PROPERTIES OF IDEAL BITOPOLOGICAL α-OPEN SETS

A. I. EL-MAGHRABI, M. CALDAS, S. JAFARI, R. M. LATIF, A. NASEF, N. RAJESH AND S. SHANTHI

Dedicated to Professor Valeriu Popa on the Occasion of His 80th Birthday

ABSTRACT. The aim of this paper is to introduced and characterized the concepts of α-open sets and their related notions in ideal bitopological spaces.

1. Introduction

The concept of ideals in topological spaces has been introduced and studied by Kuratowski [10] and Vaidyanathasamy [11]. An ideal I on a topological space (X,τ) is a nonempty collection of subsets of X which satisfies (i) $A \in I$ and $B \subset A$ implies $B \in I$ and (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. Given a bitopological space (X,τ_1,τ_2) with an ideal I on X and if $P(X)$ is the set of all subsets of X, a set operator $(.;)_i^*: P(X) \to P(X)$, called the local function [11] of A with respect to τ_i and I, is defined as follows: for $A \subset X$, $(.;)_i^*(\tau_i, I) = \{x \in X | U \cap A \notin I \text{ for every } U \in \tau_i(x)\}$, where $\tau_i(x) = \{U \in \tau_i | x \in U\}$. For every ideal topological space (X,τ,I), there exists topology $\tau^*(I)$, finer than τ, generated by the base $\beta(I,\tau) = \{U \setminus I | U \in \tau \text{ and } I \in I\}$, but in general $\beta(I,\tau)$ is not always a topology [7]. Observe additionally that $\tau_i-\text{Cl}^*(A) = A \cup A_i^*(\tau_i, I)$ defines a Kuratowski closure operator for $\tau^*(I)$, when there is no chance of confusion, $A_i^*(I)$ is denoted by A_i^* and $\tau_i-\text{Int}^*(A)$ denotes the interior of A in $\tau_i^*(I)$. The aim of this paper is to introduced and characterized the concepts of α-open sets and their related notions in ideal bitopological spaces.

2. Preliminaries

Let A be a subset of a bitopological space (X,τ_1,τ_2). We denote the closure of A and the interior of A with respect to τ_i by $\tau_i-\text{Cl}(A)$ and $\tau_i-\text{Int}(A)$, respectively.

2000 Mathematics Subject Classification. 54D10.
Key words and phrases. Ideal bitopological spaces, $(1,2)$-α-ideal-open sets, $(1,2)$-α-ideal-closed sets.
Definition 2.1. A subset A of a bitopological space (X, τ_1, τ_2) is said to be (i, j)-α-open $[9]$ if $A \subset \tau_i\text{-Int}(\tau_j\text{-Cl}(\tau_i\text{-Int}(A)))$, where $i, j = 1, 2$ and $i \neq j$.

Definition 2.2. A subset S of an ideal topological space (X, τ, \mathcal{I}) is said to be α-\mathcal{I}-open $[8]$ if $S \subset \text{Int}(\text{Cl}^*(\text{Int}(S)))$. The family of all α-\mathcal{I}-open sets of (X, τ, \mathcal{I}) is denoted by $\alpha\mathcal{I}O(X, \tau)$.

Definition 2.3. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be (i, j)-α-continuous $[9]$ if the inverse image of every σ_j-open set in (Y, σ_1, σ_2) is (i, j)-α-open in $(X, \tau_1, \tau_2, \mathcal{I})$, where $i \neq j, i, j = 1, 2$.

Definition 2.4. A subset A of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ is said to be

- (i) (i, j)-R-\mathcal{I}-open $[1]$ if $A = \tau_i\text{-Int}(\tau_j\text{-Cl}^*(A))$.
- (ii) (i, j)-semi-\mathcal{I}-open $[3]$ if $A \subset \tau_j\text{-Cl}^*(\tau_i\text{-Int}(A))$.
- (iii) (i, j)-pre-\mathcal{I}-open $[2]$ if $A \subset \tau_i\text{-Int}(\tau_j\text{-Cl}^*(A))$.
- (iv) (i, j)-b-\mathcal{I}-open $[4]$ if $A \subset \tau_i\text{-Int}(\tau_j\text{-Cl}^*(A)) \cup \tau_j\text{-Cl}^*(\tau_i\text{-Int}(A))$.
- (v) (i, j)-β-\mathcal{I}-open $[5]$ if $A \subset \tau_j\text{-Cl}(\tau_i\text{-Int}(\tau_j\text{-Cl}^*(A)))$.
- (vi) (i, j)-δ-\mathcal{I}-open $[1]$ if $\tau_i\text{-Int}(\tau_j\text{-Cl}^*(A)) \subset \tau_j\text{-Cl}^*(\tau_i\text{-Int}(A))$.

The complement of an (i, j)-pre-\mathcal{I}-open (resp. (i, j)-β-\mathcal{I}-open) set is called an (i, j)-pre-\mathcal{I}-closed (resp. (i, j)-β-\mathcal{I}-closed) set.

Lemma 2.5. Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space. Then

- (i) A subset A is (i, j)-pre-\mathcal{I}-closed if and only if $\tau_i\text{-Cl}(\tau_j\text{-Int}^*(A)) \subset A$ $[2]$;
- (i) A subset A is (i, j)-β-\mathcal{I}-closed if and only if $\tau_j\text{-Int}(\tau_i\text{-Cl}(\tau_j\text{-Int}^*(A))) \subset A$ $[5]$.

Definition 2.6. A function $f : (X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2)$ is said to be

- (i) pairwise pre-\mathcal{I}-continuous $[2]$ if the inverse image of every σ_i-open set of Y is (i, j)-pre-\mathcal{I}-open in X, where $i \neq j, i, j = 1, 2$.
- (i) pairwise semi-\mathcal{I}-continuous $[3]$ if the inverse image of every σ_i-open set of Y is (i, j)-semi-\mathcal{I}-open in X, where $i \neq j, i, j = 1, 2$.
- (i) pairwise b-\mathcal{I}-continuous $[4]$ if the inverse image of every σ_i-open set of Y is (i, j)-b-\mathcal{I}-open in X, where $i \neq j, i, j = 1, 2$.
- (i) pairwise β-\mathcal{I}-continuous $[5]$ if the inverse image of every σ_i-open set of Y is (i, j)-β-\mathcal{I}-open in X, where $i \neq j, i, j = 1, 2$.
- (i) pairwise strongly β-\mathcal{I}-continuous $[5]$ if the inverse image of every σ_i-open set of Y is strongly (i, j)-β-\mathcal{I}-open in X, where $i \neq j, i, j = 1, 2$.

Definition 3.1. A subset \(A \) of an ideal bitopological space \((X, \tau_1, \tau_2, \mathcal{I})\) is said to be \((i, j)\)-\(\alpha\)-\(\mathcal{I}\)-open if and only if \(A \subset \tau_i\text{-}\text{Int}(\tau_j\text{-}\text{Cl}^i(\tau_i\text{-}\text{Int}(A))) \), where \(i, j = 1, 2 \) and \(i \neq j \).

The family of all \((i, j)\)-\(\alpha\)-\(\mathcal{I}\)-open sets of \((X, \tau_1, \tau_2, \mathcal{I})\) is denoted by \(\alpha \mathcal{IO}(X, \tau_1, \tau_2, \mathcal{I}) \) or \((i, j)\)-\(\alpha\)-\(\mathcal{I}\)O\((X)\). Also, The family of all \((i, j)\)-\(\alpha\)-\(\mathcal{I}\)-open sets of \((X, \tau_1, \tau_2, \mathcal{I})\) containing \(x \) is denoted by \(\alpha \mathcal{IO}(X, x) \).

Remark 3.2. Let \(\mathcal{I} \) and \(\mathcal{J} \) be two ideals on \((X, \tau_1, \tau_2)\). If \(\mathcal{I} \subset \mathcal{J} \), then \(\alpha \mathcal{IO}(X, \tau_1, \tau_2) \subset \alpha \mathcal{IO}(X, \tau_1, \tau_2) \).

Proposition 3.3. (i) Every \((i, j)\)-\(\alpha\)-\(\mathcal{I}\)-open set is \((i, j)\)-semi-\(\mathcal{I}\)-open.

(ii) Every \((i, j)\)-\(\alpha\)-\(\mathcal{I}\)-open set is \((i, j)\)-\(\alpha\)-open.

(iii) Every \((i, j)\)-\(\alpha\)-\(\mathcal{I}\)-open set is \((i, j)\)-pre-\(\mathcal{I}\)-open.

(iv) Every \((i, j)\)-\(\alpha\)-\(\mathcal{I}\)-open set is \((i, j)\)-\(\alpha\)-open.

(v) Every \((i, j)\)-\(\alpha\)-\(\mathcal{I}\)-open set is \((i, j)\)-\(\alpha\)-open.

Proof. The proof follows from the definitions.

The following example show that the converses of Proposition 3.3 is not true in general.

Example 3.4. Let \(X = \{a, b, c\} \), \(\tau_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\} \), \(\tau_2 = \{\emptyset, \{a\}, X\} \) and \(\mathcal{I} = \{\emptyset, \{a\}\} \). Then the set \(\{a, c\} \) is \((i, j)\)-\(\alpha\)-\(\mathcal{I}\)-open but not \((i, j)\)-\(\alpha\)-\(\mathcal{I}\)-open. Also, the set \(\{b, c\} \) is \((i, j)\)-semi-\(\mathcal{I}\)-open but not \((i, j)\)-\(\alpha\)-\(\mathcal{I}\)-open and the set \(\{a, c\} \) is \((i, j)\)-pre-\(\mathcal{I}\)-open and \((i, j)\)-\(\alpha\)-open but not \((i, j)\)-\(\alpha\)-\(\mathcal{I}\)-open.

Proposition 3.5. For an ideal bitopological space \((X, \tau_1, \tau_2, \mathcal{I})\) and \(A \subset X \) we have:

(i) If \(\mathcal{I} = \{\emptyset\} \), then \(A \) is \((i, j)\)-\(\alpha\)-\(\mathcal{I}\)-open if and only if \(A \) is \((i, j)\)-\(\alpha\)-open.

(ii) If \(\mathcal{I} = \mathcal{P}(X) \), then \(A \) is \((i, j)\)-\(\alpha\)-\(\mathcal{I}\)-open if and only if \(A \) is \(\tau_i \)-open.

Proof. The proof follows from the fact that

(i) If \(\mathcal{I} = \{\emptyset\} \), then \(A^\ast = \text{Cl}(A) \).

(ii) If \(\mathcal{I} = \mathcal{P}(X) \), then \(A^\ast = \emptyset \) for every subset \(A \) of \(X \).

Proposition 3.6. Let \(A \) be a subset of an ideal bitopological space \((X, \tau_1, \tau_2, \mathcal{I})\). If \(B \) is an \((i, j)\)-semi-\(\mathcal{I}\)-open set of \(X \) such that \(B \subset A \subset \tau_i\text{-}\text{Int}(\tau_j\text{-}\text{Cl}^i(\tau_i\text{-}\text{Int}(B))) \), then \(A \) is an \((i, j)\)-\(\alpha\)-\(\mathcal{I}\)-open set of \(X \).

Proof. Since \(B \) is an \((i, j)\)-semi-\(\mathcal{I}\)-open set of \(X \), we have \(B \subset \tau_j\text{-}\text{Cl}^i(\tau_i\text{-}\text{Int}(B)) \). Thus, \(A \subset \tau_i\text{-}\text{Int}(\tau_j\text{-}\text{Cl}^i(\tau_i\text{-}\text{Int}(B))) \subset \tau_i\text{-}\text{Int}(\tau_j\text{-}\text{Cl}^i(\tau_i\text{-}\text{Int}(B))) \subset \tau_i\text{-}\text{Int}(\tau_j\text{-}\text{Cl}^i(\tau_i\text{-}\text{Int}(A))) \), and so \(A \) is an \((i, j)\)-\(\alpha\)-\(\mathcal{I}\)-open set of \(X \).
Proposition 3.7. Let \((X, \tau_1, \tau_2, \mathcal{I})\) be an ideal bitopological space. Then a subset of \(X\) is \((i, j)-\alpha-\mathcal{I}\)-open if and only if it is both \(\delta-\mathcal{I}\)-open and \(\pre-\mathcal{I}\)-open.

Proof. Let \(A\) be an \((i, j)-\alpha-\mathcal{I}\)-open set. Since every \((i, j)-\alpha-\mathcal{I}\)-open set is \((i, j)-\text{semi}-\mathcal{I}\)-open, by Proposition 3.3 \(A\) is an \((i, j)-\delta-\mathcal{I}\)-open. Now we prove that \(A \subset \tau_i\text{-Int}(\tau_j\text{-Cl}^*_{i}(A))\). Since \(A\) is an \((i, j)-\alpha-\mathcal{I}\)-open, we have \(A \subset \tau_i\text{-Int}(\tau_j\text{-Cl}^*(\tau_i\text{-Int}(A))) \subset \tau_i\text{-Int}(\tau_j\text{-Cl}^*(\tau_i\text{-Int}(A)))\). Hence \(A\) is \((i, j)-\text{pre}-\mathcal{I}\)-open. Conversely, let \(A\) be an \((i, j)-\delta-\mathcal{I}\)-open and \((i, j)-\pre-\mathcal{I}\)-open set. Then we have \(\tau_i\text{-Int}(\tau_j\text{-Cl}^*(A)) \subset \tau_j\text{-Cl}^*(\tau_i\text{-Int}(A))\) and hence \(\tau_i\text{-Int}(\tau_j\text{-Cl}^*(A)) \subset \tau_i\text{-Int}(\tau_j\text{-Cl}^*(\tau_i\text{-Int}(A)))\). Since \(A\) is \((i, j)-\pre-\mathcal{I}\)-open, we have \(A \subset \tau_i\text{-Int}(\tau_j\text{-Cl}^*(A))\). Therefore, we obtain that \(A \subset \tau_i\text{-Int}(\tau_j\text{-Cl}^*(\tau_i\text{-Int}(A)))\); hence \(A\) is \((i, j)-\alpha-\mathcal{I}\)-open. \(\square\)

Lemma 3.8. A subset \(A\) is \((i, j)-\alpha-\mathcal{I}\)-open if and only if \((i, j)-\text{semi}-\mathcal{I}\)-open and \((i, j)-\pre-\mathcal{I}\)-open.

Proof. Let \(A\) be \((i, j)-\text{semi}-\mathcal{I}\)-open and \((i, j)-\pre-\mathcal{I}\)-open. Then, \(A \subset \tau_i\text{-Int}(\tau_j\text{-Cl}^*(A)) \subset \tau_j\text{-Cl}^*(\tau_i\text{-Int}(A)))\). This shows that \(A\) is \((i, j)-\alpha-\mathcal{I}\)-open. The converse is obvious. \(\square\)

Corollary 3.9. The following properties are equivalent for subsets of an ideal bitopological space \((X, \tau_1, \tau_2, \mathcal{I})\):

(i) Every \((i, j)-\pre-\mathcal{I}\)-open set is \((i, j)-\text{semi}-\mathcal{I}\)-open.
(ii) A subset \(A\) of \(X\) is \((i, j)-\alpha-\mathcal{I}\)-open if and only if it is \((i, j)-\pre-\mathcal{I}\)-open.

Corollary 3.10. The following properties are equivalent for subsets of an ideal bitopological space \((X, \tau_1, \tau_2, \mathcal{I})\):

(i) Every \((i, j)-\text{semi}-\mathcal{I}\)-open set is \((i, j)-\pre-\mathcal{I}\)-open.
(ii) A subset \(A\) of \(X\) is \((i, j)-\alpha-\mathcal{I}\)-open if and only if it is \((i, j)-\text{semi}-\mathcal{I}\)-open.

Proposition 3.11. Let \(A\) be a subset of an ideal bitopological space \((X, \tau_1, \tau_2, \mathcal{I})\). If \(A\) is \((i, j)-\pre-\mathcal{I}\)-closed and \((i, j)-\alpha-\mathcal{I}\)-open, then it is \(\tau_i\)-open.

Proof. Suppose \(A\) is \((i, j)-\pre-\mathcal{I}\)-closed and \((i, j)-\alpha-\mathcal{I}\)-open. Then by Lemma 2.5 \(\tau_i\text{-Cl}(\tau_j\text{-Int}^*(A)) \subset A\) and \(A \subset \tau_i\text{-Int}(\tau_j\text{-Cl}^*(\tau_i\text{-Int}(A)))\). Now \(\tau_i\text{-Cl}(\tau_i\text{-Int}(A)) \subset \tau_i\text{-Cl}(\tau_i\text{-Int}^*(A)) \subset A\) and so \(A \subset \tau_i\text{-Int}(\tau_i\text{-Cl}^*(\tau_i\text{-Int}(A))) \subset A \subset \tau_i\text{-Int}(A)\). Therefore, \(A\) is \(\tau_i\)-open. \(\square\)

Lemma 3.12. [1] If \(A\) is any subset of an ideal bitopological space \((X, \tau_1, \tau_2, \mathcal{I})\), then \(\tau_i\text{-Int}(\tau_j\text{-Cl}^*(A))\) is \((i, j)-R-\mathcal{I}\)-open.

Proposition 3.13. Let \(A\) be a subset of an ideal bitopological space \((X, \tau_1, \tau_2, \mathcal{I})\). If \(A\) is \((i, j)-\alpha-\mathcal{I}\)-open and \((i, j)-\beta-\mathcal{I}\)-closed, then it is \((i, j)-R-\mathcal{I}\)-open.
Proof. Let A be (i, j)-α-\mathcal{I}-open and (i, j)-β-\mathcal{I}-closed. We have by Lemma 2.5, $A \subset \tau_j$-$\text{Int}(\tau_i$-$\text{Cl}^*(\tau_j$-$\text{Int}(A)))$ and τ_j-$\text{Int}(\tau_i$-$\text{Cl}^*(\tau_j$-$\text{Int}(A))) \subset \tau_j$-$\text{Int}(\tau_i$-$\text{Cl}^*(\tau_j$-$\text{Int}(A))) \subset A$; hence $A = \tau_j$-$\text{Int}(\tau_i$-$\text{Cl}^*(\tau_j$-$\text{Int}(A)))$. Thus, by Lemma 3.12, A is (i, j)-β-\mathcal{I}-open. \hfill \Box

An ideal bitopological space is said to satisfy the condition (\mathcal{A}) if $U \cap \tau_j$-$\text{Cl}^*(A) \subset \tau_j$-$\text{Cl}^*(U \cap A)$ for every $U \in \tau_i$.

Theorem 3.14. Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space that satisfies the condition (\mathcal{A}). Then we have the following

(i) If $V \in (i, j)$-α-$\mathcal{I}O(X)$ and $A \in (i, j)$-α-$\mathcal{I}O(X)$, then $V \cap A \in (i, j)$-α-$\mathcal{I}O(X)$.

(ii) If $V \in (i, j)$-α-$\mathcal{I}O(X)$ and $A \in (i, j)$-α-$\mathcal{I}O(X)$, then $V \cap A \in (i, j)$-α-$\mathcal{I}O(X)$.

Proof. (i). Let $V \in (i, j)$-α-$\mathcal{I}O(X)$ and $A \in (i, j)$-α-$\mathcal{I}O(X)$. Then $V \cap A \subset \tau_i$-$\text{Int}(\tau_j$-$\text{Cl}^*(\tau_i$-$\text{Int}(V))) \cap \tau_j$-$\text{Int}(\tau_i$-$\text{Cl}^*(\tau_j$-$\text{Int}(A))) \subset \tau_j$-$\text{Cl}^*(\tau_i$-$\text{Int}(V \cap \tau_j$-$\text{Cl}^*(\tau_i$-$\text{Int}(A)))) \subset \tau_j$-$\text{Cl}^*(\tau_j$-$\text{Cl}^*(\tau_i$-$\text{Int}(V \cap \tau_j$-$\text{Cl}^*(\tau_i$-$\text{Int}(A))))). This shows that $V \cap A \in (i, j)$-α-$\mathcal{I}O(X)$.

(ii). Let $V \in (i, j)$-β-$\mathcal{I}O(X)$ and $A \in (i, j)$-α-$\mathcal{I}O(X)$. Then $V \cap A \subset \tau_i$-$\text{Int}(\tau_j$-$\text{Cl}^*(\tau_i$-$\text{Int}(A))) \cap \tau_j$-$\text{Int}(\tau_j$-$\text{Cl}^*(\tau_i$-$\text{Int}(V))) = \tau_j$-$\text{Int}(\tau_j$-$\text{Cl}^*(\tau_j$-$\text{Int}(V))) \subset \tau_j$-$\text{Cl}^*(\tau_j$-$\text{Cl}^*(\tau_i$-$\text{Int}(V))) \subset \tau_i$-$\text{Int}(\tau_j$-$\text{Cl}^*(\tau_i$-$\text{Int}(V))). This shows that $V \cap A \in (i, j)$-β-$\mathcal{I}O(X)$.
Theorem 3.18. Let \((X, \tau_1, \tau_2, I)\) be an ideal bitopological space satisfies the condition \((A)\). If \(A \in (i, j)-\alpha IO(X)\) and \(A \subset B \in (i, j)-\alpha IO(B)\), then \(A \in (i, j)-\alpha IO(O).\)

Proof. By definition, \(A \subset \tau_i-\text{Int}(\tau_j-\text{Cl}^*(\tau_i-\text{Int}(A \cap B))) \cap B = \tau_i-\text{Int}(\tau_j-\text{Cl}^*(\tau_i-\text{Int}(A \cap B))) \cap B \subset \tau_i-\text{Int}(\tau_j-\text{Cl}^*(\tau_i-\text{Int}(A \cap B))) \subset \tau_i-\text{Int}(\tau_j-\text{Cl}^*(\tau_i-\text{Int}(A \cap B))) \subset \tau_i-\text{Int}(\tau_j-\text{Cl}^*(\tau_i-\text{Int}(A \cap B))) \subset \tau_i-\text{Int}(\tau_j-\text{Cl}^*(\tau_i-\text{Int}(A \cap B))) \subset \tau_i-\text{Int}(\tau_j-\text{Cl}^*(\tau_i-\text{Int}(A \cap B))).\) Therefore, we obtain \(A \in (i, j)-\alpha IO(O).\)

Definition 3.19. In an ideal bitopological space \((X, \tau_1, \tau_2, I)\), \(A \subset X\) is said to be \((i, j)-\alpha I\)-closed if \(X \setminus A\) is \((i, j)-\alpha I\)-open in \(X\), \(i, j = 1, 2\) and \(i \neq j\).

Theorem 3.20. If \(A\) is an \((i, j)-\alpha I\)-closed set in an ideal bitopological space \((X, \tau_1, \tau_2, I)\) if and only if \(\tau_i-\text{Cl}(\tau_j-\text{Int}(\tau_i-\text{Cl}(A))) \subset A\).

Proof. The proof follows from the definitions.

Theorem 3.21. If \(A\) is an \((i, j)-\alpha I\)-closed set in an ideal bitopological space \((X, \tau_1, \tau_2, I)\), then \(\tau_i-\text{Cl}(\tau_j-\text{Int}(\tau_i-\text{Cl}(A))) \subset A\).

Proof. Since \(A \in (i, j)-\alpha IO(X)\), \(X \setminus A \in (i, j)-\alpha IO(X).\) Hence, \(X \setminus A \subset \tau_i-\text{Int}(\tau_j-\text{Cl}^*(\tau_i-\text{Int}(X \setminus A))) \subset \tau_i-\text{Int}(\tau_j-\text{Cl}(\tau_i-\text{Int}(X \setminus A))) = X \setminus \tau_i-\text{Cl}(\tau_j-\text{Int}((\tau_i-\text{Cl}(A))))).\) Therefore, we obtain \(\tau_i-\text{Cl}(\tau_j-\text{Int}((\tau_i-\text{Cl}(A))) \subset A\).

Proposition 3.22. Let \((X, \tau_1, \tau_2, I)\) be an ideal bitopological space. If a subset of \(X\) is \((i, j)-\beta I\)-closed and \((i, j)-\delta I\)-open, then it is \((i, j)-\alpha I\)-closed.

Proof. The proof follows from the definitions.

Theorem 3.23. Arbitrary intersection of \((i, j)-\alpha I\)-closed sets is always \((i, j)-\alpha I\)-closed.

Proof. Follows from Theorems 3.17 and 3.21.

Definition 3.24. Let \((X, \tau_1, \tau_2, I)\) be an ideal bitopological space, \(S\) a subset of \(X\) and \(x\) be a point of \(X\). Then

(i) \(x\) is called an \((i, j)-\alpha I\)-interior point of \(S\) if there exists \(V \in (i, j)-\alpha IO(X, \tau_1, \tau_2)\) such that \(x \in V \subset S\).

(ii) the set of all \((i, j)-\alpha I\)-interior points of \(S\) is called \((i, j)-\alpha I\)-interior of \(S\) and is denoted by \((i, j)-\alpha I\) Int(S).

Theorem 3.25. Let \(A\) and \(B\) be subsets of \((X, \tau_1, \tau_2, I)\). Then the following properties hold:

(i) \((i, j)-\alpha I\) Int(A) = \(\{T : T \subset A\) and \(A \in (i, j)-\alpha IO(X)\}\).

(ii) \((i, j)-\alpha I\) Int(A) is the largest \((i, j)-\alpha I\)-open subset of \(X\) contained in \(A\).

(iii) \(A\) is \((i, j)-\alpha I\)-open if and only if \(A = (i, j)-\alpha I\) Int(A).
(iv) \((i,j)-\alpha I\ Int((i,j)-\alpha I\ Int(A)) = (i,j)-\alpha I\ Int(A)\).
(v) If \(A \subset B\), then \((i,j)-\alpha I\ Int(A) \subset (i,j)-\alpha I\ Int(B)\).
(vi) \((i,j)-\alpha I\ Int(A \cap B) = (i,j)-\alpha I\ Int(A) \cap (i,j)-\alpha I\ Int(B)\).
(vii) \((i,j)-\alpha I\ Int(A \cup B) \subset (i,j)-\alpha I\ Int(A) \cup (i,j)-\alpha I\ Int(B)\).

Proof. (i). Let \(x \in \bigcup\{T : T \subset A \text{ and } A \in (i,j)-\alpha I\ 0(X)\}\). Then, there exists \(T \in (i,j)-\alpha I\ 0(X,x)\) such that \(x \in T \subset A\) and hence \(x \in (i,j)-\alpha I\ Int(A)\). This shows that \(\bigcup\{T : T \subset A \text{ and } A \in (i,j)-\alpha I\ 0(X)\}\) \(\subset (i,j)-\alpha I\ Int(A)\). For the reverse inclusion, let \(x \in (i,j)-\alpha I\ Int(A)\). Then there exists \(T \in (i,j)-\alpha I\ 0(X,x)\) such that \(x \in T \subset A\). we obtain \(x \in \bigcup\{T : T \subset A \text{ and } A \in (i,j)-\alpha I\ 0(X)\}\). This shows that \((i,j)-\alpha I\ Int(A) \subset \bigcup\{T : T \subset A \text{ and } A \in (i,j)-\alpha I\ 0(X)\}\). Therefore, we obtain \((i,j)-\alpha I\ Int(A) = \bigcup\{T : T \subset A \text{ and } A \in (i,j)-\alpha I\ 0(X)\}\).

The proof of (ii) – (v) are obvious.
(vi). By (v), we have \((i,j)-\alpha I\ Int(A) \subset (i,j)-\alpha I\ Int(A \cup B)\) and \((i,j)-\alpha I\ Int(B) \subset (i,j)-\alpha I\ Int(A \cup B)\). Then we obtain \((i,j)-\alpha I\ Int(A) \cup (i,j)-\alpha I\ Int(B) \subset (i,j)-\alpha I\ Int(A \cup B)\) Since \((i,j)-\alpha I\ Int(A) \subset A\) and \((i,j)-\alpha I\ Int(B) \subset B\), we obtain \((i,j)-\alpha I\ Int(A \cup B) \subset (i,j)-\alpha I\ Int(A) \cup (i,j)-\alpha I\ Int(B)\) It follows that \((i,j)-\alpha I\ Int(A \cap B) = (i,j)-\alpha I\ Int(A) \cap (i,j)-\alpha I\ Int(B)\).
(vii). Since \(A \cap B \subset A\) and \(A \cap B \subset B\), by (v), we have \((i,j)-\alpha I\ Int(A \cap B) \subset (i,j)-\alpha I\ Int(A)\) and \((i,j)-\alpha I\ Int(A \cap B) \subset (i,j)-\alpha I\ Int(B)\). Therefore, \((i,j)-\alpha I\ Int(A) \cup (i,j)-\alpha I\ Int(B) \subset (i,j)-\alpha I\ Int(A \cap B)\).

Theorem 3.26. If \((X, \tau_1, \tau_2, I)\) is an ideal bitopological space satisfying the condition \((A)\), then \((i,j)-\alpha I\ Int(A) = A \cap \tau_1-Int(\tau_j-Cl^*(\tau_i-Int(A)))\) holds for every subset \(A\) of \(X\).

Proof. Since \(A \cap \tau_1-Int(\tau_j-Cl^*(\tau_i-Int(A))) \subset \tau_1-Int(\tau_j-Cl^*(\tau_i-Int(A))) = \tau_1-Int(\tau_i-Int(\tau_j-Cl^*(\tau_i-Int(A)))) = \tau_1-Int(\tau_i-Int(\tau_j-Cl^*(\tau_i-Int(A))) \cap (\tau_1-Int(\tau_j-Cl^*(\tau_i-Int(A)))) = \tau_1-Int(\tau_j-Cl^*(\tau_i-Int(A) \cap \tau_1-Int(\tau_j-Cl^*(\tau_i-Int(A)))) = \tau_1-Int(\tau_j-Cl^*(\tau_i-Int(A) \cap \tau_1-Int(\tau_j-Cl^*(\tau_i-Int(A))))) = A \cap \tau_1-Int(\tau_j-Cl^*(\tau_i-Int(A)))\) is an \((i,j)-\alpha I\)-open set contained in \(A\) and so \(A \subset \tau_1-Int(\tau_j-Cl^*(\tau_i-Int(A))) \subset (i,j)-\alpha I\ Int(A)\). Since \((i,j)-\alpha I\ Int(A) \subset (i,j)-\alpha I\ Int(A) \subset \tau_1-Int(\tau_j-Cl^*(\tau_i-Int(A))) \subset \tau_1-Int(\tau_j-Cl^*(\tau_i-Int(A)))\) and so \((i,j)-\alpha I\ Int(A) \subset A \cap \tau_1-Int(\tau_j-Cl^*(\tau_i-Int(A)))\). Hence \((i,j)-\alpha I\ Int(A) = A \cap \tau_1-Int(\tau_j-Cl^*(\tau_i-Int(A)))\).

Definition 3.27. The union of all \((i,j)-\alpha I\)-open sets of \((X, \tau_1, \tau_2, I)\) containing \(A\) is called the \((i,j)-\alpha I\)-interior of \(A\) and is denote by \((i,j)-\alpha I\ Int(A)\).

Lemma 3.28. If \((X, \tau_1, \tau_2, I)\) is an ideal bitopological space satisfying the condition \((A)\), then \((i,j)-\alpha I\ Int(A) = A \cap \tau_1-Int(\tau_j-Cl^*(\tau_i-Int(A)))\) holds for every subset \(A\) of \(X\).

Theorem 3.29. If \((X, \tau_1, \tau_2, I)\) is an ideal bitopological space satisfying the condition \((A)\), then \((i,j)-\alpha I\ Int(A) = (i,j)-\alpha I\ Int(A)\) holds for every \((i,j)-\delta I\)-open subset \(A\) of \(X\).
Proof. Since every (i, j)-αI-open set is (i, j)-δ-αI-open, (i, j)-αI $\operatorname{Int}(A) \subset (i, j)$-$p\alpha I$ $\operatorname{Int}(A)$. By Theorem 3.26, αI $\operatorname{Int}(A) = A \cap \tau_1$-$\operatorname{Int}(\tau_1$-$\operatorname{Cl}(\tau_1$-$\operatorname{Int}(A)))$. Since A is (i, j)-δ-αI-open, (i, j)-αI $\operatorname{Int}(A) \supset A \cap \tau_1$-$\operatorname{Int}(\tau_1$-$\operatorname{Cl}(\tau_1$-$\operatorname{Int}(A))) = (i, j)$-$p\alpha I$ $\operatorname{Int}(A)$. Therefore, (i, j)-αI $\operatorname{Int}(A) = (i, j)$-$p\alpha I$ $\operatorname{Int}(A)$. □

Definition 3.30. Let (X, τ_1, τ_2, I) be an ideal bitopological space, S a subset of X and x be a point of X. Then

(i) x is called an (i, j)-αI-cluster point of S if $V \cap S \neq \emptyset$ for every $V \in (i, j)$-αI $\operatorname{Cl}(X, x)$.

(ii) the set of all (i, j)-αI-cluster points of S is called (i, j)-αI-closure of S and is denoted by (i, j)-αI $\operatorname{Cl}(S)$.

Theorem 3.31. Let A and B be subsets of (X, τ_1, τ_2, I). Then the following properties hold:

(i) (i, j)-αI $\operatorname{Cl}(A) = \cap\{F : A \subset F$ and $F \in (i, j)$-αI $\operatorname{Cl}(X)\}$.

(ii) (i, j)-αI $\operatorname{Cl}(A)$ is the smallest (i, j)-αI-closed subset of X containing A.

(iii) A is (i, j)-αI-closed if and only if $A = (i, j)$-αI $\operatorname{Cl}(A)$.

(iv) (i, j)-αI $\operatorname{Cl}((i, j)$-αI $\operatorname{Cl}(A) = (i, j)$-$\alpha I$ $\operatorname{Cl}(A)$.

(v) If $A \subset B$, then (i, j)-αI $\operatorname{Cl}(A) \subset (i, j)$-$\alpha I$ $\operatorname{Cl}(B)$.

(vi) (i, j)-αI $\operatorname{Cl}(A \cup B) = (i, j)$-$\alpha I$ $\operatorname{Cl}(A) \cup (i, j)$-$\alpha I$ $\operatorname{Cl}(B)$.

(vii) (i, j)-αI $\operatorname{Cl}(A \cap B) \subset (i, j)$-$\alpha I$ $\operatorname{Cl}(A) \cap (i, j)$-$\alpha I$ $\operatorname{Cl}(B)$.

Proof. (i). Suppose that $x \notin (i, j)$-αI $\operatorname{Cl}(A)$. Then there exists $F \in (i, j)$-αI $\operatorname{O}(X) \setminus S \neq \emptyset$. Since $X \setminus V$ is (i, j)-αI-closed set containing A and $x \notin X \setminus V$, we obtain $x \notin \cap\{F : A \subset F$ and $F \in (i, j)$-αI $\operatorname{Cl}(X)\}$. Then there exists $F \in (i, j)$-αI $\operatorname{Cl}(X)$ such that $A \subset F$ and $x \notin F$. Since $X \setminus V$ is (i, j)-αI-closed set containing x, we obtain $(X \setminus V)$-$\operatorname{Cl} = \emptyset$. This shows that $x \notin (i, j)$-αI $\operatorname{Cl}(A)$. Therefore, we obtain (i, j)-αI $\operatorname{Cl}(A) = \cap\{F : A \subset F$ and $F \in (i, j)$-αI $\operatorname{Cl}(X)\}$.

The other proofs are obvious. □

Theorem 3.32. Let (X, τ_1, τ_2, I) be an ideal bitopological space and $A \subset X$. A point $x \in (i, j)$-αI $\operatorname{Cl}(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in (i, j)$-αI $\operatorname{O}(X, x)$.

Proof. Suppose that $x \in (i, j)$-αI $\operatorname{Cl}(A)$. We shall show that $U \cap A \neq \emptyset$ for every $U \in (i, j)$-αI $\operatorname{O}(X, x)$. Suppose that there exists $U \in (i, j)$-αI $\operatorname{O}(X, x)$ such that $U \cap A = \emptyset$. Then $A \subset X \setminus U$ and $X \setminus U$ is (i, j)-αI-closed. Since $A \subset X \setminus U$, (i, j)-αI $\operatorname{Cl}(A) \subset (i, j)$-$\alpha I$ $\operatorname{Cl}(X \setminus U)$. Since $x \in (i, j)$-αI $\operatorname{Cl}(A)$, we have $x \in (i, j)$-αI $\operatorname{Cl}(X \setminus U)$. Since $X \setminus U$ is (i, j)-αI-closed, we have $x \in X \setminus U$; hence $x \notin U$, which is a contradiction that $x \in U$. Therefore, $U \cap A \neq \emptyset$. Conversely, suppose that $U \cap A \neq \emptyset$ for every $U \in (i, j)$-αI $\operatorname{O}(X, x)$. We shall show that
Suppose \(G \). Theorem 3.36. A subset of an ideal bitopological space

Proof. of its points.

If \(\text{Theorem 3.34.} \) the condition \(\alpha \) is said to be an \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-open.

\(A \) holds for every subset \(X \). Therefore, we obtain \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-open. Conversely, let \(x \in (i,j)\)-\(\alpha \)-\(\mathcal{I} \)-open set \(x \in (i,j)\)-\(\alpha \)-\(\mathcal{I} \)-open.

Theorem 3.33. Let \((X,\tau_1,\tau_2,\mathcal{I})\) be an ideal bitopological space and \(A \subset X \). Then the following properties hold:

(i) \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-Cl(A) = \(X \setminus (i,j)\)-\(\alpha \)-\(\mathcal{I} \)-Cl(A);

(ii) \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-Int(A).

Proof. Let \(x \in (i,j)\)-\(\alpha \)-\(\mathcal{I} \)-Cl(A). Since \(x \notin (i,j)\)-\(\alpha \)-\(\mathcal{I} \)-Cl(A), there exists \(V \in (i,j)\)-\(\alpha \)-\(\mathcal{I} \)-Cl(A,\(X,x \)) such that \(V \cap A \neq \emptyset \); hence we obtain \(x \in (i,j)\)-\(\alpha \)-\(\mathcal{I} \)-Int(X \setminus A). This shows that \(X \setminus (i,j)\)-\(\alpha \)-\(\mathcal{I} \)-Cl(A) \(\subset \) \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-Int(X \setminus A). Let \(x \in (i,j)\)-\(\alpha \)-\(\mathcal{I} \)-Int(X \setminus A). Since \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-Int(X \setminus A) \(\cap \) A = \(\emptyset \), we obtain \(x \notin (i,j)\)-\(\alpha \)-\(\mathcal{I} \)-Cl(A); hence \(x \in X \setminus (i,j)\)-\(\alpha \)-\(\mathcal{I} \)-Cl(A). Therefore, we obtain \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-Int(X \setminus A) = \(X \setminus (i,j)\)-\(\alpha \)-\(\mathcal{I} \)-Cl(A).

\(\square \)

Theorem 3.34. If \((X,\tau_1,\tau_2,\mathcal{I})\) is an ideal bitopological space satisfies the condition \((A)\), then \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-Cl(A) = \(A \cup \tau_1\)-\(\text{Cl}(\tau_j\text{-Int}^*(\tau_1\text{-Cl}(A))) \) holds for every subset \(A \subset X \).

Proof. The proof follows from the definitions. \(\square \)

Definition 3.35. A subset \(B_x \) of an ideal bitopological space \((X,\tau_1,\tau_2,\mathcal{I})\) is said to be an \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-neighbourhood of a point \(x \in X \) if there exists an \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-open \(U \) such that \(x \in U \subset B_x \).

Theorem 3.36. A subset of an ideal bitopological space \((X,\tau_1,\tau_2,\mathcal{I})\) is \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-open if and only if it is an \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-neighbourhood of each of its points.

Proof. Let \(G \) be an \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-open set \(x \in X \). Then by definition, it is clear that \(G \) is an \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-neighbourhood of each of its points, since for every \(x \in G, x \in G \cap G \) and \(G \) is \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-open. Conversely, suppose \(G \) is an \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-neighbourhood of each of its points. Then for each \(x \in G \), there exists \(S_x \in (i,j)\)-\(\alpha \)-\(\mathcal{I} \)-\(\mathcal{O} \)(X) such that \(S_x \subset G \). Then \(G = \bigcup \{S_x : x \in G\} \). Since each \(S_x \) is \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-open, \(G \) is \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-open in \((X,\tau_1,\tau_2,\mathcal{I})\). \(\square \)

Proposition 3.37. The product of two \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-open sets is \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-open.

Proof. The proof follows from Lemma 3.3 of [12]. \(\square \)

4. Pairwise \(\alpha \)-\(\mathcal{I} \)-Continuous Functions

Definition 4.1. A function \(f : (X,\tau_1,\tau_2,\mathcal{I}) \rightarrow (Y,\sigma_1,\sigma_2) \) is said to be \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-continuous if the inverse image of every \(\sigma_i \)-open set of \(Y \) is \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-open in \(X \), where \(i \neq j \), \(i,j=1,2 \).

Proposition 4.2. (i) Every \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-continuous function is \((i,j)\)-\(\alpha \)-\(\mathcal{I} \)-semi-\(\mathcal{I} \)-continuous but not conversely.
(ii) Every \((i,j)\)-\(\alpha\)-\(\mathcal{I}\)-continuous function is \((i,j)\)-\(\alpha\)-continuous but not conversely.

(iii) Every \((i,j)\)-\(\alpha\)-\(\mathcal{I}\)-continuous function is \((i,j)\)-\(\text{pre}\)-\(\mathcal{I}\)-continuous but not conversely.

(iv) Every \((i,j)\)-\(\alpha\)-\(\mathcal{I}\)-continuous function is \((i,j)\)-\(b\)-\(\mathcal{I}\)-continuous but not conversely.

(v) Every \((i,j)\)-\(\alpha\)-\(\mathcal{I}\)-continuous function is \((i,j)\)-\(\beta\)-\(\mathcal{I}\)-continuous but not conversely.

Proof. The proof follows from Proposition 3.3 and Example 3.4. \(\square\)

Theorem 4.3. A function \(f : (X, \tau_1, \tau_2, \mathcal{I}) \rightarrow (Y, \sigma_1, \sigma_2)\) is \((i,j)\)-\(\alpha\)-\(\mathcal{I}\)-continuous if and only if it is \((i,j)\)-semi-\(\mathcal{I}\)-continuous and \((i,j)\)-\(\text{pre}\)-\(\mathcal{I}\)-continuous.

Proof. This is an immediate consequence of Lemma 3.8. \(\square\)

Theorem 4.4. For a function \(f : (X, \tau_1, \tau_2, \mathcal{I}) \rightarrow (Y, \sigma_1, \sigma_2)\), the following statements are equivalent:

(i) \(f\) is pairwise \(\alpha\)-\(\mathcal{I}\)-continuous;

(ii) For each point \(x\) in \(X\) and each \(\sigma_i\)-open set \(F\) in \(Y\) such that \(f(x) \in F\), there is a \((i,j)\)-\(\alpha\)-\(\mathcal{I}\)-open set \(A\) in \(X\) such that \(x \in A\), \(f(A) \subset F\);

(iii) The inverse image of each \(\sigma_i\)-closed set in \(Y\) is \((i,j)\)-\(\alpha\)-\(\mathcal{I}\)-closed in \(X\);

(iv) For each subset \(A\) of \(X\), \(f(((i,j)\)-\(\alpha\)-\(\mathcal{I}\)\(\text{Cl}(A)\)) \subset \sigma_i\)-\(\text{Cl}(f(A))\);

(v) For each subset \(B\) of \(Y\), \((i,j)\)-\(\alpha\)-\(\mathcal{I}\)\(\text{Cl}(f^{-1}(B)) \subset f^{-1}(\sigma_i\)-\(\text{Cl}(B))\);

(vi) For each subset \(C\) of \(Y\), \(f^{-1}(\sigma_i\)-\(\text{Int}(C)\)) \(\subset (i,j)\)-\(\alpha\)-\(\mathcal{I}\)\(\text{Int}(f^{-1}(C))\).

(vii) \(\tau_i\)-\(\text{Cl}(\tau_j\)-\(\text{Int}^+(\tau_i\)-\(\text{Cl}(f^{-1}(B)))) \subset f^{-1}(\tau_i\)-\(\text{Cl}(B))\) for each subset \(B\) of \(Y\).

(viii) \(f((\tau_i\)-\(\text{Cl}(\tau_j\)-\(\text{Int}^+(\tau_i\)-\(\text{Cl}(A)))))) \subset \tau_i\)-\(\text{Cl}(f(A))\) for each subset \(A\) of \(X\).

Proof.

(i) \(\Rightarrow\) (ii): Let \(x \in X\) and \(F\) be a \(\sigma_j\)-open set of \(Y\) containing \(f(x)\). By (i), \(f^{-1}(F)\) is \((i,j)\)-\(\alpha\)-\(\mathcal{I}\)-open in \(X\). Let \(A = f^{-1}(F)\). Then \(x \in A\) and \(f(A) \subset F\).

(ii) \(\Rightarrow\) (i): Let \(F\) be \(\sigma_j\)-open in \(Y\) and let \(x \in f^{-1}(F)\). Then \(f(x) \in F\).

By (ii), there is an \((i,j)\)-\(\mathcal{I}\)-open set \(U_x\) in \(X\) such that \(x \in U_x\) and \(f(U_x) \subset F\). Then \(x \in U_x \subset f^{-1}(F)\). Hence \(f^{-1}(F)\) is \((i,j)\)-\(\alpha\)-\(\mathcal{I}\)-open in \(X\).

(i) \(\iff\) (iii): This follows due to the fact that for any subset \(B\) of \(Y\), \(f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)\).

(iii) \(\Rightarrow\) (iv): Let \(A\) be a subset of \(X\). Since \(A \subset f^{-1}(f(A))\) we have \(A \subset f^{-1}(\sigma_j\)-\(\text{Cl}(f(A)))\). Now, \((i,j)\)-\(\alpha\)-\(\mathcal{I}\)\(\text{Cl}(f(A))\) is \(\sigma_j\)-closed in \(Y\) and hence \(f^{-1}(\sigma_j\)-\(\text{Cl}(f(A))) \subset f^{-1}(\sigma_j\)-\(\text{Cl}(f(A)))\), for \((i,j)\)-\(\alpha\)-\(\mathcal{I}\)\(\text{Cl}(A)\) is the smallest \((i,j)\)-\(\alpha\)-\(\mathcal{I}\)-closed set containing \(A\). Then \(f((i,j)\)-\(\alpha\)-\(\mathcal{I}\)\(\text{Cl}(A)) \subset \sigma_j\)-\(\text{Cl}(f(A))\).
Then $X = \text{Int}(\text{Int}(\tau \text{-} \text{Cl}(f^{-1}(F)))) \subset (i,j)\text{-}\sigma_{\tau}\text{-Cl}(f(f^{-1}(F))) = (i,j)\text{-}\sigma_{\tau}\text{-Cl}(F) = F$. Therefore, $(i,j)\text{-}\alpha\text{-}\mathcal{I}\text{-Cl}(f^{-1}(F)) \subset f^{-1}(F)$. Consequently, $f^{-1}(F)$ is $(i,j)\text{-}\alpha\text{-}\mathcal{I}$-closed in X.

$(iv) \Rightarrow (v)$: Let B be any subset of Y. Now, $f((i,j)\text{-}\alpha\text{-}\mathcal{I}\text{-Cl}(f^{-1}(B))) \subset (i,j)\text{-}\sigma_{\tau}\text{-Cl}(f(f^{-1}(B))) \subset \sigma_{\tau}\text{-Cl}(B)$. Consequently, $(i,j)\text{-}\alpha\text{-}\mathcal{I}\text{-Cl}(f^{-1}(B)) \subset f^{-1}(\sigma_{\tau}\text{-Cl}(B))$.

$(v) \Rightarrow (iv)$: Let $B = f(A)$ where A is a subset of X. Then $(i,j)\text{-}\alpha\text{-}\mathcal{I}\text{-Cl}(A) \subset (i,j)\text{-}\alpha\text{-}\mathcal{I}\text{-Cl}(f^{-1}(B)) \subset f^{-1}(\sigma_{:\tau}\text{-Cl}(B)) = f^{-1}(\sigma_{:\tau}\text{-Cl}(f(A)))$. This shows that $f((i,j)\text{-}\alpha\text{-}\mathcal{I}\text{-Cl}(A)) \subset \sigma_{\tau}\text{-Cl}(f(A))$.

$(i) \Rightarrow (vi)$: Let B be a σ_{τ}-open set in Y. Clearly, $f^{-1}(\sigma_{\tau}\text{-} \text{Int}(B))$ is (i,j)-$\alpha\text{-}\mathcal{I}$-open and we have $f^{-1}(\sigma_{\tau}\text{-} \text{Int}(B)) \subset (i,j)\text{-}\alpha\text{-}\mathcal{I}\text{-Int}(f^{-1}\sigma_{\tau}\text{-} \text{Int}(B)) \subset (i,j)\text{-}\alpha\text{-}\mathcal{I}\text{-Int}(f^{-1}(B))$. This shows that $f^{-1}(B)$ is $(i,j)\text{-}\alpha\text{-}\mathcal{I}$-open in X.

$(iii) \Rightarrow (viii)$: Let B be any subset os Y. Since $\tau_{\tau}\text{-Cl}(B)$ is τ_{τ}-closed in Y, by (iii), $f^{-1}(\tau_{\tau}\text{-Cl}(B))$ is $\alpha\text{-}\mathcal{I}$-closed and $X\setminus f^{-1}(\tau_{\tau}\text{-Cl}(B))$ is $\alpha\text{-}\mathcal{I}$-open.

Then $X\setminus f^{-1}(\tau_{\tau}\text{-Cl}(B)) \subset \tau_{\tau}\text{-}\text{Int}(\tau_{\tau}\text{-Cl}((\tau_{\tau}\text{-Cl}(f^{-1}(\tau_{\tau}\text{-Cl}(B))))) = X\setminus \tau_{\tau}\text{-Cl}(\tau_{\tau}\text{-}\text{Int}^{\ast}((\tau_{\tau}\text{-Cl}(f^{-1}(\tau_{\tau}\text{-Cl}(B)))))$. Hence we obtain $\tau_{\tau}\text{-Cl}(\tau_{\tau}\text{-Cl}^\ast((\tau_{\tau}\text{-Cl}(f^{-1}(B))))) \subset f^{-1}(\tau_{\tau}\text{-Cl}(B))$.

$(vii) \Rightarrow (viii)$: Let A be any subset of X. By (iv), we have $\text{Cl}(\tau_{\tau}\text{-Cl}^\ast((\tau_{\tau}\text{-Cl}(A))) \subset \tau_{\tau}\text{-Cl}(\tau_{\tau}\text{-Cl}^\ast((\tau_{\tau}\text{-Cl}(f^{-1}(f(A))))) \subset f^{-1}(\tau_{\tau}\text{-Cl}(f(A)))$ and hence $f(\tau_{\tau}\text{-Cl}(\tau_{\tau}\text{-Cl}^\ast((\tau_{\tau}\text{-Cl}(A)))) \subset \tau_{\tau}\text{-Cl}(f(A))$.

$(viii) \Rightarrow (i)$: Let V be any open set of Y. Then by (v), $f(\tau_{\tau}\text{-Cl}(\tau_{\tau}\text{-Cl}^\ast((\tau_{\tau}\text{-Cl}(f^{-1}(f(V))))))) \subset \tau_{\tau}\text{-Cl}(f(f^{-1}(f(V)))) \subset \tau_{\tau}\text{-Cl}(f(V)) = \tau_{\tau}\text{-Cl}(f(V)) = f^{-1}(f(V)) \subset X\setminus f^{-1}(V)$. Consequently, we obtain $f^{-1}(V) \subset \tau_{\tau}\text{-Int}(\tau_{\tau}\text{-Cl}^\ast((\tau_{\tau}\text{-Cl}(f^{-1}(f(V)))))))$. This shows that $f^{-1}(V)$ is $\alpha\text{-}\mathcal{I}$-open. Thus, f is $\alpha\text{-}\mathcal{I}$-continuous. □

Corollary 4.5. Let $f : (X, \tau_{\tau}, \tau_{\tau}, \mathcal{I}) \rightarrow (Y, \sigma_{\tau_{\tau}}, \sigma_{\tau_{\tau}}, \mathcal{I})$ be an (i,j)-$\alpha\text{-}\mathcal{I}$-continuous function, then

(i) $f(\tau_{\tau}\text{-Cl}^\ast(U)) \subset \tau_{\tau}\text{-Cl}(f(U))$ for every (i,j)-$\text{-}\mathcal{I}$-pre-\mathcal{I}-open set U of X.

(ii) $\tau_{\tau}\text{-Cl}^\ast(f^{-1}(V)) \subset f^{-1}(\tau_{\tau}\text{-Cl}(V))$ for every (i,j)-$\text{-}\mathcal{I}$-pre-\mathcal{I}-open set V of Y.

Proof. (1). Let U be any (i,j)-$\text{-}\mathcal{I}$-pre-\mathcal{I}-open set of X, then $U \subset \tau_{\tau}\text{-Int}(\tau_{\tau}\text{-Cl}^\ast(U))$. Therefore, by Theorem 4.4, we have $f(\tau_{\tau}\text{-Cl}^\ast(U)) \subset f(\tau_{\tau}\text{-Cl}(U)) \subset f(\tau_{\tau}\text{-Cl}(\tau_{\tau}\text{-Cl}^\ast(U)))) \subset f(\tau_{\tau}\text{-Cl}(\tau_{\tau}\text{-Cl}^\ast(U)))) \subset \tau_{\tau}\text{-Cl}(f(U))$.

(2). Let V be any (i, j)-pre-\mathcal{L}-open set of Y. By Theorem 4.4, $\tau_j - \text{Cl}^*(f^{-1}(V)) \subset \tau_j - \text{Cl}(f^{-1}(\tau_j - \text{Int}(\tau_j - \text{Cl}^*(V)))) \subset \tau_j - \text{Cl}(\tau_j - \text{Int}(\tau_j - \text{Cl}^*(V))) \subset \tau_j - \text{Cl}(\tau_j - \text{Cl}(f^{-1}(\tau_j - \text{Int}(\tau_j - \text{Cl}^*(V))))) \subset f^{-1}(\tau_j - \text{Cl}(\tau_j - \text{Cl}(f^{-1}(\tau_j - \text{Int}(\tau_j - \text{Cl}^*(V))))) \subset f^{-1}(\tau_j - \text{Cl}(f^{-1}(V))).$

\begin{flushright}\square
\end{flushright}

\textbf{Theorem 4.6.} Let $f : (X, \tau_1, \tau_2, \mathcal{I}) \rightarrow (Y, \sigma_1, \sigma_2)$ be a pairwise α-\mathcal{L}-continuous function. Then for each subset V of Y, $f^{-1}(\sigma_1 - \text{Int}(V)) \subset \tau_j - \text{Cl}^*(f^{-1}(V)).$

\textit{Proof.} Let V be any subset of Y. Then $\sigma_1 - \text{Int}(V)$ is σ_1-open in Y and so $f^{-1}(\sigma_1 - \text{Int}(V))$ is (i, j)-α-\mathcal{L}-open in X. Hence $f^{-1}(\sigma_1 - \text{Int}(V)) \subset \tau_i - \text{Int}(\tau_j - \text{Cl}^*(\tau_j - \text{Int}(f^{-1}(\sigma_1 - \text{Int}(V))))) \subset \tau_j - \text{Cl}^*(f^{-1}(V)).$

\begin{flushright}\square
\end{flushright}

\textbf{Theorem 4.7.} Let $f : (X, \tau_1, \tau_2, \mathcal{I}) \rightarrow (Y, \sigma_1, \sigma_2)$ be a bijective. Then f is pairwise α-\mathcal{L}-continuous if and only if $\sigma_1 - \text{Int}(f(U)) \subset f((i, j)-\alpha \mathcal{I} \text{Int}(U))$ for each subset U of X.

\textit{Proof.} Let U be any subset of X. Then by Theorem 4.4, $f^{-1}(\sigma_1 - \text{Int}(f(U))) \subset (i, j)-\alpha \mathcal{I} \text{Int}(f^{-1}(f(U)))$. Since f is bijection, $\sigma_1 - \text{Int}(f(U)) = f(f^{-1}(\sigma_1 - \text{Int}(f(U)))) \subset f((i, j)-\alpha \mathcal{I} \text{Int}(U))$. Conversely, let V be any subset of Y. Then $\sigma_1 - \text{Int}(f(f^{-1}(V))) \subset f((i, j)-\alpha \mathcal{I} \text{Int}(f^{-1}(V)))$. Since f is bijection, $\sigma_1 - \text{Int}(V) = \sigma_1 - \text{Int}(f(f^{-1}(V))) \subset f((i, j)-\alpha \mathcal{I} \text{Int}(f^{-1}(V)))$; hence $f^{-1}(\sigma_1 - \text{Int}(V)) \subset (i, j)-\alpha \mathcal{I} \text{Int}(f^{-1}(V))$. Therefore, by Theorem 4.4, f is pairwise α-\mathcal{L}-continuous.

\begin{flushright}\square
\end{flushright}

\textbf{Theorem 4.8.} Let $f : (X, \tau_1, \tau_2, \mathcal{I}) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function. If $g : (X, \tau_1, \tau_2, \mathcal{I}) \rightarrow (X \times Y, \sigma_1 \times \sigma_2)$ defined by $g(x) = (x, f(x))$ is a pairwise α-\mathcal{L}-continuous function, then f is pairwise α-\mathcal{L}-continuous.

\textit{Proof.} Let V be a σ_1-open set of Y. Then $f^{-1}(V) = X \cap f^{-1}(V) = g^{-1}(X \times V)$. Since g is a pairwise α-\mathcal{L}-continuous function and $X \times V$ is a $\tau_1 \times \sigma_1$-open set of $X \times Y$, $f^{-1}(V)$ is a (i, j)-α-\mathcal{L}-open set of X. Hence f is pairwise α-\mathcal{L}-continuous.

\begin{flushright}\square
\end{flushright}

\textbf{Definition 4.9.} A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2, \mathcal{I})$ is said to be:

(i) pairwise α-\mathcal{L}-open (resp. pairwise semi-\mathcal{L}-open [3], pairwise pre-\mathcal{L}-open [6]) if $f(U)$ is a (i, j)-α-\mathcal{L}-open (resp. (i, j)-semi-\mathcal{L}-open, (i, j)-pre-\mathcal{L}-open) set of Y for every τ_1-open set U of X.

(ii) pairwise α-\mathcal{L}-closed (resp. pairwise semi-\mathcal{L}-closed [3], pairwise pre-\mathcal{L}-closed [6]) if $f(U)$ is a (i, j)-α-\mathcal{L}-closed set of Y for every τ_1-closed set U of X.

\textbf{Theorem 4.10.} A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2, \mathcal{I})$ is (i, j)-α-\mathcal{L}-open if and only if it is (i, j)-semi-\mathcal{L}-open and (i, j)-pre-\mathcal{L}-open.

\textit{Proof.} This is an immediate consequence of Lemma 3.8.

\begin{flushright}\square
\end{flushright}
Theorem 4.11. For a function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2, \mathcal{I})$, the following statements are equivalent:

(i) f is pairwise $\alpha\mathcal{I}$-open;
(ii) $f(\tau_1\text{-Int}(U)) \subset (i,j)\alpha\mathcal{I}\text{Int}(f(U))$ for each subset U of X;
(iii) $\tau_1\text{-Int}(f^{-1}(V)) \subset f^{-1}((i,j)\alpha\mathcal{I}\text{Int}(V))$ for each subset V of Y.

Proof. (i) \Rightarrow (ii): Let U be any subset of X. Then $\tau_1\text{-Int}(U)$ is a τ_1-open set of X. Then $f(\tau_1\text{-Int}(U))$ is a $(i,j)\alpha\mathcal{I}$-open set of Y. Since $f(\tau_1\text{-Int}(U)) \subset f(U)$, $f(\tau_1\text{-Int}(U)) = (i,j)\alpha\mathcal{I}\text{Int}(f(\tau_1\text{-Int}(U))) \subset (i,j)\alpha\mathcal{I}\text{Int}(f(U))$.

(ii) \Rightarrow (iii): Let V be any subset of Y. Then $f^{-1}(V)$ is a subset of X. Hence $f(\tau_1\text{-Int}(f^{-1}(V))) \subset (i,j)\alpha\mathcal{I}\text{Int}(f(f^{-1}(V))) \subset (i,j)\alpha\mathcal{I}\text{Int}(V)$. Then $\tau_1\text{-Int}(f^{-1}(V)) \subset f^{-1}(f(\tau_1\text{-Int}(f^{-1}(V)))) \subset f^{-1}((i,j)\alpha\mathcal{I}\text{Int}(V))$.

(iii) \Rightarrow (i): Let U be any τ_1-open set of X. Then $\tau_1\text{-Int}(U) = U$ and $f(U)$ is a subset of Y. Now, $V = \tau_1\text{-Int}(V) \subset \tau_1\text{-Int}(f^{-1}(f(V))) \subset f^{-1}((i,j)\alpha\mathcal{I}\text{Int}(f(V)))$. Then $f(V) \subset f(f^{-1}((i,j)\alpha\mathcal{I}\text{Int}(f(V)))) \subset (i,j)\alpha\mathcal{I}\text{Int}(f(V))$ and $(i,j)\alpha\mathcal{I}\text{Int}(f(V)) \subset (i,j)\alpha\mathcal{I}\text{Int}(f(V))$. Hence $f(V)$ is a $(i,j)\alpha\mathcal{I}$-open set of Y; hence f is pairwise $\alpha\mathcal{I}$-open. □

Theorem 4.12. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2, \mathcal{I})$ be a function. Then f is a pairwise $\alpha\mathcal{I}$-closed function if and only if for each subset V of X, $(i,j)\alpha\mathcal{I}\text{Cl}(f(V)) \subset f(\tau_1\text{-Cl}(V))$.

Proof. Let f be a pairwise $\alpha\mathcal{I}$-closed function and V any subset of X. Then $f(V) \subset f(\tau_1\text{-Cl}(V))$ and $f(\tau_1\text{-Cl}(V))$ is a $(i,j)\alpha\mathcal{I}$-closed set of Y. We have $(i,j)\alpha\mathcal{I}\text{Cl}(f(V)) \subset (i,j)\alpha\mathcal{I}\text{Cl}(f(\tau_1\text{-Cl}(V))) = f(\tau_1\text{-Cl}(V))$. Conversely, let V be a τ_1-open set of X. Then $f(V) \subset (i,j)\alpha\mathcal{I}\text{Cl}(f(V)) \subset f(\tau_1\text{-Cl}(V)) = f(V)$; hence $f(V)$ is a $(i,j)\alpha\mathcal{I}$-closed subset of Y. Therefore, f is a pairwise $\alpha\mathcal{I}$-closed function. □

Theorem 4.13. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2, \mathcal{I})$ be a function. Then f is a pairwise $\alpha\mathcal{I}$-closed function if and only if for each subset V of Y, $f^{-1}((i,j)\alpha\mathcal{I}\text{Cl}(f^{-1}(V))) \subset \tau_1\text{-Cl}(f^{-1}(V))$.

Proof. Let V be any subset of Y. Then by Theorem 4.12, $(i,j)\alpha\mathcal{I}\text{Cl}(V) \subset f(\tau_1\text{-Cl}(f^{-1}(V)))$. Since f is bijection, $f^{-1}((i,j)\alpha\mathcal{I}\text{Cl}(V)) = f^{-1}(f^{-1}((i,j)\alpha\mathcal{I}\text{Cl}(f^{-1}(V)))) \subset f^{-1}(f(\tau_1\text{-Cl}(f^{-1}(V)))) = \tau_1\text{-Cl}(f^{-1}(V))$. Conversely, let U be any subset of X. Since f is bijection, $((i,j)\alpha\mathcal{I}\text{Cl}(f(U)) = f(f^{-1}((i,j)\alpha\mathcal{I}\text{Cl}(f(U)))) \subset f(\tau_1\text{-Cl}(f^{-1}(f(U)))) = f(\tau_1\text{-Cl}(U))$. Therefore, by Theorem 4.12, f is a pairwise $\alpha\mathcal{I}$-closed function. □

Theorem 4.14. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2, \mathcal{I})$ be a pairwise $\alpha\mathcal{I}$-open function. If V is a subset of Y and U is a τ_1-closed subset of X containing $f^{-1}(V)$, then there exists a $(i,j)\alpha\mathcal{I}$-closed set F of Y containing V such that $f^{-1}(F) \subset U$.
Proof. Let V be any subset of Y and U a τ_i-closed subset of X containing $f^{-1}(V)$, and let $F = Y \setminus (f(X \setminus V))$. Then $f(X \setminus V) \subseteq f(f^{-1}(X \setminus V)) \subseteq X \setminus V$ and $X \setminus V$ is a τ_i-open set of X. Since f is pairwise α-\mathcal{I}-open, $f(X \setminus U)$ is a (i,j)-α-\mathcal{I}-open set of Y. Hence F is an (i,j)-α-\mathcal{I}-closed set of Y and $f^{-1}(F) = f^{-1}(Y \setminus (f(X \setminus U))) \subseteq U$.

Theorem 4.15. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2, \mathcal{I})$ be a pairwise α-\mathcal{I}-closed function. If V is a subset of Y and U is a open subset of X containing $f^{-1}(V)$, then there exists (i,j)-α-\mathcal{I}-open set F of Y containing V such that $f^{-1}(F) \subseteq U$.

Proof. The proof is similar to the Theorem 4.14.

Theorem 4.16. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2, \mathcal{I})$ be a pairwise α-\mathcal{I}-open function. Then for each subset V of Y, $f^{-1}(\tau_i\text{-Cl}(\tau_j\text{-Int}^*)(\tau_i\text{-Cl}(V))) \subseteq \tau_i\text{-Cl}(f^{-1}(V))$.

Proof. Let V be any subset of Y. Then $\tau_i\text{-Cl}(f^{-1}(V))$ is a τ_i-closed set of X. Then by Theorem 4.14, there exists an (i,j)-α-\mathcal{I}-closed set F of Y containing V such that $f^{-1}(F) \subseteq \tau_i\text{-Cl}(f^{-1}(V))$. Since $Y \setminus F$ is (i,j)-α-\mathcal{I}-open, $f^{-1}(Y \setminus F) \subseteq f^{-1}(\tau_j\text{-Int}(\tau_i\text{-Cl}(Y \setminus F)))$ and $X \setminus f^{-1}(F) \subseteq X \setminus f^{-1}(\tau_i\text{-Cl}(\tau_j\text{-Int}(\tau_i\text{-Cl}(Y \setminus F)))) = X \setminus f^{-1}(\tau_i\text{-Cl}(\tau_i\text{-Cl}(f(F))))$. Thus we obtain that $f^{-1}(\tau_i\text{-Cl}(\tau_j\text{-Int}^*(\tau_i\text{-Cl}(V)))) \subseteq f^{-1}(F) \subseteq \tau_i\text{-Cl}(f^{-1}(V))$. Therefore, we have $f^{-1}(\tau_i\text{-Cl}(\tau_j\text{-Int}^*(\tau_i\text{-Cl}(V)))) \subseteq \tau_i\text{-Cl}(f^{-1}(V))$.

Definition 4.17. A function $f : (X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2, \mathcal{J})$ is said to be:

(i) pairwise α-(\mathcal{I}, \mathcal{J})-open if $f(U)$ is a (i,j)-α-\mathcal{J}-open set of Y for every (i,j)-α-\mathcal{I}-open set U of X.
(ii) pairwise α-(\mathcal{I}, \mathcal{J})-closed if $f(U)$ is a (i,j)-α-\mathcal{J}-closed set of Y for every (i,j)-α-\mathcal{I}-closed set U of X.

It is clear that every pairwise α-(\mathcal{I}, \mathcal{J})-open (resp. pairwise α-(\mathcal{I}, \mathcal{J})-closed) function is pairwise α-\mathcal{J}-open (resp. pairwise α-\mathcal{J}-closed) function. But the converse is not true in general.

Example 4.18. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$, $\tau_2 = \{\emptyset, \{a\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then the identity function $f : (X, \tau_1, \tau_2, \mathcal{I}) \to (X, \tau_1, \tau_2, \mathcal{I})$ is pairwise α-\mathcal{I}-open but not pairwise α-(\mathcal{I}, \mathcal{I})-open.

Theorem 4.19. For a function $f : (X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2, \mathcal{J})$, the following statements are equivalent:

(i) f is pairwise α-(\mathcal{I}, \mathcal{J})-open;
(ii) $f((i,j)\alpha\mathcal{I}\text{Int}(U)) \subseteq (i,j)\alpha\mathcal{J}\text{Int}(f(U))$ for each subset U of X;
(iii) $(i,j)\alpha\mathcal{I}\text{Int}(f^{-1}(V)) \subseteq f^{-1}((i,j)\alpha\mathcal{J}\text{Int}(V))$ for each subset V of Y.
Proof. (i) \Rightarrow (ii): Let U be any subset of X. Then $(i, j)-\alpha I \text{Int}(U)$ is a $(i, j)-\alpha I$-open set of X. Then $f((i, j)-\alpha I \text{Int}(U))$ is a $(i, j)-\alpha I$-open set of Y. Since $f((i, j)-\alpha I \text{Int}(U)) \subset f(U)$, $f((i, j)-\alpha I \text{Int}(U)) = (i, j)-\alpha I \text{Int}(f((i, j)-\alpha I \text{Int}(U))) \subset (i, j)-\alpha J \text{Int}(f(U))$.

(ii) \Rightarrow (iii): Let V be any subset of Y. Then $f^{-1}(V)$ is a subset of X. Hence $f((i, j)-\alpha I \text{Int}(f^{-1}(V))) \subset (i, j)-\alpha J \text{Int}(f(f^{-1}(V))) \subset (i, j)-\alpha I \text{Int}(f^{-1}(V)))$. Then $(i, j)-\alpha I \text{Int}(f^{-1}(V)) \subset f^{-1}(f((i, j)-\alpha I \text{Int}(f^{-1}(V)))) \subset f^{-1}((i, j)-\alpha I \text{Int}(V))$.

(iii) \Rightarrow (i): Let U be any $(i, j)-\alpha I$-open set of X. Then $(i, j)-\alpha I \text{Int}(U) = U$ and $f(U)$ is a subset of Y. Now, $U = (i, j)-\alpha I \text{Int}(U) \subset (i, j)-\alpha I \text{Int}(f^{-1}(f(U))) \subset f^{-1}((i, j)-\alpha J \text{Int}(f(U)))$. Then $f(U) \subset f(f^{-1}((i, j)-\alpha J \text{Int}(f(U)))) \subset (i, j)-\alpha J \text{Int}(f(U))$ and $(i, j)-\alpha J \text{Int}(f(U)) \subset f(U)$. Hence $f(U)$ is a $(i, j)-\alpha J$-closed set of Y; hence f is a pairwise $\alpha-(I, J)$-open.

Theorem 4.20. Let $f : (X, \tau_{1}, \tau_{2}, I) \to (Y, \sigma_{1}, \sigma_{2}, J)$ be a function. Then f is a pairwise $\alpha-(I, J)$-closed function if and only if for each subset U of X, $(i, j)-\alpha J \text{Cl}(f(U)) \subset f((i, j)-\alpha I \text{Cl}(U))$.

Proof. Let f be a pairwise $\alpha-(I, J)$-closed function and U any subset of X. Then $f(U) \subset f((i, j)-\alpha I \text{Cl}(U))$ and $f((i, j)-\alpha I \text{Cl}(U))$ is a $(i, j)-\alpha J$-closed set of Y. We have $(i, j)-\alpha J \text{Cl}(f(U)) \subset (i, j)-\alpha J \text{Cl}(f((i, j)-\alpha I \text{Cl}(U))) = f((i, j)-\alpha I \text{Cl}(U))$. Conversely, let U be a $(i, j)-\alpha I$-open set of X. Then $f(U) \subset (i, j)-\alpha J \text{Cl}(f(U)) \subset f((i, j)-\alpha I \text{Cl}(U)) = f(U)$; hence $f(U)$ is a pairwise $\alpha-(I, J)$-closed function.

Theorem 4.21. Let $f : (X, \tau_{1}, \tau_{2}, I) \to (Y, \sigma_{1}, \sigma_{2}, J)$ be a function. Then f is a pairwise $\alpha-(I, J)$-closed function if and only if for each subset V of Y, $f^{-1}((i, j)-\alpha J \text{Cl}(f(V))) \subset (i, j)-\alpha I \text{Cl}(f^{-1}(V))$.

Proof. Let V be any subset of Y. Then by Theorem 4.20, $(i, j)-\alpha J \text{Cl}(f(f^{-1}(V))) \subset f((i, j)-\alpha I \text{Cl}(f^{-1}(V)))$. Since f is bijection, $f^{-1}((i, j)-\alpha J \text{Cl}(V)) \subset (i, j)-\alpha I \text{Cl}(f^{-1}(V))$. Conversely, let U be any subset of X. Then $f^{-1}((i, j)-\alpha J \text{Cl}(f(U))) \subset (i, j)-\alpha I \text{Cl}(f^{-1}(f(U)))$. Hence $(i, j)-\alpha J \text{Cl}(f(U)) \subset (i, j)-\alpha I \text{Cl}(f^{-1}(f(U)))$. Therefore, by Theorem 4.20 f is a pairwise $\alpha-(I, J)$-closed function.

Theorem 4.22. Let $f : (X, \tau_{1}, \tau_{2}, I) \to (Y, \sigma_{1}, \sigma_{2}, J)$ be a pairwise $\alpha-(I, J)$-open function. If V is a subset of Y and U is a $(i, j)-\alpha I$-closed subset of X containing $f^{-1}(V)$, then there exists $(i, j)-\alpha I$-closed set F of Y containing V such that $f^{-1}(F) \subset V$.

Proof. The proof is similar to the Theorem 4.14.

Theorem 4.23. Let $f : (X, \tau_{1}, \tau_{2}, I) \to (Y, \sigma_{1}, \sigma_{2}, J)$ be a pairwise $\alpha-(I, J)$-closed function. If V is a subset of Y and U is a $(i, j)-\alpha I$-open subset of X containing $f^{-1}(V)$, then there exists $(i, j)-\alpha J$-open set F of Y containing V such that $f^{-1}(F) \subset V$.
Proof. The proof is similar to the Theorem 4.14.

Theorem 4.24. For a bijective function \(f : (X, \tau_1, \tau_2, \mathcal{I}) \rightarrow (Y, \sigma_1, \sigma_2, \mathcal{J}) \), the following statements are equivalent:

(i) \(f \) is pairwise \(\alpha-(\mathcal{I}, \mathcal{J}) \)-closed;

(ii) \(f \) is pairwise \(\alpha-(\mathcal{I}, \mathcal{J}) \)-open.

Proof. The proof is clear.

5. PAIRWISE \(\alpha-\mathcal{I} \)-IRRRESOLUTE FUNCTIONS

Definition 5.1. A function \(f : (X, \tau_1, \tau_2, \mathcal{I}) \rightarrow (Y, \sigma_1, \sigma_2, \mathcal{J}) \) is said to be \((i, j)\)-\(\alpha-\mathcal{I} \)-irresolute if the inverse image of every \((i, j)\)-\(\alpha-\mathcal{J} \)-open set of \(Y \) is \((i, j)\)-\(\alpha-\mathcal{I} \)-open in \(X \), where \(i \neq j, i, j = 1, 2 \).

Proposition 5.2. Every pairwise \(\alpha-\mathcal{I} \)-irresolute function is pairwise \(\alpha-\mathcal{I} \)-continuous but not conversely.

Proof. Straightforward.

Theorem 5.3. Let \(f : (X, \tau_1, \tau_2, \mathcal{I}) \rightarrow (Y, \sigma_1, \sigma_2, \mathcal{J}) \) be a function, then

1. \(f \) is pairwise \(\alpha-\mathcal{I} \)-irresolute;
2. the inverse image of each \((i, j)\)-\(\alpha-\mathcal{J} \)-closed subset of \(Y \) is \((i, j)\)-\(\alpha-\mathcal{I} \)-closed in \(X \);
3. for each \(x \in X \) and each \(V \in S\mathcal{J}O(Y) \) containing \(f(x) \), there exists \(U \in \alpha\mathcal{I}O(X) \) containing \(x \) such that \(f(U) \subset V \).

Proof. The proof is obvious from that fact that the arbitrary union of \((i, j)\)-\(\alpha-\mathcal{I} \)-open subsets is \((i, j)\)-\(\alpha-\mathcal{I} \)-open.

Theorem 5.4. Let \(f : (X, \tau_1, \tau_2, \mathcal{I}) \rightarrow (Y, \sigma_1, \sigma_2, \mathcal{J}) \) be a function, then

(i) \(f \) is pairwise \(\alpha-\mathcal{I} \)-irresolute;
(ii) \((i, j)\)-\(\alpha\mathcal{I} Cl(f^{-1}(V)) \subset f^{-1}((i, j)\)-\(\alpha\mathcal{J} Cl(V)) \) for each subset \(V \) of \(Y \);
(iii) \(f((i, j)\)-\(\alpha\mathcal{I} Cl(U) \subset (i, j)\)-\(\alpha\mathcal{J} Cl(f(U)) \) for each subset \(U \) of \(X \).

Proof. (i) \(\Rightarrow \) (ii): Let \(V \) be any subset of \(Y \). Then \(V \subset (i, j)-\alpha\mathcal{J} Cl(V) \) and \(f^{-1}(V) \subset f^{-1}((i, j)-\alpha\mathcal{J} Cl(V)) \). Since \(f \) is pairwise \(\alpha-\mathcal{I} \)-irresolute, \(f^{-1}((i, j)-\alpha\mathcal{J} Cl(V)) \) is a \((i, j)\)-\(\alpha-\mathcal{I} \)-closed subset of \(X \). Hence \((i, j)-\alpha\mathcal{I} Cl(f^{-1}(V)) \subset (i, j)-\alpha\mathcal{I} Cl(f^{-1}((i, j)-\alpha\mathcal{J} Cl(V))) = f^{-1}((i, j)-\alpha\mathcal{J} Cl(V)) \).

(ii) \(\Rightarrow \) (iii): Let \(U \) be any subset of \(X \). Then \(f(U) \subset (i, j)-\alpha\mathcal{J} Cl(f(U)) \) and \((i, j)-\alpha\mathcal{J} Cl(U) \subset (i, j)-\alpha\mathcal{I} Cl(f^{-1}(f(U))) \subset f^{-1}((i, j)-\alpha\mathcal{J} Cl(f(U))) \). This implies that \(f((i, j)-\alpha\mathcal{I} Cl(U)) \subset f(f^{-1}((i, j)-\alpha\mathcal{J} Cl(f(U)))) \subset (i, j)-\alpha\mathcal{J} Cl(f(U)) \).

(iii) \(\Rightarrow \) (i): Let \(V \) be a \((i, j)\)-\(\alpha-\mathcal{J} \)-closed subset of \(Y \). Then \(f((i, j)-\alpha\mathcal{I} Cl(f^{-1}(V)) \subset (i, j)-\alpha\mathcal{I} Cl(f^{-1}(f(V))) \subset (i, j)-\alpha\mathcal{I} Cl(V) = V \). This implies that \((i, j)-\alpha\mathcal{I} Cl(f^{-1}(V)) \subset f^{-1}(f((i, j)-\alpha\mathcal{I} Cl(f^{-1}(V)))) \subset (i, j)-\alpha\mathcal{I} Cl(V) \).
\(f^{-1}(V) \). Therefore, \(f^{-1}(V) \) is a \((i,j)\)-\(\alpha\)-\(\mathcal{I}\)-closed subset of \(X\) and consequently \(f\) is a pairwise \(\alpha\)-\(\mathcal{I}\)-irresolute function. \(\square\)

Theorem 5.5. A function \(f : (X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2, \mathcal{J})\) is a pairwise \(\alpha\)-\(\mathcal{I}\)-irresolute if and only if \(f^{-1}((i,j)\)-\(\alpha\)\(\mathcal{J}\) \(\text{Int}(V)) \subset (i,j)\)-\(\alpha\)\(\mathcal{I}\) \(\text{Int}(f^{-1}(V))\) for each subset \(V\) of \(Y\).

Proof. Let \(V\) be any subset of \(Y\). Then \((i,j)\)-\(\alpha\)\(\mathcal{J}\) \(\text{Int}(V) \subset V\). Since \(f\) is pairwise \(\alpha\)-\(\mathcal{I}\)-irresolute, \(f^{-1}((i,j)\)-\(\alpha\)\(\mathcal{J}\) \(\text{Int}(V))\) is a \((i,j)\)-\(\alpha\)-\(\mathcal{I}\)-open subset of \(X\). Hence \(f^{-1}((i,j)\)-\(\alpha\)\(\mathcal{J}\) \(\text{Int}(V)) = (i,j)\)-\(\alpha\)\(\mathcal{I}\) \(\text{Int}(f^{-1}((i,j)\)-\(\alpha\)\(\mathcal{J}\) \(\text{Int}(V)) \subset (i,j)\)-\(\alpha\)\(\mathcal{I}\) \(\text{Int}(f^{-1}(V))\). Conversely, let \(V\) be a \((i,j)\)-\(\alpha\)-\(\mathcal{J}\)-open subset of \(Y\). Then \(f^{-1}(V) = f^{-1}((i,j)\)-\(\alpha\)\(\mathcal{J}\) \(\text{Int}(V)) \subset (i,j)\)-\(\alpha\)\(\mathcal{I}\) \(\text{Int}(f^{-1}(V))\). Therefore, \(f^{-1}(V)\) is a \((i,j)\)-\(\alpha\)-\(\mathcal{I}\)-open subset of \(X\) and consequently \(f\) is a pairwise \(\alpha\)-\(\mathcal{I}\)-irresolute function. \(\square\)

Corollary 5.6. Let \(f : (X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2, \mathcal{J})\) be a function. Then \(f\) is pairwise \(\alpha\)-\(\mathcal{I}\)-closed and pairwise \(\alpha\)-\(\mathcal{I}\)-irresolute if and only if \(f((i,j)\)-\(\alpha\)\(\mathcal{I}\) \(\text{Cl}(V)) = (i,j)\)-\(\alpha\)\(\mathcal{J}\) \(\text{Cl}(f(V))\) for every subset \(V\) of \(X\).

Definition 5.7. An ideal bitopological space \((X, \tau_1, \tau_2, \mathcal{I})\) is called pairwise \(\alpha\)-\(\mathcal{I}\)-Hausdorff if for each two distinct points \(x \neq y\), there exist disjoint \((i,j)\)-\(\alpha\)-\(\mathcal{I}\)-open sets \(U\) and \(V\) containing \(x\) and \(y\), respectively.

Theorem 5.8. Let \(f : (X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2, \mathcal{J})\) be a pairwise \(\alpha\)-\(\mathcal{I}\)-irresolute function. If \(Y\) is pairwise \(\alpha\)-\(\mathcal{J}\)-Hausdorff, then \(X\) is pairwise \(\alpha\)-\(\mathcal{I}\)-Hausdorff.

Proof. The proof is clear. \(\square\)

Corollary 5.9. Let \(f : (X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2, \mathcal{J})\) be a function. Then \(f\) is pairwise \(\alpha\)-\(\mathcal{I}\)-open and pairwise \(\alpha\)-\(\mathcal{I}\)-irresolute if and only if \(f^{-1}((i,j)\)-\(\alpha\)\(\mathcal{J}\) \(\text{Cl}(V)) = (i,j)\)-\(\alpha\)\(\mathcal{I}\) \(\text{Cl}(f^{-1}(V))\) for every subset \(V\) of \(Y\).

Definition 5.10. A function \(f : (X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2, \mathcal{J})\) is said to be pairwise \(\alpha\)-\(\mathcal{I}\)-homeomorphism if \(f\) and \(f^{-1}\) are pairwise \(\alpha\)-\(\mathcal{I}\)-irresolute.

Theorem 5.11. Let \(f : (X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2, \mathcal{J})\) be a bijection. Then the following statements are equivalent:

(i) \(f\) is pairwise \(\alpha\)-\(\mathcal{I}\)-homeomorphism;

(ii) \(f^{-1}\) is pairwise \(\alpha\)-\(\mathcal{I}\)-homeomorphism;

(iii) \(f\) and \(f^{-1}\) are pairwise \(\alpha\)-\(\mathcal{J}\)-open (pairwise \(\alpha\)-\(\mathcal{J}\)-closed);

(1) \(f\) is pairwise \(\alpha\)-\(\mathcal{I}\)-irresolute and pairwise \(\alpha\)-\(\mathcal{J}\)-open (pairwise \(\alpha\)-\(\mathcal{J}\)-closed);

(2) \(f((i,j)\)-\(\alpha\)\(\mathcal{I}\) \(\text{Cl}(V)) = (i,j)\)-\(\alpha\)\(\mathcal{J}\) \(\text{Cl}(f(V))\) for each subset \(V\) of \(X\);

(3) \(f((i,j)\)-\(\alpha\)\(\mathcal{I}\) \(\text{Int}(V)) = (i,j)\)-\(\alpha\)\(\mathcal{J}\) \(\text{Int}(f(V))\) for each subset \(V\) of \(X\);
\[f^{-1}((i, j) - \alpha J \text{Int}(V)) = (i, j) - \alpha I \text{Int}(f^{-1}(V)) \text{ for each subset } V \text{ of } Y; \]
\[(i, j) - \alpha I \text{Cl}(f^{-1}(V)) = f^{-1}((i, j) - \alpha J \text{Cl}(V)) \text{ for each subset } V \text{ of } Y; \]

Proof. (1) \(\Rightarrow\) (2): It follows immediately from the definition of a pairwise \(\alpha I\)-homeomorphism.

(2) \(\Rightarrow\) (3) \(\Rightarrow\) (4): It follows from Theorem 4.24.

(4) \(\Rightarrow\) (5): It follows from Theorem 4.21 and Corollary 5.6.

(5) \(\Rightarrow\) (6): Let \(U\) be a subset of \(X\). Then by Theorem 3.33, \(f((i, j) - \alpha I \text{Int}(U)) = X \setminus f((i, j) - \alpha I \text{Cl}(X \setminus U)) = X \setminus ((i, j) - \alpha I \text{Cl}(f(X \setminus U)) = (i, j) - \alpha I \text{Int}(f(U)). \]

(6) \(\Rightarrow\) (7): Let \(V\) be a subset of \(Y\). Then \(f(((i, j) - \alpha I \text{Int}(f^{-1}(V)))) = (i, j) - \alpha I \text{Int}(f^{-1}(f(V))) = (i, j) - \alpha I \text{Int}(f(V)). \) Hence \(f^{-1}(f(((i, j) - \alpha I \text{Int}(f^{-1}(V))))) = f^{-1}((i, j) - \alpha I \text{Int}(V)). \) Therefore, \(f^{-1}((i, j) - \alpha J \text{Int}(V)) = (i, j) - \alpha I \text{Int}(f^{-1}(V)). \)

(7) \(\Rightarrow\) (8): Let \(V\) be a subset of \(Y\). Then by Theorem 3.33, \((i, j) - \alpha I \text{Cl}(f^{-1}(V)) = X \setminus (f^{-1}(((i, j) - \alpha J \text{Int}(Y \setminus V)) = X \setminus ((i, j) - \alpha I \text{Int}(f^{-1}((X \setminus V)))) = f^{-1}((i, j) - \alpha I \text{Cl}(V)). \]

(8) \(\Rightarrow\) (1): It follows from Theorem 4.21 and Corollary 5.9. \(\square\)

References

PROPERTIES OF IDEAL BITOPOLOGICAL α-OPEN SETS

DEPARTAMENTO DE MATEMATICA APICADA, UNIVERSIDADE FEDERAL FLUMINENSE, RUA MARIO SANTOS BRAGA, S/N, 24020-140, NITERIO, RJ BRASIL
E-mail address: gmamccs@vm.uff.br

COLLEGE OF VESTSJAELLAND SOUTH, HERRESTRAEDE, 11, 4200 SLAGELSE, DENMARK
E-mail address: jafaripersia@gmail.com

DEPARTMENT OF MATHEMATICS AND NATURAL SCIENCES, PRINCE MOHAMMAD BIN FAHD UNIVERSITY, P. O. BOX 1664 AL KHOBAR, K. S. A.
E-mail address: rlatif@pmu.edu.sa

DEPARTMENT OF PHYSICS AND ENGINEERING MATHEMATICS, FACULTY OF ENGINEERING, KAIFREL-SHEIKH UNIVERSITY, KAIF EL-SHEIKH 33516, EGYPT.
E-mail address: nasefa50@yahoo.com

DEPARTMENT OF MATHEMATICS, RAJAH SERFOJI GOVT. COLLEGE, THANJAVUR-613005, TAMILNADU, INDIA.
E-mail address: nrajesh_topology@yahoo.co.in

DEPARTMENT OF MATHEMATICS, ARIGNAR ANNA GOVT. ARTS COLLEGE, NAMAKKAL -637 001, TAMILNADU, INDIA.
E-mail address: shanthiwni2005@yahoo.co.in