"Vasile Alecsandri" University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 27(2017), No. 1, 33-48

SEMIOPEN SETS IN IDEAL MINIMAL SPACES

S. JAFARI, N. RAJESH AND R. SARANYA

Abstract. In this paper, we present and study the concepts of semiopen sets and their related notions in ideal minimal spaces.

1. INTRODUCTION

In 2001, Popa and Noiri [8] introduced the notion of minimal structure which is a generalization of a topology on a given nonempty set. Among others, they introduced the notion of *m*-continuous function as a function defined between a minimal structure and a topological space. They showed that the *m*-continuous functions have properties similar to those of continuous functions between topological spaces. Let X be a topological space and $A \subset X$. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subfamily *m* of the power set P(X) of a nonempty set X is called a minimal structure [8] on X if \emptyset and X belong to *m*. By (X,m), we denote a nonempty set X with a minimal structure *m* on X. The members of the minimal structure *m* are called *m*-open sets [8], and the pair (X,m) is called an *m*-space. The complement of *m*-open set is said to be *m*-closed [8].

Keywords and phrases: Ideal minimal spaces, m-semi- \mathcal{I} -open sets, m-semi- \mathcal{I} -closed sets.

⁽²⁰¹⁰⁾ Mathematics Subject Classification: 54D10.

The concept of ideals in topological spaces has been introduced and studied by Kuratowski [5] and Vaidyanathasamy [10]. An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of Xwhich satisfies (i) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$ and (ii) $A \in$ \mathcal{I} and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. Given a minimal space (X, m)with an ideal \mathcal{I} on X and if $\mathcal{P}(X)$ is the set of all subsets of X, a set operator $(.)_m^* \colon \mathcal{P}(X) \to \mathcal{P}(X)$, called the local minimal function [9] of A with respect to m and \mathcal{I} , is defined as follows: for $A \subset X$, $A_m^*(m,\mathcal{I}) = \{x \in X | U \cap A \notin \mathcal{I} \text{ for every } U \in m(x)\}$, where m(x) $= \{U \in m | x \in U\}$. The set operator $m \operatorname{Cl}^*(.)$ is called a minimal *-closure and is defined as $m \operatorname{Cl}^*(A) = A \cup A_m^*$ for $A \subset X$. The minimal structure $m^*(m,\mathcal{I})$ called the *-minimal, is finer than m and $m \operatorname{Int}^*(A)$ denotes the interior of A in $m^*(m,\mathcal{I})$.

2. Preliminaries

Definition 2.1. [8] Given $A \subset X$, the m-interior of A and the mclosure of A are defined by $m \operatorname{Int}(A) = \bigcup \{W/W \in m, W \subseteq A\}$ and $m \operatorname{Cl}(A) = \cap \{F/A \subseteq F, X \setminus F \in m\}$, respectively.

Theorem 2.2. Let (X,m) be an *m*-space, and *A*, *B* subsets of *X*. Then $x \in m \operatorname{Cl}(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in m$ containing *x*. And satisfying the following properties:

- (i) $m \operatorname{Cl}(m \operatorname{Cl}(A)) = m \operatorname{Cl}(A).$
- (ii) $m \operatorname{Int}(m \operatorname{Int}(A)) = m \operatorname{Int}(A).$
- (iii) $m \operatorname{Int}(X \setminus A) = X \setminus m \operatorname{Cl}(A).$
- (iv) $m \operatorname{Cl}(X \setminus A) = X \setminus m \operatorname{Int}(A).$
- (v) If $A \subset B$ then $m \operatorname{Cl}(A) \subset m \operatorname{Cl}(B)$.
- (vi) $m \operatorname{Cl}(A \cup B) \subset m \operatorname{Cl}(A) \cup m \operatorname{Cl}(B)$.
- (vii) $A \subset m \operatorname{Cl}(A)$ and $m \operatorname{Int}(A) \subset A$.

Definition 2.3. A subset A of a minimal space (X, m) is said to be *m*-semiopen [6] if $A \subset m \operatorname{Cl}(m \operatorname{Int}(A))$.

Definition 2.4. A function $f : (X,m) \to (Y,\tau)$ is said to be msemicontinuous [6] if the inverse image of every open set of Y is msemiopen in (X,m).

Definition 2.5. A subset S of an ideal topological space (X, τ, \mathcal{I}) is said to be semi- \mathcal{I} -open [4] if $S \subset Int(Cl^*(S))$.

Definition 2.6. A subset A of an ideal minimal space (X, m, \mathcal{I}) is said to be

(i) $m \cdot \alpha \cdot \mathcal{I} \cdot open$ [3] if $A \subset m \operatorname{Int}(m \operatorname{Cl}^*(m \operatorname{Int}(A)))$.

- (ii) m-pre- \mathcal{I} -open [2] if $A \subset m \operatorname{Int}(m \operatorname{Cl}^*(A))$.
- (iii) $m \delta \mathcal{I} open [1]$ if $m \operatorname{Int}(m \operatorname{Cl}^*(A)) \subset m \operatorname{Cl}^*(m \operatorname{Int}(A))$.
- (iv) strongly $m \beta \mathcal{I} open [1]$ if $A \subset m \operatorname{Cl}^*(m \operatorname{Int}(m \operatorname{Cl}^*(A)))$.

Definition 2.7. A function $f: (X,m) \to (Y,\tau)$ is said to be:

- (i) m-pre-*I*-continuous [2] if the inverse image of every open set of Y is m-pre-*I*-open in X.
- (ii) m-α-*I*-continuous [3] if the inverse image of every open set of Y is m-α-*I*-open in X.
- (iii) m-δ-*I*-continuous [3] if the inverse image of every open set of Y is m-δ-*I*-open in X.

3. m-semi- \mathcal{I} -open sets

Definition 3.1. A subset A of an ideal minimal space (X, m, \mathcal{I}) is said to be m-semi- \mathcal{I} -open if and only if $A \subset m \operatorname{Cl}^*(m \operatorname{Int}(A))$.

The family of all m-semi- \mathcal{I} -open sets of (X, m, \mathcal{I}) is denoted by $S\mathcal{IO}(X, m)$. Moreover, the family of all m-semi- \mathcal{I} -open sets of (X, m, \mathcal{I}) containing x is denoted by $ms\mathcal{IO}(X, x)$.

Remark 3.2. Let \mathcal{I} and \mathcal{J} be two ideals on X. If $\mathcal{I} \subset \mathcal{J}$, then $SIO(X,m) \subset SJO(X,m)$.

Proposition 3.3. (i) Every m- α - \mathcal{I} -open set is m-semi- \mathcal{I} -open.

- (ii) Every m-semi-*I*-open set is m-semiopen.
- (iii) Every m-semi- \mathcal{I} -open set is m- δ - \mathcal{I} -open.

Proof. The proof follows from the definitions.

The following examples show that the converses of Proposition 3.3 is not true in general.

Example 3.4. Let $X = \{a, b, c\}$ $m = \{\emptyset, \{a\}, \{b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then the set $\{b, c\}$ is m-semi- \mathcal{I} -open but it is not m- α - \mathcal{I} -open; the set $\{a, c\}$ is m-semiopen but it is not m-semi- \mathcal{I} -open and the set $\{c\}$ is m- δ - \mathcal{I} -open but not m-semi- \mathcal{I} -open.

Example 3.5. Let $X = \{a, b, c\}$ $m = \{\emptyset, \{a\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then the set $\{b\}$ is $m \cdot \delta \cdot \mathcal{I}$ -open but it is not m-semi- \mathcal{I} -open.

Remark 3.6. It is clear that m-semi- \mathcal{I} -openness and m-pre- \mathcal{I} -openness are independent notions as it is shown in the following example.

 \square

Example 3.7. Let $X = \{a, b, c\}$ $m = \{\emptyset, \{a, b\}, \{a, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then the set $\{b, c\}$ is m-pre- \mathcal{I} -open but it is not m-semi- \mathcal{I} -open. Let (X, m) be as in Example 3.4, the set $\{b, c\}$ is m-semi- \mathcal{I} -open but it is not m-pre- \mathcal{I} -open

Proposition 3.8. Let $(X, m, \{\emptyset\})$ be an ideal minimal space and $A \subset X$. The subset A is m-semi- \mathcal{I} -open if and only if A is m-semiopen.

Proof. The proof follows from the fact that if $\mathcal{I} = \{\emptyset\}$, then $A_m^* = m \operatorname{Cl}(A)$ [9].

Proposition 3.9. A subset A of an ideal minimal space (X, m, \mathcal{I}) is *m-semi-I-open if and only if* $m \operatorname{Cl}^*(A) = m \operatorname{Cl}^*(m \operatorname{Int}(A))$.

Proof. Let $A \in SIO(X, m)$. Then we have $A \subset m \operatorname{Cl}^*(m \operatorname{Int}(A))$. Then $m \operatorname{Cl}^*(A) \subset m \operatorname{Cl}^*(m \operatorname{Int}(A))$ and hence $m \operatorname{Cl}^*(A) = m \operatorname{Cl}^*(m \operatorname{Int}(A))$. The converse is obvious.

Remark 3.10. The intersection of two m-semi- \mathcal{I} -open sets need not be m-semi- \mathcal{I} -open as it can be seen from the following example.

Example 3.11. Let $X = \{a, b, c, d\}$, $m = \{\emptyset, \{a, b\}, \{a, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then the sets $\{a, b\}$ and $\{a, c\}$ are m-semi- \mathcal{I} -open sets of (X, m, \mathcal{I}) but their intersection $\{a\}$ is not an m-semi- \mathcal{I} -open set of (X, m, \mathcal{I}) .

However, we have the following

Theorem 3.12. If $\{A_{\alpha}\}_{\alpha\in\Omega}$ is a family of m-semi- \mathcal{I} -open sets in (X, m, \mathcal{I}) , then $\bigcup_{\alpha\in\Omega} A_{\alpha}$ is m-semi- \mathcal{I} -open in (X, m, \mathcal{I}) .

 $\{A_{\alpha}\}$ *Proof.* Since Ω \subset SIO(X,m),then : α \in $m \operatorname{Cl}^*(m \operatorname{Int}(A_{\alpha}))$ for every α Ω. Thus. $A_{\alpha} \subset$ \in $\bigcup_{\alpha \in \Omega} m \operatorname{Cl}^*(m \operatorname{Int}(A_{\alpha})) \subset$ $\bigcup_{\alpha\in\Omega}A_{\alpha}$ $m \operatorname{Cl}^*(\bigcup_{\alpha \in \Omega} m \operatorname{Int}(A_\alpha))$ \subset = $m \operatorname{Cl}^*(m \operatorname{Int}(\bigcup_{\alpha \in \Omega} A_{\alpha})).$ Therefore, $\bigcup_{\alpha\in\Omega}A_{\alpha}$ obtain \subset we $m \operatorname{Cl}^*(m \operatorname{Int}(\bigcup_{\alpha \in \Omega} A_\alpha)).$ Hence any union of m-semi- \mathcal{I} -open sets is *m*-semi- \mathcal{I} -open.

Theorem 3.13. Let (X, m, \mathcal{I}) be an ideal minimal space. Then a subset A of X is m-semi- \mathcal{I} -open if and only if it is both $m-\delta-\mathcal{I}$ -open and strong $m-\beta-\mathcal{I}$ -open.

Proof. Let A be an m-semi- \mathcal{I} -open set, then we have $A \subset m \operatorname{Cl}^*(m \operatorname{Int}(A)) \subset m \operatorname{Cl}^*(m \operatorname{Int}(m \operatorname{Cl}^*(A)))$. This shows that A is strong m- β - \mathcal{I} -open. Moreover, $m \operatorname{Int}(m \operatorname{Cl}^*(A)) \subset m \operatorname{Cl}^*(A) \subset$

 $m \operatorname{Cl}^*(m \operatorname{Int}(A))$. Therefore, A is $m - \delta - \mathcal{I}$ -open. Conversely, let A be $m - \delta - \mathcal{I}$ -open and strong $m - \beta - \mathcal{I}$ -open set, then we have $m \operatorname{Int}(m \operatorname{Cl}^*(A)) \subset m \operatorname{Cl}^*(m \operatorname{Int}(A))$. Thus we obtain that $m \operatorname{Cl}^*(m \operatorname{Int}(m \operatorname{Cl}^*(A))) \subset m \operatorname{Cl}^*(m \operatorname{Int}(A))$. Since A is strong $m - \beta - \mathcal{I}$ -open, we have $A \subset m \operatorname{Cl}^*(m \operatorname{Int}(m \operatorname{Cl}^*(A))) \subset m \operatorname{Cl}^*(m \operatorname{Int}(A))$ and $A \subset m \operatorname{Cl}^*(m \operatorname{Int}(A))$. Hence A is an m-semi- \mathcal{I} -open set.

Definition 3.14. In an ideal minimal space (X, m, \mathcal{I}) , $A \subset X$ is said to be m-semi- \mathcal{I} -closed if $X \setminus A$ is m-semi- \mathcal{I} -open in X.

Theorem 3.15. A subset A is an m-semi- \mathcal{I} -closed set in an ideal minimal space (X, m, \mathcal{I}) if and only if $m \operatorname{Cl}(m \operatorname{Int}^*(A)) \subset A$.

Proof. Straightforward.

Theorem 3.16. If A is an m-semi- \mathcal{I} -closed set in an ideal minimal space (X, m, \mathcal{I}) , then $m \operatorname{Int}(m \operatorname{Cl}^*(A)) \subset A$.

Proof. Since $A \in SIC(X, m)$, $X \setminus A \in SIO(X, m)$. Hence, $X \setminus A \subset m \operatorname{Cl}^*(m \operatorname{Int}(X \setminus A)) \subset m \operatorname{Cl}(m \operatorname{Int}(X \setminus A)) = X \setminus (m \operatorname{Int}(m \operatorname{Cl}(A))) \subset X \setminus (m \operatorname{Int}(m \operatorname{Cl}^*(A)))$. Therefore, we obtain $m \operatorname{Int}(m \operatorname{Cl}^*(A)) \subset A$. \Box

Proposition 3.17. Let (X, m, \mathcal{I}) be an ideal minimal space. If a subset A of X is $m-\beta-\mathcal{I}$ -closed and $m-\delta-\mathcal{I}$ -open, then it is m-semi- \mathcal{I} -closed.

Proof. The proof follows from the definitions.

Proposition 3.18. A subset A of an ideal minimal space (X, m, \mathcal{I}) is *m-semi-I-closed if and only if* $m \operatorname{Int}(m \operatorname{Cl}^*(A)) = m \operatorname{Int}(A)$.

Proof. Obvious.

Theorem 3.19. An arbitrary intersection of m-semi- \mathcal{I} -closed sets is always m-semi- \mathcal{I} -closed.

Proof. It follows from Theorems 3.12 and 3.16.

Definition 3.20. Let (X, m, \mathcal{I}) be an ideal minimal space, S a subset of X and x be a point of X. Then

- (i) x is called an m-semi- \mathcal{I} -interior point of S if there exists $V \in S\mathcal{IO}(X,m)$ such that $x \in V \subset S$.
- ii) the set of all m-semi-*I*-interior points of S is called m-semi-*I*-interior of S and is denoted by ms*I* Int(S).

Theorem 3.21. Let A and B be subsets of (X, m, \mathcal{I}) . Then the following properties hold:

 \square

 \square

- (i) $ms\mathcal{I}\operatorname{Int}(A) = \bigcup \{T : T \subset A \text{ and } A \in S\mathcal{I}O(X, m)\}.$
- (ii) msI Int(A) is the largest m-semi-I-open subset of X contained in A.
- (iii) A is m-semi- \mathcal{I} -open if and only if $A = ms\mathcal{I} \operatorname{Int}(A)$.
- (iv) $ms\mathcal{I}\operatorname{Int}(ms\mathcal{I}\operatorname{Int}(A)) = ms\mathcal{I}\operatorname{Int}(A).$
- (v) If $A \subset B$, then $ms\mathcal{I}$ Int $(A) \subset ms\mathcal{I}$ Int(B).
- (vi) $ms\mathcal{I}\operatorname{Int}(A) \cup ms\mathcal{I}\operatorname{Int}(B) \subset ms\mathcal{I}\operatorname{Int}(A \cup B).$
- (vii) $ms\mathcal{I}\operatorname{Int}(A\cap B) \subset ms\mathcal{I}\operatorname{Int}(A) \cap ms\mathcal{I}\operatorname{Int}(B).$

Proof. (i). Let $x \in \bigcup\{T : T \subset A \text{ and } A \in S\mathcal{IO}(X,m)\}$. Then, there exists $T \in mS\mathcal{IO}(X,x)$ such that $x \in T \subset A$ and hence $x \in ms\mathcal{I} \operatorname{Int}(A)$. This shows that $\bigcup\{T : T \subset A \text{ and } A \in S\mathcal{IO}(X,m)\}$ $\subset ms\mathcal{I} \operatorname{Int}(A)$. For the reverse inclusion, let $x \in ms\mathcal{I} \operatorname{Int}(A)$. Then there exists $T \in mS\mathcal{IO}(X,x)$ such that $x \in T \subset A$. we obtain $x \in \bigcup\{T : T \subset A \text{ and } A \in mS\mathcal{IO}(X)\}$. This shows that $ms\mathcal{I} \operatorname{Int}(A) \subset \bigcup\{T : T \subset A \text{ and } A \in S\mathcal{IO}(X,m)\}$. Therefore, we obtain $ms\mathcal{I} \operatorname{Int}(A)$ $= \bigcup\{T : T \subset A \text{ and } A \in S\mathcal{IO}(X,m)\}$.

(vi). Clearly, $ms\mathcal{I}\operatorname{Int}(A) \subset ms\mathcal{I}\operatorname{Int}(A \cup B)$ and $ms\mathcal{I}\operatorname{Int}(B) \subset ms\mathcal{I}\operatorname{Int}(A \cup B)$. Then we obtain $ms\mathcal{I}\operatorname{Int}(A) \cup ms\mathcal{I}\operatorname{Int}(B) \subset ms\mathcal{I}\operatorname{Int}(A \cup B)$.

(vii). Since $A \cap B \subset A$ and $A \cap B \subset B$, by (v), we have $ms\mathcal{I}\operatorname{Int}(A \cap B) \subset ms\mathcal{I}\operatorname{Int}(A)$ and $ms\mathcal{I}\operatorname{Int}(A \cap B) \subset ms\mathcal{I}\operatorname{Int}(B)$. Then $ms\mathcal{I}\operatorname{Int}(A \cap B) \subset ms\mathcal{I}\operatorname{Int}(A) \cap ms\mathcal{I}\operatorname{Int}(B)$.

Definition 3.22. Let (X, m, \mathcal{I}) be an ideal minimal space, S a subset of X and x be a point of X. Then

- (i) x is called an m-semi- \mathcal{I} -cluster point of S if $V \cap S \neq \emptyset$ for every $V \in mSIO(X, x)$.
- (ii) the set of all m-semi-*I*-cluster points of S is called m-semi-*I*closure of S and is denoted by ms*I* Cl(S).

Theorem 3.23. Let A and B be subsets of (X, m, \mathcal{I}) . Then the following properties hold:

- (i) $ms\mathcal{I}\operatorname{Cl}(A) = \cap \{F : A \subset F \text{ and } F \in S\mathcal{I}C(X,m)\}.$
- (ii) msI Cl(A) is the smallest m-semi-I-closed subset of X containing A.
- (iii) A is m-semi- \mathcal{I} -closed if and only if $A = ms\mathcal{I}\operatorname{Cl}(A)$.
- (iv) $ms\mathcal{I}\operatorname{Cl}(ms\mathcal{I}\operatorname{Cl}(A)) = ms\mathcal{I}\operatorname{Cl}(A).$
- (v) If $A \subset B$, then $ms\mathcal{I}\operatorname{Cl}(A) \subset ms\mathcal{I}\operatorname{Cl}(B)$.
- (vi) $ms\mathcal{I}\operatorname{Cl}(A\cup B) = ms\mathcal{I}\operatorname{Cl}(A) \cup ms\mathcal{I}\operatorname{Cl}(B).$
- (vii) $ms\mathcal{I}\operatorname{Cl}(A\cap B) \subset ms\mathcal{I}\operatorname{Cl}(A) \cap ms\mathcal{I}\operatorname{Cl}(B).$

Proof. (i). Suppose that $x \notin ms\mathcal{I}\operatorname{Cl}(A)$. Then there exists $V \in \mathcal{I}$ SIO(X,m) such that $V \cap A \neq \emptyset$. Since $X \setminus V$ is *m*-semi-*I*-closed set containing A and $x \notin X \setminus V$, we obtain $x \notin \cap \{F : A \subset F \text{ and } v \notin v\}$ $F \in SIC(X, m)$. Then there exists $F \in SIC(X, m)$ such that $A \subset F$ and $x \notin F$. Since $X \setminus V$ is *m*-semi- \mathcal{I} -closed set containing *x*, we obtain $(X \setminus F) \cap A = \emptyset$. This shows that $x \notin ms\mathcal{I} \operatorname{Cl}(A)$. Therefore, we obtain $ms\mathcal{I}\operatorname{Cl}(A) = \cap \{F : A \subset F \text{ and } F \in S\mathcal{I}C(X, m)\}.$

The other proofs are obvious.

Theorem 3.24. Let (X, m, \mathcal{I}) be an ideal minimal space and $A \subset X$. A point $x \in ms\mathcal{I}Cl(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in$ mSIO(X, x).

Proof. Suppose that $x \in ms\mathcal{I}\operatorname{Cl}(A)$. We shall show that $U \cap A \neq \emptyset$ for every $U \in mSIO(X, x)$. Suppose that there exists $U \in mSIO(X, x)$ such that $U \cap A = \emptyset$. Then $A \subset X \setminus U$ and $X \setminus U$ is *m*-semi- \mathcal{I} -closed. Since $A \subset X \setminus U$, $ms\mathcal{I}\operatorname{Cl}(A) \subset ms\mathcal{I}\operatorname{Cl}(X \setminus U)$. Since $x \in ms\mathcal{I}\operatorname{Cl}(A)$, we have $x \in ms\mathcal{I}\operatorname{Cl}(X \setminus U)$. Since $X \setminus U$ is *m*-semi- \mathcal{I} -closed, we have $x \in X \setminus U$; hence $x \notin U$, which is a contradicition that $x \in U$. Therefore, $U \cap A \neq \emptyset$. Conversely, suppose that $U \cap A \neq \emptyset$ for every $U \in mSIO(X, x)$. We shall show that $x \in msICl(A)$. Suppose that $x \notin ms\mathcal{I}Cl(A)$. Then there exists $U \in mS\mathcal{I}O(X,x)$ such that $U \cap A = \emptyset$. This is a contradicition to $U \cap A \neq \emptyset$; hence $x \in ms\mathcal{I}\operatorname{Cl}(A).$

Theorem 3.25. Let (X, m, \mathcal{I}) be an ideal minimal space and $A \subset X$. Then the following properties hold:

- (i) $ms\mathcal{I}\operatorname{Int}(X \setminus A) = X \setminus ms\mathcal{I}\operatorname{Cl}(A);$
- (i) $ms\mathcal{I}\operatorname{Cl}(X\backslash A) = X\backslash ms\mathcal{I}\operatorname{Int}(A)$.

Proof. (i). Let $x \in ms\mathcal{I}\operatorname{Cl}(A)$. Since $x \notin ms\mathcal{I}\operatorname{Cl}(A)$, there exists $V \in ms\mathcal{IO}(X,x)$ such that $V \cap A \neq \emptyset$; hence we obtain $x \in ms\mathcal{I}\operatorname{Int}(X \setminus A)$. This shows that $X \setminus ms\mathcal{I}\operatorname{Cl}(A) \subset ms\mathcal{I}\operatorname{Int}(X \setminus A)$. Let $x \in ms\mathcal{I}\operatorname{Int}(X \setminus A)$. Since $ms\mathcal{I}\operatorname{Int}(X \setminus A) \cap A = \emptyset$, we obtain $x \notin ms\mathcal{I}\operatorname{Cl}(A)$; hence $x \in X \setminus ms\mathcal{I}\operatorname{Cl}(A)$. Therefore, we obtain $ms\mathcal{I}\operatorname{Int}(X\backslash A) = X\backslash ms\mathcal{I}\operatorname{Cl}(A).$ (ii). Follows from (i).

Definition 3.26. A subset B_x of an ideal minimal space (X, m, \mathcal{I}) is said to be an m-semi- \mathcal{I} -neighbourhood of a point $x \in X$ if there exists an m-semi- \mathcal{I} -open set U such that $x \in U \subset B_x$.

Theorem 3.27. A subset of an ideal minimal space (X, m, \mathcal{I}) is msemi- \mathcal{I} -open if and only if it is an m-semi- \mathcal{I} -neighbourhood of each of its points.

Proof. Let G be an m-semi- \mathcal{I} -open set of X. Then by definition, it is clear that G is an m-semi- \mathcal{I} -neighbourhood of each of its points, since for every $x \in G$, $x \in G \subset G$ and G is m-semi- \mathcal{I} -open. Conversely, suppose G is an m-semi- \mathcal{I} -neighbourhood of each of its points. Then for each $x \in G$, there exists $S_x \in mS\mathcal{IO}(X)$ such that $S_x \subset G$. Then $G = \bigcup \{S_x : x \in G\}$. Since each S_x is m-semi- \mathcal{I} -open, G is m-semi- \mathcal{I} open in (X, m, \mathcal{I}) .

4. Semi- \mathcal{I} -continuous functions

Definition 4.1. A function $f : (X, m, \mathcal{I}) \to (Y, \tau)$ is said to be *m*-semi- \mathcal{I} -continuous if the inverse image of every open set of Y is *m*-semi- \mathcal{I} -open in X.

- **Proposition 4.2.** (i) Every $m \alpha \mathcal{I}$ -continuous function is m-semi- \mathcal{I} -continuous but not conversely.
 - (ii) Every m-semi-*I*-continuous function is m-semicontinuous but not conversely.
 - (iii) Every m-semi-*I*-continuous function is m-δ-*I*-continuous but not conversely.
 - (iv) *m-semi-I-continuity and m-pre-I-continuity are independent*.

Proof. The proof follows from Proposition 3.3, Examples 3.4 and 3.7. \Box

Theorem 4.3. For a function $f : (X, m, \mathcal{I}) \to (Y, \tau)$, the following statements are equivalent:

- (i) f is m-semi- \mathcal{I} -continuous;
- (ii) For each point x in X and each open set F of Y such that $f(x) \in F$, there is an m-semi- \mathcal{I} -open set A in X such that $x \in A, f(A) \subset F$;
- (iii) The inverse image of each closed set of Y is m-semi-*I*-closed in X;
- (iv) For each subset A of X, $f(ms\mathcal{I}\operatorname{Cl}(A)) \subset \operatorname{Cl}(f(A))$;
- (v) For each subset B of Y, $ms\mathcal{I}\operatorname{Cl}(f^{-1}(B)) \subset f^{-1}(\operatorname{Cl}(B));$
- (vi) For each subset C of Y, $f^{-1}(\operatorname{Int}(C)) \subset ms\mathcal{I}\operatorname{Int}(f^{-1}(C))$.

Proof. (i) \Rightarrow (ii): Let $x \in X$ and F be an open set of Y containing f(x). By (i), $f^{-1}(F)$ is *m*-semi- \mathcal{I} -open in X. Let $A = f^{-1}(F)$. Then $x \in A$ and $f(A) \subset F$.

(ii) \Rightarrow (i): Let F be an open set in Y and let $x \in f^{-1}(F)$. Then $f(x) \in F$. By (ii), there is an *m*-semi- \mathcal{I} -open set U_x in X such that $x \in U_x$ and $f(U_x) \subset F$. Then $x \in U_x \subset f^{-1}(F)$. Hence $f^{-1}(F)$ is *m*-semi- \mathcal{I} -open in X.

(i) \Leftrightarrow (iii): This follows due to the fact that for any subset B of Y, $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B).$

(iii) \Rightarrow (iv): Let A be a subset of X. Since $A \subset f^{-1}(f(A))$ we have $A \subset f^{-1}(\operatorname{Cl}(f(A)))$. Since $\operatorname{Cl}(f(A))$ is closed in Y, by (iii) $f^{-1}(\operatorname{Cl}(f(A)))$ is m-semi- \mathcal{I} -closed in X. Then $ms\mathcal{I}\operatorname{Cl}(A) \subset f^{-1}(\operatorname{Cl}(f(A)))$. Then $f((ms\mathcal{I}\operatorname{Cl}(A))) \subset \operatorname{Cl}(f(A))$.

(iv) \Rightarrow (iii): Let F be any closed subset of Y. Then $f(ms\mathcal{I}\operatorname{Cl}(f^{-1}(F))) \subset \operatorname{Cl}(f(f^{-1}(F))) = \operatorname{Cl}(F) = F$. Therefore, $ms\mathcal{I}\operatorname{Cl}(f^{-1}(F)) \subset f^{-1}(F)$. Consequently, $f^{-1}(F)$ is m-semi- \mathcal{I} -closed in X.

 $(iv) \Rightarrow (v)$: Let *B* be any subset of *Y*. Now, $f(ms\mathcal{I}\operatorname{Cl}(f^{-1}(B))) \subset \operatorname{Cl}(f(f^{-1}(B))) \subset \operatorname{Cl}(B)$. Consequently, $ms\mathcal{I}\operatorname{Cl}(f^{-1}(B)) \subset f^{-1}(\operatorname{Cl}(B))$.

 $(\mathbf{v}) \Rightarrow (\mathbf{iv})$: Let B = f(A) where A is a subset of X. Then, $ms\mathcal{I}\operatorname{Cl}(A) \subset ms\mathcal{I}\operatorname{Cl}(f^{-1}(B)) \subset f^{-1}(\operatorname{Cl}(B)) = f^{-1}(\operatorname{Cl}(f(A)))$. This shows that $f(ms\mathcal{I}\operatorname{Cl}(A)) \subset \operatorname{Cl}(f(A))$.

(i)⇒(vi): Let B be an open set in Y. Observe that $f^{-1}(\text{Int}(B))$ is m-semi-*I*-open in X and we have $f^{-1}(\text{Int}(B)) \subset ms\mathcal{I} \text{Int}(f^{-1} \text{Int}(B)) \subset ms\mathcal{I} \text{Int}(f^{-1}(B))$.

 $(\text{vi}) \Rightarrow (\text{i})$: Let *B* be an open set in *Y*. Then Int(B) = B and $f^{-1}(B) \subset f^{-1}(\text{Int}(B)) \subset ms\mathcal{I} \text{Int}(f^{-1}(B))$. Hence we have $f^{-1}(B) = ms\mathcal{I} \text{Int}(f^{-1}(B))$. This shows that $f^{-1}(B)$ is *m*-semi- \mathcal{I} -open in *X*.

Theorem 4.4. Let $f : (X, m, \mathcal{I}) \to (Y, \tau)$ be an *m*-semi- \mathcal{I} continuous function. Then for each subset V of Y, $f^{-1}(\operatorname{Int}(V)) \subset m \operatorname{Cl}^*(m \operatorname{Int}(f^{-1}(V)))$.

Proof. Let V be any subset of Y. Then Int(V) is open in Y and so $f^{-1}(Int(V))$ is m-semi-*I*-open in X. Hence $f^{-1}(Int(V)) \subset m \operatorname{Cl}^*(m \operatorname{Int}(f^{-1}(Int(V)))) \subset m \operatorname{Cl}^*(m \operatorname{Int}(f^{-1}(V)))$. □

Corollary 4.5. Let $f : (X, m, \mathcal{I}) \to (Y, \tau)$ be an *m*-semi- \mathcal{I} -continuous function. Then for each subset V of Y, $m \operatorname{Int}(m \operatorname{Cl}^*(f^{-1}(V))) \subset f^{-1}(\operatorname{Cl}(V))$.

Theorem 4.6. Let $f : (X, m, \mathcal{I}) \to (Y, \tau)$ be a bijection. Then f is m-semi- \mathcal{I} -continuous if and only if $\operatorname{Int}(f(U)) \subset f(ms\mathcal{I}\operatorname{Int}(U))$ for each subset U of X.

Proof. Let *U* be any subset of *X*. Then by Theorem 4.3, $f^{-1}(\operatorname{Int}(f(U))) \subset ms\mathcal{I}\operatorname{Int}(f^{-1}(f(U)))$. Since *f* is a bijection, $\operatorname{Int}(f(U)) = f(f^{-1}(\operatorname{Int}(f(U)))) \subset f(ms\mathcal{I}\operatorname{Int}(U))$. Conversely, let *V* be any subset of *Y*. Then $\operatorname{Int}(f(f^{-1}(V))) \subset f(ms\mathcal{I}\operatorname{Int}(f^{-1}(V)))$. It follows from the bijectivity of *f* that $\operatorname{Int}(V) = \operatorname{Int}(f(f^{-1}(V))) \subset$ $f(ms\mathcal{I}\operatorname{Int}(f^{-1}(V)))$; hence $f^{-1}(\operatorname{Int}(V) \subset ms\mathcal{I}\operatorname{Int}(f^{-1}(V))$. Therefore, by Theorem 4.3, *f* is *m*-semi- \mathcal{I} -continuous. □

Definition 4.7. The graph G(f) of a function $f : (X, m, \mathcal{I}) \to (Y, \tau)$ is said to be m-semi- \mathcal{I} -closed in $X \times Y$ if for each $(x, y) \in (X \times Y) \setminus$ G(f), there exist $U \in mSIO(X, x)$ and an open set V of Y containing y such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 4.8. The graph $f : (X, m, \mathcal{I}) \to (Y, \tau)$ is m-semi- \mathcal{I} -closed in $X \times Y$ if and only if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exists $U \in mS\mathcal{IO}(X, x)$ and an open set V of Y containing y such that $f(U) \cap V = \emptyset$.

Proof. The proof is an immediate consequence of Definition 4.7. \Box

Theorem 4.9. If $f : (X, m, \mathcal{I}) \to (Y, \tau)$ is an m-semi- \mathcal{I} -continuous function and (Y, τ) is T_2 , then G(f) is m-semi- \mathcal{I} -closed.

Proof. Let $(x, y) \in (X \times Y) \setminus G(f)$. Then $y \neq f(x)$. Since Y is T_2 , there exists an open set V of Y such that $f(x) \in V$ and $y \notin V$. Since f is m-semi- \mathcal{I} -continuous, there exists $U \in mS\mathcal{IO}(X, x)$ such that $f(U) \subset V$. Therefore, $f(U) \cap V = \emptyset$. Therefore, by Lemma 4.8, G(f) is m-semi- \mathcal{I} -closed.

Definition 4.10. An ideal minimal space (X, m, \mathcal{I}) is said to be an m-semi- \mathcal{I} - T_2 space if for each pair of distinct points $x, y \in X$, there exist $U, V \in mSIO(X)$ containing x and y, respectively, such that $U \cap V = \emptyset$.

Theorem 4.11. If $f : (X, m, \mathcal{I}) \to (Y, \tau)$ is an m-semi- \mathcal{I} -continuous injection and Y is a T_2 space, then (X, m, \mathcal{I}) is a m-semi- \mathcal{I} - T_2 space.

Proof. The proof follows from the definitions.

Theorem 4.12. If $f : (X, m, \mathcal{I}) \to (Y, \tau)$ is an injective m-semi-*I*-continuous function with an m-semi-*I*-closed graph, then X is an m-semi-*I*- T_2 space.

Proof. Let x_1 and x_2 be any distinct points of X. Then $f(x_1) \neq f(x_2)$, so $(x_1, f(x_2)) \in (X \times Y) \setminus G(f)$. Since the graph G(f) is *m*-semi- \mathcal{I} -closed, there exist an *m*-semi- \mathcal{I} -open set U containing x_1 and $V \in$

 τ containing $f(x_2)$ such that $f(U) \cap V = \emptyset$. Since f is m-semi- \mathcal{I} continuous, $f^{-1}(V)$ is an m-semi- \mathcal{I} -open set containing x_2 such that $U \cap f^{-1}(V) = \emptyset$. Hence X is m-semi- \mathcal{I} - T_2 .

Definition 4.13. An ideal minimal space (X, m, \mathcal{I}) is said to be *m*-semi- \mathcal{I} -connected if X cannot be expressed as the union of two nonempty disjoint *m*-semi- \mathcal{I} -open sets.

Theorem 4.14. A m-semi- \mathcal{I} -continuous image of an m-semi- \mathcal{I} -connected space is connected.

Proof. The proof is clear.

Lemma 4.15. [7] For any function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma), f(\mathcal{I})$ is an ideal on Y.

Definition 4.16. A subset K of an ideal minimal space (X, m, \mathcal{I}) is said to be m-semi- \mathcal{I} -compact relative to X, if for every cover $\{U_{\lambda} : \lambda \in \Lambda\}$ of K by m-semi- \mathcal{I} -open sets of X, there exists a finite subset Λ_0 of Λ such that $K \setminus \bigcup \{U_{\lambda} : \lambda \in \Lambda_0\} \in \mathcal{I}$. The space (X, m, \mathcal{I}) is said to be m-semi- \mathcal{I} -compact if X is m-semi- \mathcal{I} -compact subset of X.

Definition 4.17. A subset K of an ideal minimal space (X, m, \mathcal{I}) is said to be countable m-semi- \mathcal{I} -compact relative to X, if for every cover $\{U_{\lambda} : \lambda \in \Lambda\}$ of K by countable m-semi- \mathcal{I} -open sets of X, there exists a finite subset Λ_0 of Λ such that $K \setminus \bigcup \{U_{\lambda} : \lambda \in \Lambda_0\} \in \mathcal{I}$. The space (X, m, \mathcal{I}) is said to be countable m-semi- \mathcal{I} -compact if X is countable m-semi- \mathcal{I} -compact subset of X.

Definition 4.18. A subset K of an ideal minimal space (X, m, \mathcal{I}) is said to be m-semi- \mathcal{I} -Lindelöf relative to X, if for every cover $\{U_{\lambda} : \lambda \in \Lambda\}$ of K by m-semi- \mathcal{I} -open sets of X, there exists a finite subset Λ_0 of Λ such that $K \setminus \bigcup \{U_{\lambda} : \lambda \in \Lambda_0\} \in \mathcal{I}$. The space (X, m, \mathcal{I}) is said to be m-semi- \mathcal{I} -Lindelöf if X is m-semi- \mathcal{I} -Lindelöf subset of X.

Theorem 4.19. If $f : (X, m, \mathcal{I}) \to (Y, \sigma)$ is an m-semi- \mathcal{I} -continuous surjection and (X, m, \mathcal{I}) is m-semi- \mathcal{I} -compact, then $(Y, \sigma, f(\mathcal{I}))$ is $f(\mathcal{I})$ -compact.

Proof. Let $\{V_{\lambda} : \lambda \in \Lambda\}$ be an open cover of Y. Then $\{f^{-1}(V_{\lambda}) : \lambda \in \Lambda\}$ is an *m*-semi- \mathcal{I} -open cover of X and hence, there exist a finite subset Λ_0 of λ such that $X \setminus \bigcup \{f^{-1}(V_{\lambda}) : \lambda \in \Lambda_0\} \in \mathcal{I}$. Since f is surjective, $Y \setminus \bigcup \{V_{\lambda} : \lambda \in \Lambda_0\} = f(X \setminus \bigcup \{f^{-1}(V_{\lambda}) : \lambda \in \Lambda_0\}) \in \mathcal{I}$. Therefore, $(Y, \sigma, f(\mathcal{I}))$ is $f(\mathcal{I})$ -compact. \Box

Theorem 4.20. If $f : (X, m, \mathcal{I}) \to (Y, \sigma)$ is an m-semi- \mathcal{I} -continuous surjection and (X, m, \mathcal{I}) is m-semi- \mathcal{I} -Lindelöf, then $(Y, \sigma, f(\mathcal{I}))$ is $f(\mathcal{I})$ -Lindelöf.

Proof. The proof is similar to previous theorem.

Theorem 4.21. If $f : (X, m, \mathcal{I}) \to (Y, \sigma)$ is an m-semi- \mathcal{I} -continuous surjection and (X, m, \mathcal{I}) is countable m-semi- \mathcal{I} -compact, then $(Y, \sigma, f(\mathcal{I}))$ is countable $f(\mathcal{I})$ -compact.

Proof. The proof is similar to previous theorem.

Definition 4.22. A function $f: (X, \tau) \to (Y, m, \mathcal{I})$ is said to be:

- (i) m-semi- \mathcal{I} -open if f(U) is an m-semi- \mathcal{I} -open set of Y for every open set U of X.
- (ii) m-semi-I-closed if f(U) is an m-semi-I-closed set of Y for every closed set U of X.

Theorem 4.23. For a function $f : (X, \tau) \to (Y, m, \mathcal{I})$, the following statements are equivalent:

- (i) f is m-semi- \mathcal{I} -open;
- (ii) $f(\operatorname{Int}(U)) \subset ms\mathcal{I}\operatorname{Int}(f(U))$ for each subset U of X;
- (iii) $\operatorname{Int}(f^{-1}(V)) \subset f^{-1}(ms\mathcal{I}\operatorname{Int}(V))$ for each subset V of Y.

Proof. (*i*) ⇒ (*ii*): Let *U* be any subset of *X*. Then Int(*U*) is an open set of *X*. Then f(Int(U)) is an *m*-semi-*I*-open set of *Y*. Since $f(\text{Int}(U)) \subset f(U), f(\text{Int}(U)) = ms\mathcal{I} \operatorname{Int}(f(\text{Int}(U))) \subset ms\mathcal{I} \operatorname{Int}(f(U)).$ (*ii*) ⇒ (*iii*): Let *V* be any subset of *Y*. Then $f^{-1}(V)$ is a subset of *X*. Hence $f(\text{Int}(f^{-1}(V))) \subset ms\mathcal{I} \operatorname{Int}(f(f^{-1}(V))) \subset ms\mathcal{I} \operatorname{Int}(V)$. Then $\operatorname{Int}(f^{-1}(V)) \subset f^{-1}(f(\text{Int}(f^{-1}(V)))) \subset f^{-1}(ms\mathcal{I} \operatorname{Int}(V))$.

 $(iii) \Rightarrow (i)$: Let U be any open set of X. Then $\operatorname{Int}(U) = U$ and f(U) is a subset of Y. Now, $V = m \operatorname{Int}(V) \subset \operatorname{Int}(f^{-1}(f(V))) \subset f^{-1}(ms\mathcal{I}\operatorname{Int}(f(V)))$. Then $f(V) \subset f(f^{-1}(ms\mathcal{I}\operatorname{Int}(f(V)))) \subset ms\mathcal{I}\operatorname{Int}(f(V))$ and $ms\mathcal{I}\operatorname{Int}(f(V)) \subset f(V)$. Hence f(V) is a m-semi- \mathcal{I} -open set of Y; hence f is m-semi- \mathcal{I} -open. \Box

Theorem 4.24. Let $f : (X, \tau) \to (Y, m, \mathcal{I})$ be a function. Then f is an m-semi- \mathcal{I} -closed function if and only if for each subset V of X, $ms\mathcal{I}\operatorname{Cl}(f(V)) \subset f(\operatorname{Cl}(V))$.

Proof. Let f be an m-semi- \mathcal{I} -closed function and V any subset of X. Then $f(V) \subset f(\operatorname{Cl}(V))$ and $f(\operatorname{Cl}(V))$ is an m-semi- \mathcal{I} -closed set of Y. We have $ms\mathcal{I}\operatorname{Cl}(f(V)) \subset ms\mathcal{I}\operatorname{Cl}(f(\operatorname{Cl}(V))) = f(\operatorname{Cl}(V))$. Conversely, let V be an open set of X. Then $f(V) \subset ms\mathcal{I}\operatorname{Cl}(f(V)) \subset f(\operatorname{Cl}(V)) =$

 \square

f(V); hence f(V) is an *m*-semi- \mathcal{J} -closed subset of *Y*. Therefore, *f* is an *m*-semi- \mathcal{I} -closed function.

Theorem 4.25. Let $f : (X, \tau) \to (Y, m, \mathcal{I})$ be a function. Then f is an m-semi- \mathcal{I} -closed function if and only if for each subset V of Y, $f^{-1}(ms\mathcal{I}\operatorname{Cl}(V)) \subset \operatorname{Cl}(f^{-1}(V))$.

Proof. Let V be any subset of Y. Then by Theorem 4.24, $ms\mathcal{I}\operatorname{Cl}(V) \subset f(\operatorname{Cl}(f^{-1}(V)))$. Since f is bijection, $f^{-1}(ms\mathcal{I}\operatorname{Cl}(V)) = f^{-1}(ms\mathcal{I}\operatorname{Cl}(f(f^{-1}(V)))) \subset f^{-1}(f(\operatorname{Cl}(f^{-1}(V)))) = \operatorname{Cl}(f^{-1}(V))$. Conversely, let U be any subset of X. Since f is bijection, $ms\mathcal{I}\operatorname{Cl}(f(U)) = f(f^{-1}(ms\mathcal{I}\operatorname{Cl}(f(U))) \subset f(\operatorname{Cl}(f^{-1}(f(U)))) = f(\operatorname{Cl}(U))$. Therefore, by Theorem 4.24, f is an m-semi- \mathcal{I} -closed function. □

Theorem 4.26. Let $f : (X, \tau) \to (Y, m, \mathcal{I})$ be an *m*-semi- \mathcal{I} -open function. If V is a subset of Y and U is a closed subset of X containing $f^{-1}(V)$, then there exists an *m*-semi- \mathcal{I} -closed set F of Y containing V such that $f^{-1}(F) \subset U$.

Proof. Let V be any subset of Y and U a closed subset of X containing $f^{-1}(V)$, and let $F = Y \setminus (f(X \setminus V))$. Then $f(X \setminus V) \subset f(f^{-1}(X \setminus V)) \subset X \setminus V$ and $X \setminus U$ is an open set of X. Since f is m-semi-*I*-open, $f(X \setminus U)$ is an m-semi-*I*-open set of Y. Hence F is an m-semi-*I*-closed set of Y and $f^{-1}(F) = f^{-1}(Y \setminus (f(X \setminus U)) \subset U$. □

Theorem 4.27. Let $f : (X, \tau) \to (Y, m, \mathcal{I})$ be an *m*-semi- \mathcal{I} -closed function. If V is a subset of Y and U is an open subset of X containing $f^{-1}(V)$, then there exists *m*-semi- \mathcal{I} -open set F of Y containing V such that $f^{-1}(F) \subset U$.

Proof. The proof is similar to the Theorem 4.26.

Theorem 4.28. Let $f : (X, \tau) \to (Y, m, \mathcal{I})$ be an *m*-semi- \mathcal{I} -open function. Then for each subset V of Y, $f^{-1}(m \operatorname{Int}(m \operatorname{Cl}^*(V)) \subset \operatorname{Cl}(f^{-1}(V))$.

Proof. Let V be any subset of Y. Then $\operatorname{Cl}(f^{-1}(V))$ is a closed set of X containing $f^{-1}(V)$. Since f is m-semi- \mathcal{I} -open, by Theorem 4.26, there is an m-semi- \mathcal{I} -open set F of Y containing V such that $f^{-1}(m \operatorname{Int}(m \operatorname{Cl}^*(V))) \subset m \operatorname{Int}(m \operatorname{Cl}^*(F))) \subset f^{-1}(F) \subset$ $\operatorname{Cl}(f^{-1}(V)).$

Theorem 4.29. Let $f : (X, \tau) \to (Y, m, \mathcal{I})$ be a bijection such that for each subset V of Y, $f^{-1}(m \operatorname{Int}(m \operatorname{Cl}^*(V)) \subset \operatorname{Cl}(f^{-1}(V)))$. Then f is an m-semi- \mathcal{I} -open function.

Proof. Let U be an open subset of X. Then $f(X \setminus U)$ is a subset of Y and $f^{-1}(m \operatorname{Int}(m \operatorname{Cl}^*(f(X \setminus U)))) \subset \operatorname{Cl}(f^{-1}(f(X \setminus U))) = \operatorname{Cl}(X \setminus U) =$ $X \setminus U$, and so $m \operatorname{Int}(m \operatorname{Cl}^*(f(X \setminus U))) \subset f(X \setminus U)$. Hence $f(X \setminus U)$ is an *m*-semi- \mathcal{I} -closed set of Y and $f(U) = X \setminus (f(X \setminus U))$ is a *m*-semi- \mathcal{I} open set of Y. Therefore, f is an *m*-semi- \mathcal{I} -open function. \Box

5. (m_1, m_2) -SEMI- \mathcal{I} -IRRESOLUTE FUNCTIONS

Definition 5.1. A function $f : (X, m_1, \mathcal{I}) \to (Y, m_2, \mathcal{J})$ is said to be (m_1, m_2) -semi- \mathcal{I} -irresolute if the inverse image of every m_2 -semi- \mathcal{J} -open set of Y is m_1 -semi- \mathcal{I} -open in X.

Theorem 5.2. Let $f: (X, m_1, \mathcal{I}) \to (Y, m_2, \mathcal{J})$ be a function, then

- (1) f is (m_1, m_2) -semi- \mathcal{I} -irresolute;
- (2) the inverse image of each m_2 -semi- \mathcal{J} -closed subset of Y is m_1 -semi- \mathcal{I} -closed in X;
- (3) for each $x \in X$ and each $V \in S\mathcal{JO}(Y, m_2)$ containing f(x), there exists $U \in S\mathcal{IO}(X, m_1)$ containing x such that $f(U) \subset V$.

Proof. The proof is obvious from that fact that the arbitrary union of m-semi- \mathcal{I} -open subsets is m-semi- \mathcal{I} -open.

Theorem 5.3. Let $f : (X, m_1, \mathcal{I}) \to (Y, m_2, \mathcal{J})$ be a function, then

- (1) f is (m_1, m_2) -semi- \mathcal{I} -irresolute;
- (2) $m_1 s \mathcal{I} \operatorname{Cl}(f^{-1}(V)) \subset f^{-1}(m_2 s \mathcal{J} \operatorname{Cl}(V))$ for each subset V of Y;
- (3) $f(m_1 s \mathcal{I} \operatorname{Cl}(U) \subset m_2 s \mathcal{J} \operatorname{Cl}(f(U))$ for each subset U of X.

Proof. (1) ⇒ (2): Let V be any subset of Y. Then $V \subset m_2 s \mathcal{J} \operatorname{Cl}(V)$ and $f^{-1}(V) \subset f^{-1}(m_2 s \mathcal{I} \operatorname{Cl}(V))$. Since f is (m_1, m_2) -semi- \mathcal{I} -irresolute, $f^{-1}(m_2 s \mathcal{J} \operatorname{Cl}(V))$ is an m_1 -semi- \mathcal{I} -closed subset of X. Hence $m_1 s \mathcal{I} \operatorname{Cl}(f^{-1}(V)) \subset m_1 s \mathcal{I} \operatorname{Cl}(f^{-1}(m_2 s \mathcal{J} \operatorname{Cl}(V))) = f^{-1}(m_2 s \mathcal{J} \operatorname{Cl}(V)).$

 $(2) \Rightarrow (3)$: Let U be any subset of X. Then $f(U) \subset m_2 s \mathcal{J} \operatorname{Cl}(f(U))$ and $m_1 s \mathcal{I} \operatorname{Cl}(U) \subset m_1 s \mathcal{I} \operatorname{Cl}(f^{-1}(f(U))) \subset f^{-1}(m_2 s \mathcal{J} \operatorname{Cl}(f(U)))$. This implies that $f(m_1 s \mathcal{I} \operatorname{Cl}(U)) \subset f(f^{-1}(m_2 s \mathcal{J} \operatorname{Cl}(f(U)))) \subset m_2 s \mathcal{J} \operatorname{Cl}(f(U))$.

 $\begin{array}{ll} (3) \ \Rightarrow \ (1): \ \text{Let } V \ \text{be an } m_2\text{-semi-}\mathcal{J}\text{-closed subset of } Y. \ \text{Then } f(m_1s\mathcal{I}\operatorname{Cl}(f^{-1}(V)) \subset m_1s\mathcal{I}\operatorname{Cl}(f^{-1}(V))) \subset m_1s\mathcal{I}\operatorname{Cl}(V) = V. \ \text{This implies that } m_1s\mathcal{I}\operatorname{Cl}(f^{-1}(V)) \subset f^{-1}(f(m_1s\mathcal{I}\operatorname{Cl}(f^{-1}(V)))) \subset f^{-1}(V). \ \text{Therefore, } f^{-1}(V) \ \text{is an } m\text{-semi-}\mathcal{I}\text{-closed subset of } X \ \text{and consequently } f \ \text{is an } (m_1, m_2)\text{-semi-}\mathcal{I}\text{-irresolute function.} \end{array}$

Theorem 5.4. A function $f : (X, m_1, \mathcal{I}) \to (Y, m_2, \mathcal{J})$ is an (m_1, m_2) -semi- \mathcal{I} -irresolute if and only if $f^{-1}(m_2 s \mathcal{J} \operatorname{Int}(V)) \subset m_1 s \mathcal{I} \operatorname{Int}(f^{-1}(V))$ for each subset V of Y.

Proof. Let V be any subset of Y. Then $ms\mathcal{J}\operatorname{Int}(V) \subset V$. Since f is (m_1, m_2) -semi- \mathcal{I} -irresolute, $f^{-1}(m_2s\mathcal{J}\operatorname{Int}(V))$ is an m-semi- \mathcal{I} -open subset of X. Hence $f^{-1}(m_2s\mathcal{J}\operatorname{Int}(V)) = m_1s\mathcal{I}\operatorname{Int}(f^{-1}(m_2s\mathcal{J}\operatorname{Int}(V))) \subset m_1\mathcal{I}s\operatorname{Int}(f^{-1}(V))$. Conversely, let V be an m_2 -semi- \mathcal{J} -open subset of Y. Then $f^{-1}(V) = f^{-1}(m_2s\mathcal{J}\operatorname{Int}(V)) \subset m_1s\mathcal{I}\operatorname{Int}(f^{-1}(V))$. Therefore, $f^{-1}(V)$ is an m_1 semi- \mathcal{I} -open subset of X and consequently f is an (m_1, m_2) -semi- \mathcal{I} irresolute function. \Box

References

- [1] S. Jafari and N. Rajesh, *Some subsets of ideal minimal spaces* (under preparation).
- [2] S. Jafari and N. Rajesh, Preopen sets in ideal minimal spaces, Questions Answers Gen. Topology 29 (2011), no. 1, 81-90.
- [3] S. Jafari, R. Saranya and N. Rajesh, Properties of α -open sets in ideal minimal spaces (submitted).
- [4] E. Hatir and T. Noiri, On semi-*I*-open sets and semi-*I*-continuous functions, Acta Math. Hungar., 107(4)(2005), 345-353.
- [5] K. Kuratowski, Topology, Academic semiss, New York, (1966).
- [6] W. K. Min, *m*-Semiopen Sets And *M*-Semicontinuous Functions On Spaces With Minimal Structures, *Honam Math. J.*, (31) (2) (2009), 239-245.
- [7] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph.D. Thesis, University of California, USA (1967).
- [8] V. Popa and T. Noiri, On the definition of some generalized forms of continuity under minimal conditions, *Mem. Fac. Sci. Kochi. Univ. Ser. Math.*, (22) (2001), 9-19.
- [9] O. B. Ozbakir and E. D. Yildirim, On some closed sets in ideal minimal spaces, Acta Math. Hungar., 125(3) (2009), 227-235.
- [10] R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.

College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse Denmark. e-mail:jafaripersia@gmail.com

Department of Mathematics, Rajah Serfoji Govt. College Thanjavur-613005 Tamilnadu, India. e-mail: nrajesh_topology@yahoo.co.in

1/82, South Street, Pillaiyarnatham Thnangudi, Thanjavur 613 601 Tamilnadu, India. e-mail: sara.rengaraj@gmail.com