Conditional Activation GAN: Improved Auxiliary Classifier GAN

JeongIk Cho¹, Kyoungro Yoon ²(Corresponding Author)
Dept. of Computer Science and Engineering¹, Dept. of Smart ICT Convergence Engineering²
College of Engineering¹, KU Institute of Technology²
Konkuk University, Seoul, Korea¹, Konkuk University, Seoul, Korea²
jeongik.jo.01@gmail.com¹, yoonk@konkuk.ac.kr²

Abstract

Conditional GAN is a GAN that generates data with the desired condition from the latent vector. The auxiliary classifier GAN is the most used among the variations of conditional GANs. In this study, we explain the problem of auxiliary classifier GAN and propose conditional activation GAN that can replace auxiliary classifier GAN to reduce the number of hyperparameters and improve training speed. The loss function of conditional activation GAN is defined as the sum of the loss of each GAN created for each condition. Since each GAN shares all hidden layers, the GANs can be considered as a single GAN and it does not increase the amount of computation much. Also, in order to prevent condition ignoring of conditional GANs which have batch normalization in the discriminator, we propose a mixed batch training, in which each batch for discriminator is always configured to have the same ratio of real data and generated data so that each batch always has the same condition distribution.

Keywords
Auxiliary classifier GAN
StarGAN
Loss function
Batch normalization
Conditional activation GAN

Abbreviations
Generative adversarial network: GAN
Auxiliary classifier GAN: AC-GAN
Conditional activation GAN: CA-GAN
Fréchet Inception Distance: FID

1. Introduction

Conditional GAN [1] is a GAN [2] that can generate data with the desired condition from the latent vector. Among the variations of conditional GANs [3, 4], the most commonly used conditional GAN is the Auxiliary Classifier
GAN (AC-GAN) [5] used in [6, 7, 8, 9, 10, 11]. Some papers used a variation of AC-GAN [10, 11] without giving any details on the rationalization of the variations made. In this study, we explain the reasons for the modification of AC-GAN and the disadvantages of AC-GAN.

In AC-GAN, when real data distribution and generated data distribution is the same, auxiliary classifier of the discriminator and the generator can be considered as a group of GANs, each of which trains each condition and cross-entropy adversarial loss by sharing all hidden layers. Considering the AC-GAN as a set of GANs, the generated data classification loss of the AC-GAN discriminator loss interferes with the training of each GAN and hence is removed in the modified AC-GAN.

Since each GAN can be trained as a GAN only when the real data distribution and the generated data distribution are the same, there is a problem that individual GAN may not be trained at the beginning of the AC-GAN training.

Also, to use the advanced adversarial loss as used in papers such as LSGAN [12] or WGAN-GP [13] in AC-GAN, a hyperparameter that is adjusting the ratio of adversarial loss and classification loss should be decided.

We propose a conditional activation GAN (CA-GAN) that can replace AC-GAN to reduce the number of hyperparameters and improve training speed to overcome the upper mentioned problems of AC-GAN. Loss of CA-GAN is the sum of the losses of each GAN when each GAN is created for each condition. Since each GAN shares all hidden layers, the CA-GAN composed on a conceptual aggregation of individual GAN can be considered as a single GAN.

Unlike AC-GAN’s use of two losses (adversarial loss, classification loss), CA-GAN uses only one loss (conditional activation loss), so there is no need to find the proper ratio of adversarial loss and classification loss.

Also, while AC-GAN starts to train each condition when the real data distribution is the same to the generated data distribution, CA-GAN always trains each condition simultaneously, which means that CA-GAN always produces meaningful gradients, even in the early training stage.

In conditional GANs, training by applying batch normalization [14] to the discriminator induces the generator to distort the input condition distribution.

When batch normalization is applied to the discriminator, and the real data and the generated data condition distribution are different, the discriminator may use the batch condition distribution for real/fake discrimination and the generated data condition distribution follows the real data condition distribution, not the input target condition distribution.

To prevent the generator from ignoring the input target condition distribution, we suggest mixed batch training. Mixed batch training is to always configure each batch for discriminator
with the same ratio of real data and generated data so that each batch always has the same condition distribution.

However, if mixed batch training is applied at the beginning of training, the discriminator is too easy to discriminate the generated data due to batch normalization, so the training does not proceed well. Mixed batch training should be applied after some training has been done to improve the performance of conditional GANs.

2. Analysis of Auxiliary classifier GAN

The loss of AC-GAN is defined as follows [5]:

\[
L_d = L^d_{adv} + L^r_{cls} + L^g_{cls} \quad (1)
\]

\[
L_g = L^g_{adv} + L^r_{cls} + L^g_{cls} \quad (2)
\]

\[
L^r_{cls} = E_{x,cnd \sim P_r(x,cnd)}[-\log D_{cls}(cnd|x)] \quad (3)
\]

\[
L^g_{cls} = E_{x'\sim P_g(x',cnd')}[-\log D_{cls}(cnd'|x')] \quad (4)
\]

\[
L^d_{adv} = E_{x \sim P_r(x)}[\log(1 - D_{adv}(x))] + E_{x' \sim P_g(x')}[\log D_{adv}(x')] \quad (5)
\]

\[
L^g_{adv} = E_{x \sim P_g(x)}[\log(1 - D_{adv}(x))] \quad (6)
\]

In (1) and (2), \(L_d\) is the loss of the discriminator and \(L_g\) is the loss of the generator. \(L^d_{adv}\) is the adversarial loss of the discriminator and \(L^g_{adv}\) is the adversarial loss of the generator. In (5), \(D_{adv}\) is the probability distribution function of the data in the adversarial module. \(D_{adv}(x)\) is the probability distribution of \(x\), which is given as the input of the adversarial module. \(E\) is the expectation of the given variable. Symbol “\(\sim\)” means “is distributed as”. For example, \(E_{x \sim P_r(x)}[f(x)]\) is an expectation value of \(f(x)\) when \(x\) follows the distribution of \(P_r(x)\).

In \(x,cnd \sim P_r(x,cnd)\) of (3), \(x\) is the real data, and \(cnd\) is the binary vector that expresses the conditions of real data. In \(x',cnd' \sim P_g(x',cnd')\) of (4), \(x'\) is the generated data and \(cnd'\) is the target binary vector to generate \(x'\). \(D_{cls}(x)\) is the probability distribution of data \(x\) within auxiliary classifier of the discriminator. \(-\log D_{cls}(cnd|x)\) is the cross-entropy loss between \(cnd\) and \(D_{cls}(x)\). Minimizing \(\log D_{cls}(cnd|x)\) means that \(D_{cls}\) is trained to estimate the conditions of \(x\) (\(cnd\)) well.

Note that \(L^r_{cls}\) in \(L_g\) does not play any role because the generator does not affect the calculation of \(L^r_{cls}\).

In AC-GAN, when real data distribution and generated data distribution is the same, auxiliary classifier of the discriminator and the generator can be considered as a group of GANs that each GAN trains each condition using cross-entropy adversarial loss, and shares all hidden layers as shown in Fig. 1.
Suppose that AC-GAN training three independent conditions (A, B, C) trains only with adversarial loss, and the real data distribution and the generated data distribution are the same.

Node A of the discriminator is trained by \(L^r_{\text{cls}}[A]\) in \(L_d\) to output 1 to represent real when it receives real data with condition A, and 0 to represent fake with condition not-A.

When the generator receives 1 as its node A’s input, it attempts to generate data by \(L^g_{\text{cls}}[A]\) in \(L_g\) with condition A, and trains the discriminator’s node A output to be 1.

If the generator attempts to generate data with condition A but fails, the generated data distribution will be close to the real data distribution with condition not-A since it is assumed that the real data distribution and the generated data distribution are the same.

Thus, the hidden layers of the discriminator and node A, the hidden layers of the generator and the latent vector input, and node A can be thought of as a single GAN A that generates data with condition A trained by \(L^r_{\text{cls}}[A]\) in \(L_d\) and \(L^g_{\text{cls}}[A]\) in \(L_g\). However, \(L^g_{\text{cls}}[A]\) in \(L_d\) trains node A of the discriminator to be 1 representing real when the discriminator receives generated data. Therefore, \(L^g_{\text{cls}}[A]\) in \(L_d\) interferes with the training of GAN A.

Also, when the generator receives 0 as its node A’s input, it can be thought of as a GAN that generates data with condition not-A.

AC-GAN uses cross-entropy loss as an adversarial loss. However, in order to use advanced adversarial loss such as LSGAN or WGAN-GP, a hyperparameter is needed to adjust the ratio of adversarial loss and classification loss.

To solve these problems, the loss of the modified AC-GANs used in StarGAN [10] or AttGAN [11] is modified as follows:

\[
L_d = L^d_{\text{adv}} + \lambda_{\text{cls}} L^r_{\text{cls}} \tag{7}
\]

\[
L_g = L^g_{\text{adv}} + \lambda_{\text{cls}} L^g_{\text{cls}} \tag{8}
\]

\[
L^r_{\text{cls}} = E_{x, \text{cnd} \sim P_r(x, \text{cnd})} [- \log D_{\text{cls}}(\text{cnd}|x)] \tag{9}
\]

\[
L^g_{\text{cls}} = E_{x', \text{cnd}' \sim P_g(x', \text{cnd}')} [- \log D_{\text{cls}}(\text{cnd}'|x')] \tag{10}
\]

In (7) and (8), \(L_d\) is loss of discriminator and \(L_g\) is loss of generator. \(L^d_{\text{adv}}\) is adversarial loss of discriminator and \(L^g_{\text{adv}}\) is adversarial loss of generator. In \(x, \text{cnd} \sim P_r(x, \text{cnd})\) of (9), \(x\) is real data, and \(\text{cnd}\) is the binary vector that expresses the conditions of real data. In \(x', \text{cnd}' \sim P_g(x', \text{cnd}')\) of (10), \(x'\) is generated data and \(\text{cnd}'\) is the target binary vector to generate \(x'\). \(\lambda_{\text{cls}}\) is classification loss weight.

As explained above, modified AC-GAN also can be considered as a group of GANs. However, each GAN can only be trained as a GAN for each condition only if the real data distribution and the generated data distribution for the corresponding condition are the same.
In other words, if the real data distribution differs from the generated data distribution at the beginning of the training, the training does not proceed with classification loss, but only with adversarial loss, as shown in Fig.2.

By training with adversarial loss, the real data distribution and the generated data distribution get closer. As these distributions get closer to each other, the classification loss gradually acts as the cross-entropy adversarial loss of each GAN, and produces meaningful gradients and training is performed to generate data with each condition.

AC-GAN has the disadvantage of requiring one additional hyperparameter to adjust the ratio of adversarial loss and classification loss in both discriminator and generator and not producing meaningful gradients early stage of training.

3. Conditional activation GAN

To solve these problems of AC-GAN, we propose conditional activation GAN (CA-GAN), which is similar to having multiple GANs each of which is defined to train corresponding condition.

Loss of conditional activation GAN is the sum of each GAN's loss where Each GAN trains only one condition as defined in the following
equation.

\[L_d = \sum_{\text{for each } c} L_{dc} \]
\[L_g = \sum_{\text{for each } c} L_{gc} \]
\[L_{dc} = E_{x,c \sim p_r(x,c)}[f_r^d(D_c(x))] + E_{x' \sim p_g(x',1)}[f_g^d(D_c(x'))] \]
\[L_{gc} = E_{x' \sim p_g(x',1)}[f^g(D_c(x'))] \]

In (11) and (12), \(L_d \) and \(L_g \) represent the discriminator and the generator losses of conditional activation GAN, respectively. \(S_{cond} \) represents the set of conditions that the given CA-GAN is intended to be trained for. \(c \) is one specific condition in \(S_{cond} \). GAN \(c \) is an individual GAN that trains for only condition \(c \).

\(g_c \) and \(d_c \) are generator and discriminator of GAN \(c \). \(g_c \) receives a binary activation value with a latent vector. If \(g_c \) receives 1 as an activation value, \(g_c \) tries to trick \(d_c \), and \(d_c \) tries to discriminate generated data from \(g_c \) as fake. If \(g_c \) receives 0 as the activation value, both \(g_c \) and \(d_c \) do not care about what has been generated. \(d_c \) only cares about discriminating real data, which has condition \(c \), and does not care about other real data including real data with condition not-\(c \).

In \(x, c \sim p_r(x,c) \) of (13), \(x \) is the real data which has condition \(c \). In \(x' \sim p_g(x',1) \), \(x' \) is generated data by \(g_c \) when it receives latent vector with 1 as activation value.

\(f_r^d \) is a function that calculates the adversarial loss of the discriminator about real data. \(f_g^d \) is a function that calculates the adversarial loss of the discriminator about generated data. In (14), \(f^g \) is a function that calculates the adversarial loss of the generator.

The following equation is an example of the adversarial loss of GAN \(c \) that uses adversarial loss given in LSGAN [12].

\[L_{dc} = E_{x,c \sim p_r(x,c)}[(D_c(x) - 1)^2] + E_{x' \sim p_g(x',1)}[D_c(x')]^2 \]
\[L_{gc} = E_{x' \sim p_g(x',1)}[(D_c(x') - 1)^2] \]

In CA-GAN, since each GAN shares all hidden layers, conditional activation loss can be changed as the following equation.

\[L_d = E_{x,c \sim p_r(x,c)}[f_r^d(D(x)) \cdot \text{cond}] + E_{x' \sim p_g(x',\text{cond'})}[f_g^d(D(x')) \cdot \text{cond'}] \]
\[L_g = E_{x' \sim p_g(x',\text{cond'})}[f^g(D(x')) \cdot \text{cond'}] \]

In \(x, c \sim p_r(x,c) \) of (17), \(x \) is real data, and \(\text{cond} \) is the binary vector that expresses the conditions of real data. In \(x', \text{cond'} \sim p_g(x', \text{cond'}) \) of (18), \(x' \) means generated data, and \(\text{cond'} \) is the target binary vector to make \(x' \). “." is an inner product.

The following equation is the loss of CA-GAN when it is using the adversarial loss of LSGAN.

\[L_d = E_{x,c \sim p_r(x,c)}[(D(x) - 1)^2 \cdot \text{cond}] + E_{x' \sim p_g(x',\text{cond'})}[(D(x'))^2 \cdot \text{cond'}] \]
\[L_g = E_{x' \sim p_g(x',\text{cond'})}[(D(x') - 1)^2 \cdot \text{cond'}] \]

In AC-GAN, GAN \(A \) that trains condition \(A \) also generates data with condition not-\(A \) as well as data with condition \(A \).

However, in CA-GAN, since GAN \(A \), training with condition \(A \), does not care about condition not-\(A \), a new GAN training condition not-\(A \)
must be added to train condition not-A.

\[P(\text{Black hair}) + P(\text{Blond hair}) + P(\text{Bald}) = 1, P(\text{Male}) + P(\text{Female}) = 1 \]

In CA-GAN, since each GAN can be trained through advanced adversarial loss that generates meaningful gradients even if the real data distribution and the generated data distribution are different, meaningful gradients are generated even at the beginning of the training.

Also, unlike AC-GAN's use of two losses (adversarial loss, classification loss), CA-GAN uses only one loss (conditional activation loss), so there is no need to find the proper ratio of adversarial loss and classification loss. This means that it takes less time to search for an important hyperparameter: the ratio of adversarial loss and classification loss.

4. Mixed batch training

In conditional GANs, training by applying batch normalization to the discriminator may induce the generator to distort the input condition distribution.

When batch normalization is applied to the discriminator and the target condition distribution used for training is different from the real data condition distribution, the discriminator may use the batch condition distribution for real/fake discrimination, which leads generated data condition distribution to follow real data condition distribution. To prevent the generator from ignoring the input target condition distribution, we suggest mixed batch training.

Mixed batch training is configuring each batch for discriminator always to have the same ratio
of real data and generated data so that each batch always has the same condition distribution. Since each training batch is always configured to keep the same condition distribution, the discriminator will not discriminate real/fake by condition distribution, and the generator will not attempt to follow the real data condition distribution.

However, if mixed batch training is applied at the beginning of training, the discriminator is too easy to discriminate the generated data due to batch normalization, so the training does not proceed well. Mixed batch training should be applied after some training has been done to improve the performance of conditional GANs.

5. Material and methods

In this experiment, we used dataset of the MNIST handwriting number dataset [15]. The dataset has 60000 training images and 10000 test images with an image resolution of 28×28 pixels, and the channel size is 1.

The basic design of DCGAN [16] with instance normalization is used for the model architecture. The generator receives a 10-dimensional condition vector and a 256-dimensional latent vector that follows a Gaussian distribution. AC-GAN uses all 11 outputs of the discriminator, but CA-GAN uses only 10 outputs. Adversarial loss of LSGAN was used both for AC-GAN and GAN with or without L_{cls}^g in discriminator loss when the adversarial loss exists.

In Fig. 12, the blue graph shows the average FID of modified AC-GAN with $L_d = L_{adv}^d + \lambda_{cls}(L_{cls}^r + L_{cls}^g)$, $\lambda_{cls} = 0.1$ and the orange graph shows the average FID of modified AC-GAN with $L_d = L_{adv}^d + \lambda_{cls}L_{cls}, \lambda_{cls} = 0.1$. As the graph shows, the performance of the network without L_{cls}^g is better.

The next experiment is to compare the performance when the adversarial loss weight and classification loss weight are different in modified AC-GAN.

We compared the performance of modified AC-
Fig. 13 shows the FID when the classification loss weight λ_{cls} varies from 0.01 to 1.0, with the adversarial loss weight fixed to 1.0. The changes in training speed and the quality of the results as the ratio of the adversarial loss weight and the classification loss weight changes can be easily seen through this graph.

6.2 CA-GAN

For the comparison of proposed CA-GAN with modified AC-GAN, we used the learning rate of 3×10^{-6} because with learning rate 10^{-5}, the training went too fast, so the performance of modified AC-GAN and CA-GAN was almost similar.

Fig. 14 Performance comparison of modified AC-GAN vs CA-GAN

As shown in Fig. 14, FID of CA-GAN is slightly lower than that of modified AC-GAN, meaning that the generated images by the CA-GAN are slightly more realistic than the images generated by the modified AC-GAN. The performance of CA-GAN is better than modified AC-GAN.

6.3 Mixed batch training

In the original MNIST handwriting number training dataset, the number of images for each number is almost the same. For the experiment, we intentionally used a dataset consisting of 5500 of number 0 and 500 of other numbers 1~9 each from the MNIST handwriting number training dataset, to create an unbalanced dataset. The number 0 in the dataset occupies 55% of the total 10000 data, and the remaining numbers 1~9 accounts for 5% each.

We applied batch normalization in the
discriminator instead of instance normalization in this experiment.

After training conditional GANs by 100 epoch through not mixed batch training, when training additional 50 epochs, we compared the performance between mixed batch training and not mixed batch training.

Fig.15 and Fig.16 show the data generated by modified AC-GAN and CA-GAN trained by 100 epoch with not mixed batch training.

Fig.15 modified AC-GAN generated data after 100 epoch not mixed batch training

Fig.16 CA-GAN generated data after 100 epoch not mixed batch training

You can see that both modified AC-GAN and CA-GAN ignore conditional vectors and generate a lot of number zeros.

The effectiveness of mixed batch training in modified AC-GAN is shown in Fig. 15~17, and in CA-GAN is shown in Fig. 18~20.
Fig. 15 Mixed batch training performance comparison for modified AC-GAN

Fig. 16 AC-GAN generated data after additional 50 epoch not mixed batch training

Fig. 17 AC-GAN generated data after additional 50 epoch mixed batch training

Fig. 18 Mixed batch training performance comparison for CA-GAN
Fig. 19 CA-GAN generated data after additional 50 epoch not mixed batch training

Fig. 20 CA-GAN generated data after additional 50 epoch mixed batch training

Fig. 15 ~ 20 shows that the performance of mixed batch training is better than not mixed batch training when training additional 50 epochs in modified AC-GAN and CA-GAN trained with not mixed batch by 100 epochs.

In particular, Fig. 17 and 20 shows that mixed batch training in conditional GANs can prevent the conditional vector from being ignored.

7. Conclusion

In this paper, we tried to interpret AC-GAN as a set of GANs and explained why generated data classification loss of discriminator loss in AC-GAN interferes with training and confirmed
this theory through the experiments.

Based on this interpretation, we proposed a novel approach of GAN, called Conditional Activation GAN (CA-GAN). CA-GAN can be interpreted as an integration of GANs in which each individual GAN trains only one condition. Unlike modified AC-GAN, CA-GAN generates a meaningful gradient even at the beginning of the training, so that the training speed is fast, as shown in the experiments.

CA-GAN is expected to be used as a replacement for modified AC-GAN in many GAN applications because it has fewer hyperparameters and trains faster than modified AC-GAN, while it is compatible with AC-GAN.

We also predicted that the discriminator with batch normalization might use batch condition distribution to discriminate real/fake, which would cause performance degradation, in conditional GAN.

To prevent this degradation, we proposed mixed batch training. The mixed batch training is configuring each batch for discriminator with the same ratio of real data and generated data so that each batch always has the same condition distribution. Through experiments, the performance improvement of conditional GANs: modified AC-GAN and CA-GAN, due to mixed batch training is confirmed.

Mixed batch training is expected to help train conditional GANs using batch normalization for discriminators.

In conclusion, CA-GAN, which we propose in this paper, provides better performance than AC-GAN in terms of training speed and hyperparameter search. The mixed batch training also improves performance of somewhat trained conditional GAN by inducing healthy competition between generator and discriminator.

8. Funding

This work was supported by "University Innovation Grant" from the Ministry of Education and National Research Foundation of Korea

9. References

Generative Adversarial Nets
Advances in Neural Information Processing Systems 27 (NIPS), 2014, pp. 2672-2680
https://papers.nips.cc/paper/5423-generative-adversarial-nets
Generative Attribute Controller With Conditional Filtered Generative Adversarial Networks
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 6089-6098

[4] Chen, Xi and Duan, Yan and Houwhoof, Rein and Schulman, John and Sutskever, Ilya and Abbeel, Pieter
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Advances in Neural Information Processing Systems 29 (NIPS), 2016, pp. 2172-2180
http://papers.nips.cc/paper/6399-infogan-interpretable-representation

[5] Augustus Odena, Christopher Olah, Christopher Olah, Jonathon B Shlens, Jonathon Shlens
Conditional image synthesis with auxiliary classifier GANs
https://dl.acm.org/doi/10.5555/3305890.3305954

Style Transfer for Anime Sketches with Enhanced Residual U-net and Auxiliary Classifier GAN

Auxiliary Classifier Generative Adversarial Network With Soft Labels in Imbalanced Acoustic Event Detection
https://ieeexplore.ieee.org/document/8523637

Gated-GAN: Adversarial Gated Networks for Multi-Collection Style Transfer

GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification

Neurocomputing, Volume 321, 2018, Pages 321-331, ISSN 0925-2312,

[10] Z. He, W. Zuo, M. Kan, S. Shan and X. Chen

AttGAN: Facial Attribute Editing by Only Changing What You Want

[11] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, Jaegul Choo

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 8789-8797

[12] Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau, Zhen Wang, Stephen Paul Smolley

Least Squares Generative Adversarial Networks

The IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2794-2802

Improved Training of Wasserstein GANs

Advances in Neural Information Processing Systems 30 (NIPS), 2017, pp. 5767-5777
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans

[14] Sergey Ioffe, Christian Szegedy

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

http://proceedings.mlr.press/v37/ioffe15.html

[dataset][15] Yann LeCun, Corinna Cortes, Christopher J.C. Burges
THE MNIST DATABASE of handwritten digits
http://yann.lecun.com/exdb/mnist/

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

[17] Diederik P. Kingma, Jimmy Ba
Adam: A Method for Stochastic Optimization

[18] tensorflow 2.0
http://www.tensorflow.org (accessed 16 February 2020)

[19] Heusel, Martin and Ramsauer, Hubert and Unterthiner, Thomas and Nessler, Bernhard and Hochreiter, Sepp
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium
Advances in Neural Information Processing Systems 30 (NIPS), 2017, pp. 6626-6637
http://papers.nips.cc/paper/7240-gans-trained-by-a-two-t