αO(X, τ)[γ,γ′ ]. This implies that

(X,αO(X, τ)[γ,γ′ ]) is T2. �

Proposition 4.38. If γ and γ
′

are α-regular and α-open and (X, τ) is
α[γ,γ′ ]-T0, then (X,αO(X, τ)[γ,γ′ ]) is T0.

Proof. This follows from the Definition 4.3, and Propositon 2.5. �

Proposition 4.39. If f : (X, τ)→ (Y, σ) is (α[γ,γ′ ], α[β,β′ ])-continuous and

(α[γ,γ′ ], α[β,β′ ])-closed, then

(1) f(A) is α[β,β′ ]-g.closed for every α[γ,γ′ ]-g.closed set A of (X, τ).

(2) f−1(B) is α[γ,γ′ ]-g.closed for every α[β,β′ ]-g.closed set B of (Y, σ).

Proof. (1) Let V be an α[β,β′ ]-open set containing f(A). Then, f−1(V )

is an α[γ,γ′ ]-open set containing A and so α[γ,γ′ ]-Cl(A) ⊆ f−1(V ). It

follows that f(α[γ,γ′ ]-Cl(A)) is an α[β,β′ ]-closed set and hence α[β,β′ ]-

Cl(f(A)) ⊆ α[β,β′ ]-Cl(f(α[γ,γ′ ]-Cl(A))) = f(α[γ,γ′ ]-Cl(A)) ⊆ V .

This implies that f(A) is α[β,β′ ]-g.closed.

(2) Let U be any α[γ,γ′ ]-open set such that f−1(B) ⊆ U . Let F =

α[γ,γ′ ]-Cl(f
−1(B))∩ (X \U), then F is α[γ,γ′ ]-closed in (X, τ). This

implies f(F ) is α[β,β′ ]-closed set in (Y, σ). Since f(F ) = f(α[γ,γ′ ]-

Cl((f−1(B))∩(X \U))) ⊆ α[β,β′ ]-Cl(B)∩f(X \U) ⊆ α[β,β′ ]-Cl(B)∩
(Y \ B). Therefore, α[β,β′ ]-Cl(B) \ B contains an α[β,β′ ]-closed set

f(F ). It follows from Proposition 3.15 that f(F ) = φ and hence
F = φ. Therefore α[γ,γ′ ]-Cl(f

−1(B)) ⊆ U . This shows that f−1(B)

is α[γ,γ′ ]-g.closed.

�

Theorem 4.40. Suppose that f : (X, τ)→ (Y, σ) is (α[γ,γ′ ], α[β,β′ ])-continuous

and (α[γ,γ′ ], α[β,β′ ])-closed, then

(1) If f is injective and (Y, σ) is α[β,β′ ]-T 1
2
, then (X, τ) is α[γ,γ′ ]-T 1

2
.

(2) If f is surjective and (X, τ) is α[γ,γ′ ]-T 1
2
, then (Y, σ) is α[β,β′ ]-T 1

2
.

Proof. (1) Let A be an α[γ,γ′ ]-g.closed set of (X, τ). Now to prove that

A is α[γ,γ′ ]-closed. By Propostion 4.39 (1), f(A) is α[β,β′ ]-g.closed.

Since (Y, σ) is α[β,β′ ]-T 1
2
, this implies that f(A) is α[β,β′ ]-closed.

Since f is (α[γ,γ′ ], α[β,β′ ])-continuous and injective, then, we have

A = f−1(f(A)) is α[γ,γ′ ]-closed. Hence (X, τ) is α[γ,γ′ ]-T 1
2
.
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(2) Let B be an α[β,β′ ]-g.closed set in (Y, σ). By Propostion 4.39 (2),

f−1(B) is α[γ,γ′ ]-g.closed, since (X, τ) is α[γ,γ′ ]-T 1
2

space, this implies

that f−1(B) is α[γ,γ′ ]-closed. Since f is (α[γ,γ′ ], α[β,β′ ])-closed and

surjective, then we have B = f(f−1(B)) is α[γ,γ′ ]-closed. Hence

(Y, σ) is α[β,β′ ]-T 1
2
.

�

Theorem 4.41. If f : (X, τ) → (Y, σ) is an (α[γ,γ
′
], α[β,β

′
])-continuous

injection and if (Y, σ) is α[β,β′ ]-Ti, then (X, τ) is α[γ,γ′ ]-Ti, where i = 0, 1, 2.

Proof. The proof for i = 1 is as follows: Let x ∈ X. Then, by Proposition
4.10, {f(x)} is α[β,β′ ]-closed in (Y, σ). By (α[γ,γ′ ], α[β,β′ ])-continuous and

Proposition 4.10, {x} is α[γ,γ′ ]-closed and hence (X, τ) is α[γ,γ′ ]-T1. The

proofs for i = 0, 2 follow from Definitions 4.3, 4.5 and 2.6. �

Definition 4.42. A function f : (X, τ)→ (Y, σ) is called an (α[γ,γ′ ], α[β,β′ ])-

homeomorphism if f is an (α[γ,γ
′
], α[β,β

′
])-continuous bijection and f−1 :

(Y, σ)→ (X, τ) is (α[β,β′ ], α[γ,γ′ ])-continuous.

Theorem 4.43. Suppose that f : (X, τ) → (Y, σ) is an (α[γ,γ′ ], α[β,β′ ])-

homeomorphism. Then, (X, τ) is α[γ,γ′ ]-Ti if and only if (Y, σ) is α[β,β′ ]-Ti,

where i = 0, 12 , 1, 2.

Proof. This follows from Theorems 4.40, 4.41 and Definition 4.42. �
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