Article

On Generalized Closed Sets and Generalized Pre-Closed Sets in Neutrosophic Topological Spaces

Wadei Al-Omeri and Saeid Jafari

1 Department of Mathematics, Al-Balqa Applied University, Salt 19117, Jordan; wadeialomeri@bau.edu.jo
2 Department of Mathematics, College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, Denmark; jafaripersia@gmail.com

Received: 17 November 2018; Accepted: 13 December 2018; Published: 15 December 2018

Abstract: In this paper, the concept of generalized neutrosophic pre-closed sets and generalized neutrosophic pre-open sets are introduced. We also study relations and various properties between the other existing neutrosophic open and closed sets. In addition, we discuss some applications of generalized neutrosophic pre-closed sets, namely neutrosophic pT_2 space and neutrosophic gpT_2 space. The concepts of generalized neutrosophic connected spaces, generalized neutrosophic compact spaces and generalized neutrosophic extremally disconnected spaces are established. Some interesting properties are investigated in addition to giving some examples.

Keywords: neutrosophic topology; neutrosophic generalized topology; neutrosophic generalized pre-closed sets; neutrosophic generalized pre-open sets; neutrosophic pT_2 space; neutrosophic gpT_2 space; generalized neutrosophic compact and generalized neutrosophic compact

1. Introduction

Zadeh [1] introduced the notion of fuzzy sets. After that, there have been a number of generalizations of this fundamental concept. The study of fuzzy topological spaces was first initiated by Chang [2,3] in 1968. Atanassov [4] introduced the notion of intuitionistic fuzzy sets (IFs). This notion was extended to intuitionistic L-fuzzy setting by Atanassov and Stoeva [5], which currently has the name “intuitionistic L-topological spaces”. Coker [6] introduced the notion of intuitionistic fuzzy topological space by using the notion of (IFs). The concept of generalized fuzzy closed set was introduced by Balasubramanian and Sundaram [7]. In various recent papers, Smarandache generalizes intuitionistic fuzzy sets and different types of sets to neutrosophic sets (NSs). On the non-standard interval, Smarandache, Peide and Lupianez defined the notion of neutrosophic topology [8–10]. In addition, Zhang et al. [11] introduced the notion of an interval neutrosophic set, which is a sample of a neutrosophic set and studied various properties.

Recently, Al-Omeri and Smarandache [12,13] introduced and studied a number of the definitions of neutrosophic closed sets, neutrosophic mapping, and obtained several preservation properties and some characterizations about neutrosophic of connectedness and neutrosophic connectedness continuity.

This paper is arranged as follows. In Section 2, we will recall some notions that will be used throughout this paper. In Section 3, we mention some notions in order to present neutrosophic generalized pre-closed sets and investigate its basic properties. In Sections 4 and 5, we study the neutrosophic generalized pre-open sets and present some of their properties. In addition, we provide an application of neutrosophic generalized pre-open sets. Finally, the concepts of generalized neutrosophic
Definition 1. Let \(\mathcal{X} \) be a non-empty set. A neutrosophic set (NS for short) \(\tilde{S} \) is an object having the form \(\tilde{S} = \{(k, \mu_{\tilde{S}}(k), \sigma_{\tilde{S}}(k), \gamma_{\tilde{S}}(k)) \: k \in \mathcal{X}\} \), where \(\gamma_{\tilde{S}}(k), \sigma_{\tilde{S}}(k), \mu_{\tilde{S}}(k) \), and the degree of non-membership (namely \(\mu_{\tilde{S}}(k) \)), the degree of indeterminacy (namely \(\sigma_{\tilde{S}}(k) \)), and the degree of membership function (namely \(\gamma_{\tilde{S}}(k) \)), of each element \(k \in \mathcal{X} \) to the set \(\tilde{S} \). [14]

A neutrosophic set \(\tilde{S} = \{(k, \mu_{\tilde{S}}(k), \sigma_{\tilde{S}}(k), \gamma_{\tilde{S}}(k)) \: k \in \mathcal{X}\} \) can be identified as \((\mu_{\tilde{S}}(k), \sigma_{\tilde{S}}(k), \gamma_{\tilde{S}}(k)) \) in \([0^- , 1^+] \) on \(\mathcal{X} \).

Definition 2. Let \(\tilde{S} = \langle \mu_{\tilde{S}}(k), \sigma_{\tilde{S}}(k), \gamma_{\tilde{S}}(k) \rangle \) be an NS on \(\mathcal{X} \). [15]
The complement of the set \(\tilde{S}(C(\tilde{S}), \text{for short}) \) may be defined as follows:

(i) \(C(\tilde{S}) = \{ (k, 1 - \mu_{\tilde{S}}(k), 1 - \gamma_{\tilde{S}}(k)) \: k \in \mathcal{X}\} \),
(ii) \(C(\tilde{S}) = \{ (k, \gamma_{\tilde{S}}(k), \sigma_{\tilde{S}}(k), \mu_{\tilde{S}}(k)) \: k \in \mathcal{X}\} \),
(iii) \(C(\tilde{S}) = \{ (k, \sigma_{\tilde{S}}(k), 1 - \gamma_{\tilde{S}}(k), \mu_{\tilde{S}}(k)) \: k \in \mathcal{X}\} \).

Neutrosophic sets (NSs) \(0_N \) and \(1_N \) [14] in \(\mathcal{X} \) are introduced as follows:

\[1_N = \{ (k, 0, 0, 1) \: k \in \mathcal{X}\} \],
\[0_N = \{ (k, 0, 1, 1) \: k \in \mathcal{X}\} \],
\[1_N = \{ (k, 1, 0, 0) \: k \in \mathcal{X}\} \],
\[0_N = \{ (k, 1, 1, 1) \: k \in \mathcal{X}\} \].

Definition 3. Let \(k \) be a non-empty set, and generalized neutrosophic sets GNSs \(\tilde{S} \) and \(\tilde{R} \) be in the form \(\tilde{S} = \{ (k, \mu_{\tilde{S}}(k), \sigma_{\tilde{S}}(k), \gamma_{\tilde{S}}(k)) \}, \tilde{R} = \{ (k, \mu_{\tilde{R}}(k), \sigma_{\tilde{R}}(k), \gamma_{\tilde{R}}(k)) \} \). Then, we may consider two possible definitions for subsets \((\tilde{S} \subseteq \tilde{R}) \) [14]:

(i) \(\tilde{S} \subseteq \tilde{R} \iff \mu_{\tilde{S}}(k) \leq \mu_{\tilde{R}}(k), \sigma_{\tilde{S}}(k) \geq \sigma_{\tilde{R}}(k), \text{and } \gamma_{\tilde{S}}(k) \leq \gamma_{\tilde{R}}(k) \),
(ii) \(\tilde{S} \subseteq \tilde{R} \iff \mu_{\tilde{S}}(k) \leq \mu_{\tilde{R}}(k), \sigma_{\tilde{S}}(k) \geq \sigma_{\tilde{R}}(k), \text{and } \gamma_{\tilde{S}}(k) \geq \gamma_{\tilde{R}}(k) \).

Definition 4. Let \(\{ \tilde{S}_j : j \in J \} \) be an arbitrary family of NSs in \(\mathcal{X} \). Then,

(i) \(\cap \tilde{S}_j \) can be defined as two types:
\[\cap \tilde{S}_j = \{ (k, \land \mu_{\tilde{S}_j}(k), \land \sigma_{\tilde{S}_j}(k), \lor \gamma_{\tilde{S}_j}(k)) \} ,\]
\[\cap \tilde{S}_j = \{ (k, \land \mu_{\tilde{S}_j}(k), \lor \sigma_{\tilde{S}_j}(k), \lor \gamma_{\tilde{S}_j}(k)) \} .\]
Definition 5. A neutrosophic topology (NT for short) [16] and a non empty set \(\mathcal{X} \) is a family \(\Gamma \) of neutrosophic subsets of \(\mathcal{X} \) satisfying the following axioms:

(i) \(0_N, 1_N \in \Gamma \),
(ii) \(\tilde{S}_1 \cap \tilde{S}_2 \in \Gamma \) for any \(\tilde{S}_1, \tilde{S}_2 \in \Gamma \),
(iii) \(\cup \tilde{S}_i \in \Gamma \) for \(\{ \tilde{S}_i \}_{i \in J} \subseteq \Gamma \).

In this case, the pair \((\mathcal{X}, \Gamma) \) is called a neutrosophic topological space (NTS for short) and any neutrosophic set in \(\Gamma \) is known as neutrosophic open set NOS \(S \in \mathcal{X} \). The elements of \(\Gamma \) are called neutrosophic open sets.

A closed neutrosophic set \(\tilde{R} \) if and only if its \(C(\tilde{R}) \) is neutrosophic open.

Note that, for any NTS \(S \) in \((\mathcal{X}, \Gamma)\), we have \(NCl(S^c) = [NInt(S)]^c \) and \(NInt(S^c) = [NCl(S)]^c \).

Definition 6. Let \(S = \{ \mu_S(k), \sigma_S(k), \gamma_S(k) \} \) be a neutrosophic open set and \(B = \{ \mu_B(k), \sigma_B(k), \gamma_B(k) \} \) a neutrosophic set on a neutrosophic topological space \((\mathcal{X}, \Gamma)\). Then,

(i) If \(B \in NCS(\mathcal{X}) \), then \(B \) is called neutrosophic regular closed [14] iff \(\tilde{S} = NCl(NInt(\tilde{S})) \).
(ii) If \(B \in NCS(\mathcal{X}) \), then \(B \) is called neutrosophic regular closed [14] iff \(\tilde{S} = NCl(NInt(\tilde{S})) \).

Definition 7. Let \((k, \Gamma) \) be NT and \(\tilde{S} = \{ k, \mu_S(k), \sigma_S(k), \gamma_S(k) \} \) an NS in \(\mathcal{X} \). Then,

(i) \(NCl(\tilde{S}) = \cap \{ U : U \text{ is an NCS in } \mathcal{X}, \tilde{S} \subseteq U \} \),
(ii) \(NInt(\tilde{S}) = \cup \{ V : V \text{ is an NOS in } \mathcal{X}, \tilde{S} \subseteq V \} \), see (14).

It can be also shown that \(NCl(\tilde{S}) \) is an NCS and \(NInt(\tilde{S}) \) is an NOS in \(\mathcal{X} \). We have

(i) \(\tilde{S} \) is in \(\mathcal{X} \) iff \(NCl(\tilde{S}) \).
(ii) \(\tilde{S} \) is an NCS in \(\mathcal{X} \) iff \(NInt(\tilde{S}) = \tilde{S} \).

Definition 8. Let \(\tilde{S} \) be an NS and \((\mathcal{X}, \Gamma) \) an NT,

(i) Neutrosophic semiopen set (NSOS) [12] if \(\tilde{S} \subseteq NCl(NInt(\tilde{S})) \),
(ii) Neutrosophic preopen set (NPOs) [12] if \(\tilde{S} \subseteq NInt(NNCI(\tilde{S})) \),
(iii) Neutrosophic \(\alpha \)-open set (NaOS) [12] if \(\tilde{S} \subseteq NInt(NNCI(\tilde{S})) \),
(iv) Neutrosophic \(\beta \)-open set (N\(\beta \)OS) [12] if \(\tilde{S} \subseteq NNCI(NInt(\tilde{S})) \).

The complement of \(\tilde{S} \) is an NSOS, NaOS, NPOs, and NROS, which is called NSCS, NaCS, NPCS, and NRCS, resp.

Definition 9. Let \(\tilde{S} = \{ \tilde{S}_1, \tilde{S}_2, \tilde{S}_3 \} \) be an NS and \((\mathcal{X}, \Gamma) \) an NT. Then, the \(\star \)-neutrosophic closure of \(\tilde{S} \) \((\star = NCl(\tilde{S}) \) for short [12]) and \(\star \)-neutrosophic interior \((\star = NInt(\tilde{S}) \) for short [12]) of \(\tilde{S} \) are defined by

(i) \(\alpha NCl(\tilde{S}) = \cap \{ V : V \text{ is an NRC in } \mathcal{X}, \tilde{S} \subseteq V \} \),
(ii) \(\alpha NInt(\tilde{S}) = \cup \{ U : U \text{ is an NRO in } \mathcal{X}, \tilde{S} \subseteq U \} \),
(iii) \(pNCl(\tilde{S}) = \cap \{ V : V \text{ is an NPC in } \mathcal{X}, \tilde{S} \subseteq V \} \),
(iv) \(pNInt(\tilde{S}) = \cup \{ U : U \text{ is an NPO in } \mathcal{X}, \tilde{S} \subseteq U \} \),
(v) \(sNCl(\tilde{S}) = \cap \{ V : V \text{ is an NSC in } \mathcal{X}, \tilde{S} \subseteq V \} \),
(vi) \(sNInt(\tilde{S}) = \cup \{ U : U \text{ is an NSO in } \mathcal{X}, \tilde{S} \subseteq U \} \),
(vii) \(\beta NCl(\tilde{S}) = \cap \{ V : V \text{ is an NCBC in } \mathcal{X}, \tilde{S} \subseteq V \} \),
(viii) \(\beta NInt(\tilde{S}) = \cup \{ U : U \text{ is a } \beta \text{BO in } \mathcal{X}, \tilde{S} \subseteq U \} \),
(ix) \(rNCl(\tilde{S}) = \cap \{ V : V \text{ is an NRC in } \mathcal{X}, \tilde{S} \subseteq V \} \),
(x) \(rNInt(\tilde{S}) = \cup \{ U : U \text{ is an NRO in } \mathcal{X}, \tilde{S} \subseteq U \} \).
Definition 10. An (NS) \tilde{S} of an NT (\mathcal{X}, Γ) is called a generalized neutrosophic closed set [17] (GNC in short) if NCI(\tilde{S}) $\subseteq \tilde{B}$ whenever $\tilde{S} \subseteq \tilde{B}$ and \tilde{B} is a neutrosophic closed set in \mathcal{X}.

Definition 11. An NS \tilde{S} in an NT \mathcal{X} is said to be a neutrosophic a generalized closed set (NagCS [18]) if NαNCI(\tilde{S}) $\subseteq \tilde{B}$ whenever $\tilde{S} \subseteq \tilde{B}$ and \tilde{B} is an NOS in \mathcal{X}. The complement C(\tilde{S}) of an NagCS \tilde{S} is an NagOS in \mathcal{X}.

Definition 12. Let (\mathcal{X}, Γ) and (\mathcal{X}', Γ') be any two neutrosophic topological spaces.

(i) A function $g : (\mathcal{X}, \Gamma) \rightarrow (\mathcal{X}', \Gamma')$ is called generalized neutrosophic continuous(GN-continuous) g^{-1} of every closed set in (\mathcal{X}', Γ') is GN-closed in (\mathcal{X}, Γ).

Equivalently, if the inverse image of every open set in (\mathcal{X}', Γ') is GN-open in (\mathcal{X}, Γ):

(ii) A function $g : (\mathcal{X}, \Gamma) \rightarrow (\mathcal{X}', \Gamma')$ is called generalized neutrosophic irresolute g^{-1} of every GN-closed set in (\mathcal{X}', Γ') is GN-closed in (\mathcal{X}, Γ).

Equivalently g^{-1} of every GN-open set in (\mathcal{X}', Γ') is GN-open in (\mathcal{X}, Γ)

(iii) A function $g : (\mathcal{X}, \Gamma) \rightarrow (\mathcal{X}', \Gamma')$ is said to be strongly neutrosophic continuous if $g^{-1}(\tilde{S})$ is both neutrosophic open and neutrosophic closed in (\mathcal{X}', Γ') for each neutrosophic set \tilde{S} in (\mathcal{X}', Γ').

(iv) A function $g : (\mathcal{X}, \Gamma) \rightarrow (\mathcal{X}', \Gamma')$ is said to be strongly GN-continuous if the inverse image of every GN-open set in (\mathcal{X}', Γ') is neutrosophic open in (\mathcal{X}, Γ), see[17] for more details).

Definition 13. An NTS (\mathcal{X}, Γ) is said to be neutrosophic-$T_{\frac{1}{2}}$ (NT$_{\frac{1}{2}}$ in short) space if every GNC in \mathcal{X} is an NC in \mathcal{X}.

Definition 14. Let (\mathcal{X}, Γ) be any neutrosophic topological space. (\mathcal{X}, Γ) is said to be generalized neutrosophic disconnected (in shortly GN-disconnected) if there exists a generalized neutrosophic open and generalized neutrosophic closed set \tilde{R} such that $\tilde{R} \neq 0_N$ and $\tilde{R} \neq 1_N$ (\mathcal{X}, Γ) is said to be generalized neutrosophic connected if it is not generalized neutrosophic disconnected.

Proposition 1. Every GN-connected space is neutrosophic connected. However, the converse is not true.

Proof. For a GN-connected (\mathcal{X}, Γ) space and let (\mathcal{X}, Γ) not be neutrosophic connected. Hence, there exists a proper neutrosophic set, $\tilde{S} = \langle u, v, w \rangle$. Define the neutrosophic sets \tilde{S}, \tilde{R} and \mathcal{X} in \mathcal{X} as follows:

$\tilde{S} = \langle x, (\frac{a}{a}, \frac{b}{b}, \frac{c}{c}), (\frac{a}{a}, \frac{b}{b}, \frac{c}{c}), (\frac{a}{a}, \frac{b}{b}, \frac{c}{c}) \rangle$, $\tilde{R} = \langle x, (\frac{a}{a}, \frac{b}{b}, \frac{c}{c}), (\frac{a}{a}, \frac{b}{b}, \frac{c}{c}), (\frac{a}{a}, \frac{b}{b}, \frac{c}{c}) \rangle$.

Then, the family $\Gamma = \{0_N, 1_N, \tilde{S}, \tilde{R} \}$ is neutrosophic topology on \mathcal{X}. It is obvious that (\mathcal{X}, Γ) is NTS. Now, (\mathcal{X}, Γ) is neutrosophic connected. However, it is not a GN-connected for $\tilde{Z} = \langle x, (\frac{a}{a}, \frac{b}{b}, \frac{c}{c}), (\frac{a}{a}, \frac{b}{b}, \frac{c}{c}), (\frac{a}{a}, \frac{b}{b}, \frac{c}{c}) \rangle$ is GN open and GN closed in (\mathcal{X}, Γ).

Theorem 1. Let (\mathcal{X}, Γ) be a neutrosophic $T_{\frac{1}{2}}$ space; then, (\mathcal{X}, Γ) is neutrosophic connected iff (\mathcal{X}, Γ) is GN-connected.

Proof. Suppose that (\mathcal{X}, Γ) is not GN-connected, and there exists a neutrosophic set \tilde{S} which is both GN-open and GN-closed. Since (\mathcal{X}, Γ) is neutrosophic $T_{\frac{1}{2}}$, \tilde{S} is both neutrosophic open and neutrosophic closed. Hence, (\mathcal{X}, Γ) is GN-connected. Conversely, let (\mathcal{X}, Γ) is GN-connected. Suppose that (\mathcal{X}, Γ) is not neutrosophic connected, and there exists a neutrosophic set \tilde{S} such that \tilde{S} is both NCs and
NOs $\in (\mathcal{Z}, \Gamma)$. Since the neutrosophic open set is GN-open and the neutrosophic closed set is GN-closed, (\mathcal{Z}, Γ) is not GN-connected. Hence, (\mathcal{Z}, Γ) is neutrosophic connected. \qed

Proposition 2. Suppose (\mathcal{Z}, Γ) and (\mathcal{X}, Γ_1) are any two NTs. If $g : (\mathcal{Z}, \Gamma) \rightarrow (\mathcal{X}, \Gamma_1)$ is GN-continuous surjection and (\mathcal{Z}, Γ) is GN-connected, then (\mathcal{X}, Γ_1) is neutrosophic connected.

Proof. Suppose that (\mathcal{X}, Γ_1) is not neutrosophic connected, such that the neutrosophic set S is both neutrosophic open and neutrosophic closed in (\mathcal{X}, Γ_1). Since g is GN-continuous, $g^{-1}(S)$ is GN-open and GN-closed in (\mathcal{X}, Γ). Thus, (\mathcal{X}, Γ) is not GN connected. Hence, (\mathcal{X}, Γ_1) is neutrosophic connected. \qed

Definition 15. Let (\mathcal{X}, Γ) be a neutrosophic set. If a family $\{\langle k, \mu_G(k), \sigma_G(k), \gamma_G(k) : i \in J \rangle\}$ of GN open sets in (\mathcal{X}, Γ) satisfies the condition $\bigcup \{\langle k, \mu_G(k), \sigma_G(k), \gamma_G(k) : i \in J \rangle\} = 1_N$, then it is called a GN open cover of (\mathcal{X}, Γ). A finite subfamily of a GN open cover $\{\langle k, \mu_G(k), \sigma_G(k), \gamma_G(k) : i \in J \rangle\}$ of (\mathcal{X}, Γ), which is also a GN open cover of (\mathcal{X}, Γ), is called a finite subcover of

$$\{\langle k, \mu_G(k), \sigma_G(k), \gamma_G(k) : i \in J \rangle\}.$$

Definition 16. An NT (\mathcal{X}, Γ) is called GN compact if every GN open cover of (\mathcal{X}, Γ) has a finite subcover.

Theorem 2. Let (\mathcal{X}, Γ) and (\mathcal{X}, Γ_1) be any two NTs, and $g : (\mathcal{Z}, \Gamma) \rightarrow (\mathcal{X}, \Gamma_1)$ be GN continuous surjection. If (\mathcal{X}, Γ) is GN-compact, hence so is (\mathcal{X}, Γ_1).

Proof. Let $G_i = \{\langle y, \mu_G(x), \sigma_G(x), \gamma_G(x) : i \in J \rangle\}$ be a neutrosophic open cover in (\mathcal{X}, Γ_1) with

$$\bigcup_{i \in J} \{\langle y, \mu_G(x), \sigma_G(x), \gamma_G(x) : i \in J \rangle\} = \bigcup_{i \in J} G_i = 1_N.$$

Since g is GN continuous, $g^{-1}(G_i) = G_i = \{\langle y, \mu_{g^{-1}(G_i)}(x), \sigma_{g^{-1}(G_i)}(x), \gamma_{g^{-1}(G_i)}(x) : i \in J \rangle\}$ is GN open cover of (\mathcal{X}, Γ). Now,

$$\bigcup_{i \in J} g^{-1}(G_i) = g^{-1}\left(\bigcup_{i \in J} G_i\right) = 1_N.$$

Since (\mathcal{X}, Γ) is GN compact, there exists a finite subcover $J_0 \subset J$, such that

$$\bigcup_{i \in J_0} g^{-1}(G_i) = 1_N.$$

Hence,

$$g\left(\bigcup_{i \in J_0} g^{-1}(G_i) = 1_N\right) g^{-1}\left(\bigcup_{i \in J_0} G_i\right) = 1_N.$$

That is,

$$\bigcup_{i \in J_0} (G_i) = 1_N.$$

Therefore, (\mathcal{X}, Γ_1) is neutrosophic compact. \qed

Definition 17. Let (\mathcal{X}, Γ) be an NT and K be a neutrosophic set in (\mathcal{X}, Γ). If a family $\{\langle k, \mu_G(k), \sigma_G(k), \gamma_G(k) : i \in J \rangle\}$ of GN open sets in (\mathcal{X}, Γ) satisfies the condition $K \subseteq \bigcup \{\langle k, \mu_G(k), \sigma_G(k), \gamma_G(k) : i \in J \rangle\} = 1_N$, then it is called a GN open cover of K. A finite subfamily of a GN open cover $\{\langle k, \mu_G(k), \sigma_G(k), \gamma_G(k) : i \in J \rangle\}$ of K, which is also a GN open cover of K is called a finite subcover of $\{\langle k, \mu_G(k), \sigma_G(k), \gamma_G(k) : i \in J \rangle\}$.

Definition 18. An NT \((\mathcal{X}, \Gamma)\) is called GN compact iff every GN open cover of \(K\) has a finite subcover.

Theorem 3. Let \((\mathcal{X}, \Gamma)\) and \((\mathcal{X}, \Gamma_1)\) be any two NTs, and \(g : (\mathcal{X}, \Gamma) \rightarrow (\mathcal{X}, \Gamma_1)\) be an GN continuous function. If \(K\) is GN-compact, then so is \(g(K)\) in \((\mathcal{X}, \Gamma_1)\).

Proof. Let \(G_i = \{(y, \mu_{G_i}(x), \sigma_{G_i}(x), \gamma_{G_i}(x) : i \in J)\}\) be a neutrosophic open cover of \(g(K)\) in \((\mathcal{X}, \Gamma_1)\). That is,

\[g(K) \subseteq \bigcup_{i \in J} G_i. \]

Since \(g\) is GN continuous, \(g^{-1}(G_i) = \{(x, \mu_{g^{-1}(G_i)}(x), \sigma_{g^{-1}(G_i)}(x), \gamma_{g^{-1}(G_i)}(x) : i \in J)\}\) is GN open cover of \(K\) in \((\mathcal{X}, \Gamma)\). Now,

\[K \subseteq g^{-1}\left(\bigcup_{i \in J} G_i\right) \subseteq \bigcup_{i \in J} g^{-1}(G_i). \]

Since \(K\) is \((\mathcal{X}, \Gamma)\) is GN compact, there exists a finite subcover \(J_0 \subseteq J\), such that

\[K \subseteq \bigcup_{i \in J_0} g^{-1}(G_i) = 1_N. \]

Hence,

\[g(K) \subseteq g\left(\bigcup_{i \in J_0} g^{-1}(G_i)\right) \bigcup_{i \in J_0} (G_i). \]

Therefore, \(g(K)\) is neutrosophic compact. \(\square\)

Proposition 3. Let \((\mathcal{X}, \Gamma)\) be a neutrosophic compact space and suppose that \(K\) is a GN-closed set of \((\mathcal{X}, \Gamma)\). Then, \(K\) is a neutrosophic compact set.

Proof. Let \(K_j = \{(y, \mu_{K_j}(x), \sigma_{K_j}(x), \gamma_{K_j}(x) : i \in J)\}\) be a family of neutrosophic open set in \((\mathcal{X}, \Gamma)\) such that

\[K \subseteq \bigcup_{i \in J} K_j. \]

Since \(K\) is GN-closed, \(\text{NCl}(K) \subseteq \bigcup_{i \in J} K_j\). Since \((\mathcal{X}, \Gamma)\) is a neutrosophic compact space, there exists a finite subcover \(J_0 \subseteq J\). Now, \(\text{NCl}(K) \subseteq \bigcup_{i \in J_0} K_j\). Hence, \(K \subseteq \text{NCl}(K) \subseteq \bigcup_{i \in J_0} K_j\). Therefore, \(K\) is a neutrosophic compact set. \(\square\)

Definition 19. Let \((\mathcal{X}, \Gamma)\) be any neutrosophic topological space. \((\mathcal{X}, \Gamma)\) is said to be GN extremally disconnected if \(\text{NCl}(K)\) neutrosophic open and \(K\) is GN open.

Proposition 4. For any neutrosophic topological space \((\mathcal{X}, \Gamma)\), the following are equivalent:

1. \((\mathcal{X}, \Gamma)\) is GN extremally disconnected.
2. For each GN closed set \(K\), \(\text{NGNCl}(\bar{S})\) is a GN closed set.
3. For each GN open set \(K\), we have \(\text{NGNCl}(K) + \text{NGNCl}(1 - \text{NGNCl}(\bar{S})) = 1\).
4. For each pair of GN open sets \(K\) and \(M\) in \((\mathcal{X}, \Gamma)\), \(\text{NGNCl}(K) + M = 1\), we have \(\text{NGNCl}(K) + \text{NGNCl}(B) = 1\).

4. Generalized Neutrosophic Pre-Closed Set

Definition 20. An NS \(\bar{S}\) is said to be a neutrosophic generalized pre-closed set (GNPCSs in short) in \((\mathcal{X}, \Gamma)\) if \(\text{pNCI}(\bar{S}) \subseteq B\) whenever \(\bar{S} \subseteq B\) and \(B\) is an NO in \(\mathcal{X}\). The family of all GNPCSs of an NT \((\mathcal{X}, \Gamma)\) is defined by \(\text{GNPC}(\mathcal{X})\).
Example 2. Let \(\mathcal{X} = \{a, b\} \) and \(\Gamma = \{0_N, 1_N, T\} \) be a neutrosophic topology on \(\mathcal{X} \), where \(T = \langle (0.2, 0.3, 0.5), (0.8, 0.7, 0.7) \rangle \). Then, the NS \(\tilde{S} = \langle (0.2, 0.2, 0.2), (0.8, 0.7, 0.7) \rangle \) is GNPCs \(\in \mathcal{X} \).

Theorem 4. Every NC is a GNPC, but the converse is not true.

Proof. Let \(\tilde{S} \) be an NC in \(\mathcal{X} \), \(\tilde{S} \subseteq \tilde{B} \) and \(\tilde{B} \) be NOS in \((\mathcal{X}, \Gamma) \). Since \(pNCI(\tilde{S}) \subseteq NCI(\tilde{S}) \) and \(\tilde{S} \) is NCS in \(\mathcal{X} \), \(pNCI(\tilde{S}) \subseteq NCI(\tilde{S}) \). Hence, \(\tilde{S} \) is GNPCs \(\in \mathcal{X} \). \(\square \)

Example 3. Let \(\mathcal{X} = \{u, v\} \) and \(\Gamma = \{0_N, 1_N, H\} \) be a neutrosophic topology on \(\mathcal{X} \), where \(H = \langle (0.2, 0.3, 0.5), (0.8, 0.7, 0.7) \rangle \). Then, the NS \(\tilde{S} = \langle (0.2, 0.2, 0.2), (0.8, 0.7, 0.7) \rangle \) is a GNPC in \(\mathcal{X} \) but not an NCS in \(\mathcal{X} \).

Theorem 5. Every NaCS is GNPC, but the converse is not true.

Proof. Let \(\tilde{S} \) be an NaCS in \(\mathcal{X} \) and let \(\tilde{S} \subseteq \tilde{B} \) and \(\tilde{B} \) be an NOS in \((\mathcal{X}, \Gamma) \). Now, \(NCI(NInt(NCI(\tilde{S}))) \subseteq \tilde{S} \). Since \(\tilde{S} \subseteq NCI(\tilde{S}), NCI(NInt(\tilde{S})) \subseteq NCI(NInt(NCI(\tilde{S}))) \subseteq \tilde{S} \). Hence, \(pNCI(\tilde{S}) \subseteq \tilde{S} \subseteq \tilde{B} \). Therefore, \(\tilde{S} \) is GNPCs \(\in \mathcal{X} \). \(\square \)

Example 4. Let \(\mathcal{X} = \{u, v\} \) and \(\Gamma = \{0_N, 1_N, H\} \) be a neutrosophic topology on \(\mathcal{X} \), where \(H = \langle (0.4, 0.2, 0.5), (0.6, 0.7, 0.6) \rangle \). Then, the NS \(\tilde{S} = \langle (0.3, 0.1, 0.4), (0.7, 0.8, 0.7) \rangle \) is a GNPC in \(\mathcal{X} \) but not NaCS in \(\mathcal{X} \) since \(NCI(NInt(NCI(\tilde{S}))) = \langle (0.5, 0.6, 0.5), (0.5, 0.3, 0.6) \rangle \triangleleft \tilde{S} \).

Theorem 6. Every GNaC is a GNPC, but the converse is not true.

Proof. Let \(\tilde{S} \) be GNaCS \(\in \mathcal{X}, \tilde{S} \subseteq \tilde{B}, \tilde{B} \) be an NOS in \((\mathcal{X}, \Gamma) \). By Definition 6, \(\tilde{S} \cup NCI(NInt(NCI(\tilde{S}))) \subseteq \tilde{B} \). This implies \(NCI(NInt(NCI(\tilde{S}))) \subseteq \tilde{B} \) and \(NCI(NInt(\tilde{S})) \subseteq \tilde{B} \). Therefore, \(pNCI(\tilde{S}) = \tilde{S} \cup NCI(NInt(\tilde{S})) \subseteq \tilde{B} \). Hence, \(\tilde{S} \) is GNPCs \(\in \mathcal{X} \). \(\square \)

Example 5. Let \(\mathcal{X} = \{u, v\} \) and \(\Gamma = \{0_N, 1_N, H\} \) be a neutrosophic topology on \(\mathcal{X} \), where \(H = \langle (0.5, 0.6, 0.6), (0.5, 0.4, 0.4) \rangle \). Then, the NS \(\tilde{S} = \langle (0.4, 0.50.5), (0.6, 0.5, 0.5) \rangle \) is GNPC in \(\mathcal{X} \) but not GNaC in \(\mathcal{X} \) since \(aNCI(\tilde{S}) = 1_N \not\subseteq H \).

Definition 21. An NS \(S \) is said to be a neutrosophic generalized pre-closed set (GNCS) in \((\mathcal{X}, \Gamma) \) if \(SNCl(\tilde{S}) \subseteq \tilde{B} \) whenever \(S \subseteq \tilde{B} \) and \(\tilde{B} \) is an NO in \(\mathcal{X} \). The family of all GNCSs of an NT \((\mathcal{X}, \Gamma) \) is defined by \(GNCS(\mathcal{X}) \).

Proposition 5. Let \(\tilde{S}, B \) be a two GNPCs of an NT \((\mathcal{X}, \Gamma) \). NGSC and NGPC are independent.

Example 6. Let \(\mathcal{X} = \{u, v\}, \Gamma = \{0_N, 1_N, H\} \) be a neutrosophic topology on \(\mathcal{X} \), where \(H = \langle (0.5, 0.4, 0.4), (0.5, 0.6, 0.5) \rangle \). Then, the NS \(\tilde{S} = H \) is GNSC but not GNPC in \(\mathcal{X} \) since \(\tilde{S} \subseteq H \) but \(pNCI(\tilde{S}) = \langle (0.5, 0.6, 0.4), (0.5, 0.4, 0.5) \rangle \not\subseteq H \)

Example 7. Let \(\mathcal{X} = \{u, v\}, \Gamma = \{0_N, 1_N, H\} \) be a neutrosophic topology on \(\mathcal{X} \), where \(H = \langle (0.7, 0.9, 0.7), (0.3, 0.1, 0.1) \rangle \). Then, the NS \(\tilde{S} = \langle (0.6, 0.7, 0.6), (0.4, 0.3, 0.4) \rangle \) is GNPC but not GNSC in \(\mathcal{X} \) since \(sNCI(\tilde{S}) = 1_N \not\subseteq H \).

Proposition 6. NSC and GNPC are independent.

Example 8. Let \(\mathcal{X} = \{a, b\}, \Gamma = \{0_N, 1_N, T\} \) be a neutrosophic topology on \(\mathcal{X} \), where \(T = \langle (0.5, 0.2, 0.3), (0.5, 0.6, 0.5) \rangle \). Then, the NS \(\tilde{S} = T \) is an NSC but not GNPC in \(\mathcal{X} \) since \(\tilde{S} \subseteq T \) but \(pNCI(\tilde{S}) = 1\langle (0.5, 0.60.5), (0.5, 0.2, 0.3) \rangle \not\subseteq T \).
Example 9. Let \(\mathcal{Z} = \{u, v\} \), \(\Gamma = \{0_N, 1_N, H\} \) be a neutrosophic topology on \(\mathcal{Z} \), where \(H = \langle (0.8, 0.8, 0.8), (0.2, 0.2, 0.2) \rangle \). Then, the NS \(\tilde{S} = \langle (0.8, 0.8, 0.8), (0.2, 0.2, 0.2) \rangle \) is GNPC but not an NSC in \(\mathcal{Z} \) since \(\text{NInt}(\text{NCI}(\tilde{S})) \not\subset \tilde{S} \).

The following figure shows the implication relations between GNPC set and the other existed ones.

![Diagram showing relations between different sets](image)

Figure 1. Relations between GNPC and other existed sets.

Remark 1. Let \(\tilde{S}, B \) be a two GNPCs of an NT \((\mathcal{Z}, \Gamma)\). Then, the union of any two GNPCs is not a GNPC in general—see the following example.

Example 10. Let \((\mathcal{Z}, \Gamma)\) be a neutrosophic topology set on \(\mathcal{Z} \), where \(\mathcal{Z} = \{u, v\} \), \(T = \langle (0.6, 0.8, 0.6), (0.4, 0.2, 0.2) \rangle \). Then, \(\Gamma = \{0_N, 1_N, T\} \) is neutrosophic topology on \(\mathcal{Z} \) and the NS \(\tilde{S} = \langle (0.2, 0.9, 0.3), (0.8, 0.2, 0.6) \rangle \), \(B = \langle (0.6, 0.7, 0.6), (0.4, 0.3, 0.4) \rangle \) are GNPCs but \(\tilde{S} \cup B \) is not a GNPC in \(\mathcal{Z} \).

5. Generalized Neutrosophic Pre-Open Sets

In this section, we present generalized neutrosophic pre-open sets and investigate some of their properties.

Definition 22. An NS \(\tilde{S} \) is said to be a generalized neutrosophic pre-open set (GNPOS) in \((\mathcal{Z}, \Gamma)\) if the complement \(\tilde{S}^c \) is a GNPCS in \(\mathcal{Z} \). The family of all GNPOSs of NTS \((\mathcal{Z}, \Gamma)\) is denoted by GNPO\((\mathcal{Z})\).
Example 11. Let $\mathcal{Z} = \{u, v\}$ and $\Gamma = \{0_N, 1_N, H\}$ be a neutrosophic topology on \mathcal{Z}, where $H = \langle(0.8, 0.7, 0.8), (0.3, 0.4, 0.3)\rangle$. Then, the NS $\hat{S} = \langle(0.9, 0.8, 0.8), (0.3, 0.3, 0.3)\rangle$ is GNPO in \mathcal{Z}.

Theorem 7. Let (\mathcal{Z}, Γ) be an NT. Then, for every $\hat{S} \in \text{GNPO}(\mathcal{Z})$ and for every $\hat{R} \in \text{NS}(\mathcal{Z})$, $pN\text{Int}(\hat{S}) \subseteq \hat{R} \subseteq \hat{S}$ implies $\hat{R} \in \text{GNPO}(\mathcal{Z})$.

Proof. By Theorem 8. The proof is clear, so it has been omitted. □

Remark 2. Let \hat{S}, \hat{R} be two GNPOs of an NT (\mathcal{Z}, Γ). The intersection of any two GNPOs is not a GNPO in general.

Example 12. Let $\mathcal{Z} = \{u, v\}$ and $\Gamma = \{0_N, 1_N, H\}$ be a neutrosophic topology on \mathcal{Z}, where $H = \langle(0.6, 0.8, 0.6), (0.4, 0.2, 0.4)\rangle$. Then, the NS $\hat{S} = \langle(0.9, 0.2, 0.1), (0.1, 0.8, 0.2)\rangle$ and $\hat{R} = \langle(0.4, 0.3, 0.4), (0.6, 0.7, 0.6)\rangle$ is GNPO, but $\hat{S} \cap \hat{R}$ is not GNPO in \mathcal{Z}.

Theorem 8. For any an NTS (\mathcal{Z}, Γ), the following hold:

(i) Every NO is GNPO.
(ii) Every NSO is GNPO.
(iii) Every NaO is GNPO.
(iv) Every NPO is GNPO.

Proof. The proof is clear, so it has been omitted. □

The converses are not true in general.

Example 13. Let $\mathcal{Z} = \{u, v\}$ and $H = \langle(0.2, 0.3, 0.2), (0.8, 0.7, 0.7)\rangle$. Then, $\Gamma = \{0_N, 1_N, H\}$ is a neutrosophic topology on \mathcal{Z}, an NS $\hat{S} = \langle(0.8, 0.7, 0.7), (0.2, 0.2, 0.2)\rangle$ is an NSO in (\mathcal{Z}, Γ) but not an NO in \mathcal{Z}.

Example 14. Let $\mathcal{Z} = \{u, v\}$ and $\Gamma = \{0_N, 1_N, H\}$ be neutrosophic topology on \mathcal{Z}, where $H = \langle(0.6, 0.4, 0.7), (0.7, 0.4, 0.6)\rangle$. Then, an NS $\hat{S} = \langle(0.2, 0.7, 0.7), (0.8, 0.3, 0.8)\rangle$ is GNPO but not an NSO in \mathcal{Z}.

Example 15. Let $\mathcal{Z} = \{u, v\}$ and $\Gamma = \{0_N, 1_N, H\}$ be a neutrosophic topology on \mathcal{Z}, where $H = \langle(0.4, 0.2, 0.4), (0.6, 0.7, 0.6)\rangle$. Then, an NS $\hat{S} = \langle(0.8, 0.9, 0.8), (0.4, 0.2, 0.3)\rangle$ is GNPO but not a NaO in \mathcal{Z}.

Example 16. Let $\mathcal{Z} = \{u, v\}$ and $\Gamma = \{0_N, 1_N, H\}$ be a neutrosophic topology on \mathcal{Z}, where $H = \langle(0.6, 0.5, 0.6), (0.5, 0.6, 0.5)\rangle$. Then, an NS $\hat{S} = \langle(0.8, 0.7, 0.8), (0.4, 0.5, 0.3)\rangle$ is GNPO but not an NPO in \mathcal{Z}.

Theorem 9. Let (\mathcal{Z}, Γ) be an NT. If $\hat{S} \in \text{GNPO}(\mathcal{Z})$, then $\hat{R} \subseteq \text{NInt}(NC\text{l}(\hat{S}))$ whenever $\hat{R} \subseteq \hat{S}$ and \hat{R} is an NC in \mathcal{Z}.

Proof. Let $\hat{S} \in \text{GNPO}(\mathcal{Z})$. Then, \hat{S}^c is GnPSC in \mathcal{Z}. Therefore, $p\text{NCI}(\hat{S}^c) \subseteq \hat{B}$ whenever $\hat{S}^c \subseteq \hat{B}$ and \hat{B} is an NO in \mathcal{Z}. That is, $\text{NCI}(\text{NInt}(\hat{S}^c)) \subseteq \hat{B}$. This implies $\hat{B}^c \subseteq \text{NInt}(\text{NCI}(\hat{S}))$ whenever $\hat{B}^c \subseteq \hat{S}$ and \hat{B}^c is NCs in \mathcal{Z}. Replacing \hat{B}^c, by \hat{R}, we get $\hat{R} \subseteq \text{NInt}(\text{NCI}(\hat{S}))$ whenever $\hat{R} \subseteq \hat{S}$ and \hat{R} is an NC in \mathcal{Z}. □

Theorem 10. For NS \hat{S}, \hat{S} is an NO and GNPC in \mathcal{Z} if and only if \hat{S} is an NRO in \mathcal{Z}.
Proof. \(\implies\) Let \(\bar{S}\) be an NO and a GNPCS in \(\mathcal{X}\). Then, \(pNCI(\bar{S}) \subseteq \bar{S}\). This implies \(NCI(NInt(\bar{S})) \subseteq \bar{S}\). Since \(\bar{S}\) is an NO, it is an NPO. Hence, \(\bar{S} \subseteq NInt(NCI(\bar{S}))\). Therefore, \(\bar{S} = NInt(NCI(\bar{S}))\). Hence, \(\bar{S}\) is an NRO in \(\mathcal{X}\).

\(\Longleftarrow\) Let \(\bar{S}\) be an NRO in \(\mathcal{X}\). Therefore, \(\bar{S} = NInt(NCI(\bar{S}))\). Let \(\bar{S} \subseteq \bar{B}\) and \(\bar{B}\) be an NO in \(\mathcal{X}\). This implies \(pNCI(\bar{S}) \subseteq \bar{S}\). Hence, \(\bar{S}\) is GNPC in \(\mathcal{X}\). \(\square\)

Theorem 11. An NS \(\bar{S}\) of an NT \((\mathcal{X}, \Gamma)\) is a GNPO iff \(H \subseteq pNInt(\bar{S})\), whenever H is an NC and \(H \subseteq \bar{S}\).

Proof. \(\implies\) Let \(\bar{S}\) be GNPO in \(\mathcal{X}\). Let \(H\) be an NCs and \(H \subseteq \bar{S}\). Then, \(H^c\) is a NOS in \(\mathcal{X}\) such that \(\bar{S}^c \subseteq H^c\). Since \(\bar{S}^c\) is GNPC, we have \(pNCI(\bar{S}^c) \subseteq H^c\). Hence, \((pNInt(\bar{S}))^c \subseteq H^c\). Therefore, \(H \subseteq pNInt(\bar{S})\).

\(\Longleftarrow\) Suppose \(\bar{S}\) is an NS of \(\mathcal{X}\) and let \(H \subseteq pNInt(\bar{S})\) whenever \(H\) is an NC and \(H \subseteq \bar{S}\). Then, \(\bar{S}^c \subseteq H^c\) and \(H^c\) is an NO. By assumption, \((pNInt(\bar{S}))^c \subseteq H^c\), which implies \(pNCI(\bar{S}^c) \subseteq H^c\). Therefore, \(\bar{S}^c\) is GNPCs of \(\mathcal{X}\). Hence, \(\bar{S}\) is a GNPOS of \(\mathcal{X}\). \(\square\)

Corollary 1. An NS \(\bar{S}\) of an NTS \((\mathcal{X}, \Gamma)\) is GNPO iff \(H \subseteq NInt(NCI(\bar{S}))\), whenever H is an NC and \(H \subseteq \bar{S}\).

Proof. \(\implies\) Let \(\bar{S}\) be a GNPOS in \(\mathcal{X}\). Let \(H\) be an NCs and \(H \subseteq \bar{S}\). Then, \(H^c\) is a NOS in \(\mathcal{X}\) such that \(\bar{S}^c \subseteq H^c\). Since \(\bar{S}^c\) is GNPC, we have \(pNCI(\bar{S}^c) \subseteq H^c\). Therefore, \(NCI(NInt(\bar{S}^c)) \subseteq H^c\). Hence, \((NInt(NCI(\bar{S})))^c \subseteq H^c\). This implies \(H \subseteq NInt(NCI(\bar{S}))\).

\(\Longleftarrow\) Suppose \(\bar{S}\) be an NS of \(\mathcal{X}\) and \(H \subseteq NInt(NCI(\bar{S}))\), whenever H is an NC and \(H \subseteq \bar{S}\). Then, \(\bar{S}^c \subseteq H^c\) and \(H^c\) is an NO. By assumption, \((NInt(NCI(\bar{S})))^c \subseteq H^c\). Hence, \(NCI(NInt(\bar{S})) \subseteq H^c\). This implies \(pNCI(\bar{S}^c) \subseteq H^c\). Hence, \(\bar{S}\) is a GNPOS of \(\mathcal{X}\). \(\square\)

6. Applications of Generalized Neutrosophic Pre-Closed Sets

Definition 23. An NTS \((\mathcal{X}, \Gamma)\) is said to be neutrosophic-\(pT_2\) (\(NpT_2\) in short) space if every GNPC in \(\mathcal{X}\) is an NCs in \(\mathcal{X}\).

Definition 24. An NTS \((\mathcal{X}, \Gamma)\) is said to be neutrosophic-\(gpT_2\) (\(NgpT_2\) in short) space if every GNPC in \(\mathcal{X}\) is an NPCS in \(\mathcal{X}\).

Theorem 12. Every \(NpT_2\) space is an \(NgpT_2\) space.

Proof. Let \(\mathcal{X}\) be an \(NpT_2\) space and \(S\) be GNPC in \(\mathcal{X}\). By assumption, \(S\) is NCs in \(\mathcal{X}\). Since every NC is an NPC, \(\bar{S}\) is an NPC in \(\mathcal{X}\). Hence, \(\mathcal{X}\) is an \(NgpT_2\) space. \(\square\)

The converse is not true.

Example 17. Let \(\mathcal{X} = \{u, v\}, H = \{(0.9, 0.9, 0.9), (0.1, 0.1, 0.1)\}\) and \(\Gamma = \{0_N, 1_N, H\}\). Then, \((\mathcal{X}, \Gamma)\) is an \(NgpT_2\) space, but it is not \(NpT_2\) since an NS \(H = \{(0.2, 0.3, 0.3), (0.8, 0.7, 0.7)\}\) is GNPC but not an NCs in \(\mathcal{X}\).

Theorem 13. Let \((\mathcal{X}, \Gamma)\) be an NT and \(\mathcal{X}\) is an \(NpT_2\) space; then,

(i) the union of GNPCs is GNPC,
(ii) the intersection of GNPOS is GNPO.

Proof. (i) Let \(\{\bar{S}_i\}_{i \in I}\) be a collection of GNPCs in an \(NpT_2\) space \((\mathcal{X}, \Gamma)\). Thus, every GNPCs is an NCS. However, the union of an NC is an NCS. Therefore, the Union of GNPCs is GNPCs in \(\mathcal{X}\).

(ii) Proved by taking complement in (i). \(\square\)
Theorem 14. An NT \(Z \) is an NgpT\(_2\) space iff \(\text{GNPO}(Z) = \text{NPO}(Z) \).

Proof. \(\implies \) Let \(\hat{S} \) be a GNPO in \(Z \); then, \(\hat{S}^c \) is GNPCs in \(Z \). By assumption, \(\hat{S}^c \) is an NPCs in \(Z \). Thus, \(\hat{S} \) is NPOS in \(Z \). Hence, \(\text{GNPO}(Z) = \text{NPO}(Z) \).

\(\impliedby \) Let \(\hat{S} \) be GNPC \(\in Z \). Then, \(\hat{S}^c \) is GNPO in \(Z \). By assumption, \(\hat{S}^c \) is an NPO in \(Z \). Thus, \(\hat{S} \) is an NPC \(\in Z \). Therefore, \(Z \) is an NgpT\(_2\) space. \(\square \)

Theorem 15. For an NTS \((Z, \Gamma)\), the following are equivalent:

(i) \((Z, \Gamma)\) is a neutrosophic pre-\(T_1\) space.

(ii) Every non-empty set of \(Z \) is either an NPCS or NPOS.

Proof. (i) \(\implies \) (ii). Suppose that \((Z, \Gamma)\) is a neutrosophic pre-\(T_2\) space. Suppose that \(\{x\} \) is not an NPCS for some \(x \in Z \). Then, \(Z - \{x\} \) is not an NPOS and hence \(Z \) is the only an NPOS containing \(Z - \{x\} \). Hence, \(\hat{Z} - \{x\} \) is an NPGCS in \((Z, \Gamma)\). Since \((Z, \Gamma)\) is a neutrosophic pre-\(T_2\) space, then \(\hat{Z} - \{x\} \) is an NPCS or equivalently \(\{x\} \) is an NPOS. (ii) \(\implies \) (i). Let every singleton set of \(Z \) be either NPCS or NPOS. Let \(\hat{S} \) be an NPGCS of \((Z, \Gamma)\). Let \(x \in Z \). We show that \(x \in Z \) in two cases.

Case(i): Suppose that \(\{x\} \) is NPCS. If \(x \notin \hat{S} \), then \(x \in p\text{NCl}(\hat{S}) - \hat{S} \). Now, \(p\text{NCl}(\hat{S}) - \hat{S} \) contains a non-empty NPCS. Since \(\hat{S} \) is NPGCS, by Theorem 7, we arrived to a contradiction. Hence, \(x \in Z \).

Case (ii): Let \(\{x\} \) be NPOS. Since \(x \in p\text{NCl}(\hat{S}) \), then \(\{x\} \cap \hat{S} \neq \phi \). Thus, \(x \in Z \). Thus, in any case \(x \in Z \). Hence, \(\hat{S} = p\text{NCl}(\hat{S}) \) or equivalently \(\hat{S} \) is an NPCS. Thus, every NPGCS is an NCS. Therefore, \((Z, \Gamma)\) is neutrosophic pre-\(T_2\) space. \(\square \)

7. Conclusions

We have introduced generalized neutrosophic pre-closed sets and generalized neutrosophic pre-open sets over neutrosophic topology space. Many results have been established to show how far topological structures are preserved by these neutrosophic pre-closed. We also have provided examples where such properties fail to be preserved. In this paper, we have studied a few ideas only; it will be necessary to carry out more theoretical research to establish a general framework for decision-making and to define patterns for complex network conceiving and practical application.

Author Contributions: All authors have contributed equally to this paper. The individual responsibilities and contribution of all authors can be described as follows: the idea of this paper was put forward by Wadei Al-Omeri. Wadei Al-Omeri completed the preparatory work of the paper. Saeid Jafari analyzed the existing work. The revision and submission of this paper was completed by Wadei Al-Omeri.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflicts of interest

References

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).