THE LITTLE ℓ FUNCTION

Article · April 2018

1 author:

Theophilus Agama
African Institute for Mathematical Sciences Ghana
98 PUBLICATIONS 1 CITATION

Some of the authors of this publication are also working on these related projects:

- the goldbach's conjecture View project
- The theory of compression View project

All content following this page was uploaded by Theophilus Agama on 30 April 2018.

The user has requested enhancement of the downloaded file.
THE LITTLE ℓ FUNCTION

THEOPHILUS AGAMA

Abstract. In this short note we introduce a function which iteratively behaves in a similar fashion compared to the factorial function. However the growth rate of this function is not as dramatic and sudden as the factorial function. We also propose an approximation for this function for any given input, which holds for sufficiently large values of \(n \).

1. Introduction

The factorial function is of fundamental importance in many areas of pure and applied mathematics. The function is one among the many transcendental functions that has been studied over centuries. For a detailed historical account concerning the evolution of the factorial function, see [2]. It is defined as \(n! = n(n-1)(n-2) \cdots 2 \cdot 1 \). For sufficiently large values of \(n \), we have the famous Stirling formula (see [1]), given by

\[
 n! \sim \sqrt{2\pi n} \left(\frac{n}{e} \right)^n ,
\]

which gives an approximation for the factorial function. In this paper, we introduce the little \(\ell \) function, which behaves in some sense as the factorial function.

2. The little ℓ function

Definition 2.1. Let \(n \) be a natural number, then we set

\[
\ell(n) := \begin{cases}
\frac{n}{2} \ell\left(\frac{n}{2}\right) \cdots 1 & \text{if } n \text{ is even} \\
\frac{n-1}{2} \ell\left(\frac{n-1}{2}\right) \cdots 1 & \text{if } n > 1 \text{ is odd} \\
1 & \text{if } n = 1.
\end{cases}
\]

The little \(\ell \) function, though completely different from the factorial function, can be seen to be performing a role similar to the factorial function. The factorial function on an integer \(n \) iterates downwards on \(n \) till it’s value gets to 1, so does the little \(\ell \) function. That is, \(n! = n(n-1)! \) where as \(\ell(n) = \frac{n}{2} \ell\left(\frac{n}{2}\right) \) or \(\ell(n) = \frac{n-1}{2} \ell\left(\frac{n-1}{2}\right) \), according as \(n \) is odd or even.

Example 2.2.

Date: April 29, 2018.

2000 Mathematics Subject Classification. Primary 54C40, 14E20; Secondary 46E25, 20C20.

Key words and phrases. approximation, normalization, probability.
\(\ell(24) = 12 \cdot 6 \cdot 3 \cdot 1 = 216, \ell(100) = 50 \cdot 25 \cdot 12 \cdot 6 \cdot 3 \cdot 1 = 270000. \)

\(\ell(55) = 27 \cdot 13 \cdot 6 \cdot 3 \cdot 1 = 6318, \ell(127) = 63 \cdot 31 \cdot 15 \cdot 7 \cdot 3 \cdot 1 = 615195. \)

Remark 2.3. The little \(\ell \) function is somewhat akin to the factorial function. However the growth rate of the factorial function supersedes that of the \(\ell \) function. Below is a table that gives the distribution of the little \(\ell \) function for the first thirty values of the integers.

3. Distribution of the little \(\ell \) function

<table>
<thead>
<tr>
<th>Values of (n)</th>
<th>The little (\ell) function on (n)</th>
<th>Values of the little (\ell(n)) function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\ell(1))</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>(\ell(2))</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>(\ell(3))</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>(\ell(4))</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>(\ell(5))</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>(\ell(6))</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>(\ell(7))</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>(\ell(8))</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>(\ell(9))</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>(\ell(10))</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>(\ell(11))</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>(\ell(12))</td>
<td>18</td>
</tr>
<tr>
<td>13</td>
<td>(\ell(13))</td>
<td>18</td>
</tr>
<tr>
<td>14</td>
<td>(\ell(14))</td>
<td>21</td>
</tr>
<tr>
<td>15</td>
<td>(\ell(15))</td>
<td>21</td>
</tr>
<tr>
<td>16</td>
<td>(\ell(16))</td>
<td>64</td>
</tr>
<tr>
<td>17</td>
<td>(\ell(17))</td>
<td>64</td>
</tr>
<tr>
<td>18</td>
<td>(\ell(18))</td>
<td>72</td>
</tr>
<tr>
<td>19</td>
<td>(\ell(19))</td>
<td>72</td>
</tr>
<tr>
<td>20</td>
<td>(\ell(20))</td>
<td>100</td>
</tr>
<tr>
<td>21</td>
<td>(\ell(21))</td>
<td>100</td>
</tr>
<tr>
<td>22</td>
<td>(\ell(22))</td>
<td>110</td>
</tr>
<tr>
<td>23</td>
<td>(\ell(23))</td>
<td>110</td>
</tr>
<tr>
<td>24</td>
<td>(\ell(24))</td>
<td>216</td>
</tr>
<tr>
<td>25</td>
<td>(\ell(25))</td>
<td>216</td>
</tr>
<tr>
<td>26</td>
<td>(\ell(26))</td>
<td>234</td>
</tr>
<tr>
<td>27</td>
<td>(\ell(27))</td>
<td>234</td>
</tr>
<tr>
<td>28</td>
<td>(\ell(28))</td>
<td>294</td>
</tr>
<tr>
<td>29</td>
<td>(\ell(29))</td>
<td>294</td>
</tr>
<tr>
<td>30</td>
<td>(\ell(30))</td>
<td>315</td>
</tr>
</tbody>
</table>

We can observe from the above table that \(\ell(n) = \ell(n + 1) \) for any even number \(n \).
THE LITTLE \(\ell \) FUNCTION

Conjecture 3.1. For any natural number \(n \), we have that
\[
\ell(n) \sim C_0 \left(\frac{n}{2} \right)^{\log n} \left(\frac{1}{2} \right)^{\frac{(\log n)^2 - \log n}{2}}
\]
for some constant \(C_0 > 0 \).

3.1. Heuristics in support of Conjecture 3.1

Conjecture 3.1 is not completely surprising. We believe this is a good approximation of the \(\ell \) function. Heuristically, choose any integer \(n \) at random and apply the little \(\ell \) function on \(n \). We remark that \(n \) can either be odd or even. Without loss of generality let us assume \(n \) is even, then the little \(\ell \) on \(n \) is given by
\[
\ell(n) = \frac{n}{2} \ell \left(\frac{n}{2} \right).
\]
Again \(\frac{n}{2} \) can either be odd or even. Without loss of generality, let us suppose \(\frac{n}{2} \) is odd, then
\[
\ell(n) = \frac{n}{2} \left(\frac{n}{2} - 1 \right) \ell \left(\frac{n}{4} \right) \approx \left(\frac{n}{2} \right)^{\frac{1}{2}} \ell \left(\frac{n}{4} \right).
\]
Again \(\frac{n}{4} \) can either be odd or even. Without loss of generality, let us assume \(\frac{n}{4} \) is even, then we find that
\[
\ell(n) \approx \left(\frac{n}{2} \right)^{\frac{1}{2}} \ell \left(\frac{n}{4} \right) \approx \left(\frac{n}{2} \right)^{\frac{3}{4}} \ell \left(\frac{n}{8} \right).
\]
Let \(P(\ell(n)) \) denote the number of factors of the \(\ell(n) \) function, or the frequency at which the \(\ell(n) \) converges to 1, then it can be seen that
\[
P(\ell(n)) = (1 + o(1)) \log n.
\]
Then by continuous iteration the little \(\ell(n) \) function should be approximately
\[
\ell(n) \sim C_0 \left(\frac{n}{2} \right)^{\log n} \left(\frac{1}{2} \right)^{\frac{(\log n)^2 - \log n}{2}}.
\]

4. Comparism to flipping a coin

Infering from the above heuristics, the little \(\ell(n) \) function can intuitively be thought of as flipping a coin at finite number of times, where in our case the frequency of this experiment is given to be roughly \(P(\ell(n)) = (1 + o(1)) \log n \) and where \(\ell(n) = \frac{n}{2} \ell \left(\frac{n}{2} \right) \) or \(\ell(n) = \frac{n-1}{2} \ell \left(\frac{n-1}{2} \right) \), each with probability \(\frac{1}{2} \). Roughly speaking, the estimate
\[
\ell(n) \approx n^{\log n} \left(\frac{1}{2} \right)^{\frac{(\log n)^2 - \log n}{2}} \left(\frac{1}{2} \right)^{\log n}
\]
obtained from the above heuristics, can be seen as the probability of obtaining either a head or tail in \((1 + o(1)) \log n \) number of trials, for sufficiently large values of \(n \).

References

Department of Mathematics, African Institute for Mathematical science, Ghana

E-mail address: theophilus@aims.edu.gh/emperordagama@yahoo.com