Fictitious forces, inertial forces and
Mach's principle (II)

Wenceslao Segura Gonzalez
e-mail: wenceslaoseguragonzalez@yahoo.es
Independent Researcher

Abstract. According to the principle dynamic equilibrium, we understand the force of inertia is a
force that acts on whatever body that accelerated with respect to an inertial frame. It is, therefore,
areal force, observed in whatever reference frame. We identify this force with force gravitational
induction produced by the whole of the Universe. Therefore, the Universe is an inertial reference
frame. In developing the theory, we find that the gravitational induction force produced by the
entire Universe is proportional to acceleration and in the opposite sense, as is the force of inertia.
In making this identification, we find that the inertial and gravitational mass are proportional, with
a coefficient of proportionality depending on the cosmic time.

1 Principle dynamic equilibrium
Usually, the second law of mechanics is expressed by saying that when a force F acts on
a body, it acquires an acceleration a proportional to the force

a=—
m[

m, is the inertial mass, a magnitude that characterizes the body. But in this research we make a

different formulation: when a force acts on a body it acquires acceleration, and as result of this

acceleration, another force called inertia acts on the body F, =—-m,a which opposes the applied

force, that is to say
F+F, =0
or is the principle of dynamic equilibrium.

Both formulations seem identical, but they are very different. Now the force of inertia is a
real force that acts on whatever accelerated body with respect to an inertial reference frame. The
force of inertia, as we have defined it, is produced by other bodies. We propose that the force of
inertia is produced by the whole Universe, as we will show.

Mach's principle is included in the principle of dynamic equilibrium. Indeed, the inertial
mass m;, is the result of the action of the whole Universe. The inertial mass is not an intrinsic
property of the body but is the result of the action of the Universe, that is, an acquired property.

In this paper we will demonstrate that the force of inertia is produced when a body is
accelerated with respect to the whole Universe. The force of inertia is a gravitational induction
force, that is, a gravitational force produced by the movement of the body with respect to the whole
Universe.

2 The Universe and the inertial reference frame

Newton assumed the existence of absolute space, which is an inertial reference frame
and allows us to define all the remaining inertial reference frames, which are those that move with
uniform and rectilinear motion with respect to absolute space. In the Newtonian scheme, there is
no way to determine the absolute velocity, although accelerated motion can be detected, that is, the
acceleration with respect to absolute space can be measured.
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The impossibility of detecting absolute motion was limited to mechanical measurements,
but experience showed that the absolute velocity of a body could not be determined from
electromagnetic phenomena. The Theory of Special Relativity established, as a hypothesis, that
there is no physical phenomenon with which the absolute velocity can be determined. It should be
noted that this relativistic statement does not say that this absolute velocity does not exist, but
exclusively that it cannot be measured. That is, in the scheme of Special Relativity, the concept of
Newtonian absolute space still exists.

In the theory that we are developing, the whole Universe is an inertial reference frame, we
say, therefore, that the Universe is the materialization of the Newtonian absolute space. With this
vision, the absolute motion is with respect to the whole of the Universe and, therefore, experimentally
determinable.

The Universe is not only a referential frame, as the definition of the International Reference
Celestial System implies, but it also applies mechanical action on the bodies. There is no possibility
of isolating the local phenomena of the Universe, contrary to what Newtonian cosmology affirms
based on an infinite and uniform Universe. Local bodies maintain a dynamic relationship with the
entire Universe, which is certainly not negligible, as we will see.

We might think that this is not what happens. For example, determine the motion of the
Earth in its annual motion, we need to know the action of the Sun, the Moon and the planets, from
which we obtain an extremely precise ephemeris, without the need to include in the calculations
any information about the whole Universe. The reason for this situation is that the cosmic action is
already included in the equation of motion that we use to determine the motion of the Earth.

Gravity is not an action at a distance, but a field that is transmitted by vacuum with the
velocity of light. That is, time elapses between the transmission and reception of a gravitational
signal. Therefore, we concluded that in addition to the static force of Newtonian gravity, there is a
gravitational induction force, that is, a force that depends on the velocity.

The force of induction of gravity is produced by the entire Universe and is exerted on the
bodies that move with respect to it. This induction is not a result of the motion in unison of all the
bodies of the Universe with respect to a test body, but of the motion of this body with respect to the
whole of the Cosmos.

The theory of gravitational induction is, in essence, identical to electromagnetic induction,
so that the results obtained in electromagnetism can be extended, although always keeping in mind
that it is the body on which the force is acting that is moving, and not sources of the field, that is to
say, the bodies that constitute the Universe.

One might think that the motion of the test body with respect to the Universe at rest is
equivalent to assuming that it is the Universe that moves with equal velocity but in the opposite
sense with respect to the body that would remain at rest. The equivalence between the two situations
is only kinematic. However, it is not dynamic since, in general, the bodies that move with acceleration
with respect to the Universe emit gravitational radiation, which would not happen if it was the
whole of the Universe who moved with acceleration with regarding the test body.

Naturally, the problem of calculating the cosmic induction force is complicated because the
gravitational signals that reach the observer were produced at different cosmic time, from the
beginning of the Universe to the present day, by bodies that are in different positions and at retarded
distances, is say those that had the sources at the time of emitting the signal, which is not the
current distance, that is the distance to the sources at the time of arrival of the signal.

The gravitational induction force, like the electromagnetic induction force, depends on the
position of the source, its velocity, and acceleration. However, as we will see, when calculating the
total induction force it is found that, in the classical approximation, it only depends on the acceleration,
being linear with respect to it and in the opposite sense, which confirms its identification with the
force of inertia. That is, the total induction force does not depend on velocity; there is no induction
force for a body that moves with uniform and rectilinear motion.

When calculating the induction force, we derive the value of the inertial mass, which turns
out to be (as we will see) proportional to the gravitational mass, but the constant of proportionality
varies with time, even in a static Universe. That is, inertial mass is not a constant characteristic of
a body that measures its amount of matter, but is a property that depends on the action of the
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Universe, which is different depending on the type of Universe, it depends on cosmic time, and this
is the most important thing. Finally, it must be said that the relationship between inertial and gravitational
mass is the same for all bodies and depends only on cosmic time.

The consequences of the above considerations, which we will specify later, are far-reaching.
There is an equivalence of relativistic origin between the mass of a body and its energy, £ = mc”;
in this expression, m is the inertial mass, not the gravitational mass. Inertial mass depends on
cosmic time; therefore, the energy associated with the matter has equal dependence. This conclusion
is significant because energy has an associated gravitational mass that is a source of gravity, but
this energy, by the above considerations, depends on cosmic time. For example, the gravitational
mass associated with pressure depends on time.

For the Standard Model of the Universe or another similar one, the inertial mass of a body
increases with cosmic time, because as time goes by there are more and more sources that are
acting on this body, increasing its mass. Or, in the past the inertial mass of a body was smaller than
it is today. For example, the inertial mass associated with the pressure remains unchanged, but the
gravitational mass of that energy decreases with the passage of time.

There are also consequences for nuclear processes, especially those that occurred at the
beginning of the Universe. The gravitational masses of the elementary constituents of matter are
unalterable, but their inertial masses decrease in the past, and therefore, the associated energy will
also decrease. That is, the nuclear bond energy was in the past significantly less than it would have
existed if the inertial mass of the elementary particles had remained constant.

Finally, and without wishing to be exhaustive, to indicate that the variation of the inertial
mass will result in a variation of the spectral lines, which is superimposed with the variation that
causes cosmic expansion.

In summary, the phenomenon of inertia, inertial mass, and force of inertia are the result of
the action of the whole of the entire Universe. We conclude, therefore, that the action of the
Universe is very prominent in local phenomena. Naturally, the action of the cosmos will depend on
its characteristics, the parameters that define it, and the cosmological model. Alternatively, put
another way, the local action of the Universe will give us information about its structure and
properties. The later means that the theory of Mach’s principle that we are developing has important
cosmological implications, as we have already pointed out.

3 Inertial mass and gravitational mass

The gravitational mass of a body, which more correctly should be called gravitational charge,
is the magnitude that measures the gravitational effects produced by a body. The active and passive
gravitational mass must be distinguished. The first is the mass that produces gravity, and the second
measures the effect that gravity produces on the body. If the law of action and reaction is valid, or
in other words, if the linear momentum is conserved, both types of gravitational masses are equal,
and we will suppose so in the future.

Inertial mass is an entirely different concept. It is the mass that measures the inertia of a
body, that is, the opposition it offers to the change of motion or the mass that appears in the force
of inertia.

By the principle of weak equivalence, the inertial mass is proportional to the gravitational
mass. That is, the acceleration that a body acquires due to gravity is independent of mass. However,
the equivalence principle does not state that the proportionality between inertial and gravitational
mass remains constant over time.

We consider that the gravitational mass is an intrinsic quantity, associated with the amount
of matter in the body and therefore invariable. However, we cannot say the same about inertial
mass. This mass is the result of the gravitational induction force of the whole Universe, which, with
exceptions, varies with cosmic time, which means that the inertial mass also changes.

For the above, we have

m,= Z(t) m,
m;, is the inertial mass, m , the gravitational mass and ;((t) it is a function of cosmic time that we
call inertia coefficient and that is a proportionality factor, the same for all the bodies of the
Universe.
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4 Relative motion

The movement of a body refers to bodies and not to absolute space; in this sense, we
consider the motion as «relativey, in contrast to Newton's idea that there is an absolute motion or
motion with respect to absolute space.

In the development of the «relative» theory of mechanics, not only is absolute space ruled
out as unreal, but all reference frames are equivalent, which is not the position that emerges from
Mach's principle as we are exposing.

As we have said, there is only the motion of one body with respect to another body, but not
all reference frames are equivalent. The reason is the existence of a particular reference frame:
the whole of the Universe, which defines the inertial reference frames. The definition of the Universe
as an inertial frame breaks the equivalence of all reference frames because each of them has a
motion with respect to the Universe.

In our interpretation of Mach’s principle, there are still inertial and non-inertial frames, as in
Newtonian mechanics, and defined by their motion with respect to the whole Universe. Also, there
is no equivalence between all reference frames, since as we have said, the acceleration of a body
with respect to the Universe distinguishes it from other frames, in the sense that they are emitters
of gravitational radiation.

The Universe is a dynamic system, so what does it mean to say that a body moves with
respect to the Universe? We refer to the motion of a body with respect to the current Universe,
that is, the observed Universe, and this is a seemingly static. That is, we are referring the observer's
motion to the constituents of the Universe in their retarded position

4 Gravitational induction

Induction forces (electromagnetic or gravitational) are those that have their origin in the
motion, either of the source, the observer or both. We will call active induction if it is produced by
the motion of the source and passive induction if it is produced by the motionof the observer. The
gravitational induction forces responsible for generating the force of inertia are those of the second
type, that is, forces produced by the motion of a body with respect to the whole Universe.

Ifthe gravitational force were an action at a distance and the propagation were instantaneous,
there would be no induction forces. But we admit that gravity is a field, so gravitational signals take
time to propagate, because they travel with the velocity of light in vacuum c. And for this reason the
forces of gravitational induction arise.

Let us realize that the phenomenon of induction, and therefore the origin of the force of
inertia, does not require the Theory of Relativity, but is a classical phenomenon, which only requires
that the gravitational signal propagate with a finite velocity.

We will assume a body of mass m, which at a time 7, emits a gravitational signal that
propagates with the velocity ¢ until it reaches the observer in rest located at point P, . If the
distance between m and P, at the time the signal is output is 7/ then the time 7, when the signal
reaches P, is

!

;
r=c(t,-1)) = =?1+t;,

at a later time ¢, emits m another gravitational signal that will reach P at time 7,

!
!

r=c(t,—-t,) = t, S
c
ifmand P, areinrelativerestthen r/ =r, and ¢, —¢, =¢, —t,. Butif there is a relative movement
between m and P,, then r/ #r) and therefore ¢, —¢, #¢, —t|. Note that 7 and ¢' are not two
different time scales, since the time inm and P, are synchronized and we do not consider relativistic
effects. The measures of ¢ and ¢’ refer to different phenomena: the reception and emission of
gravitational signals.

We consider a reference frame K where the observer P, located at its origin of coordinates
is fixed. We assume that the particle m moves with respect to K with a velocity u. At time ¢ the
mass m is in the position given by the position vector r', and emits a signal directed towards the
point P,. As the mass m moves with respect to K, at the time #'+d¢' it is in another position
r'+dr' and there it emits another signal directed towards the point P, . The distance r' is called
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Drawing 1.- The body of mass m moves relatively to the frame K with a velocity u, which by simplification
we assume that it has a horizontal direction and to the left. At point A the mass m emits at time t' a
gravitational signal that reaches point P, at time t. Over a period of time dt' the body m moves from A to
point B and there, at the moment t'+dt', emits another gravitational signal in the direction of point P,,
where it arrives at the time t+dt . The velocity of the mass m with respect to the system K is u = dr'/dt’ .

retarded, that is, the distance between m and P, at the moment of emitting the signal at time .
The velocity of m with respect to K is defined by
dr’
=
dt’

Drawing 1 shows the emission and reception of the two gravitational signals assuming that
is the mass m that moves with respect to the reference frame K. For simplicity, we have assumed
that m moves with velocity u in the horizontal direction and left sense. In drawing 2 the same
phenomena are represented but assuming that the frame K moves with velocity u and that the
mass m is at rest, the result, as we will see, is the same in both cases.

In drawings 2 and 3 we assume that the frame K moves with constant velocity « along the
horizontal axis and to the right. In drawing a) of 2, the reference frame K is represented at the
instant ' (that we now call it K ). At that moment a gravitational signal leaves m (that is always
in the same position of space), which reach the origin of K at time 7. At time ¢ point P, will have
moved to point P,. The distance traveled by the origin of the frame K, where the observer is
located, is equal to the time it takes the signal to travel »'/c multiplied by the velocity of K with
respect to m, that is

!

PP =u"
C

r' is the distance traveled by the signal that will reach point P, in the instant

!

t=t+,
c
In drawing b) of 2 the time ¢ is represented, which is when the signal reaches the origin of
the reference frame, which is where we assume the observer is. Drawing ¢) of 3 shows the
situation at time ¢'+ dt' . In the time interval d¢’ which is the one between the emission of the first
and the second signal, the reference frame will have moved a distance udt’, so that the point P,
now occupies the position P, . Atthis time '+ dt’' the mass emits another gravitational signal that
will reach the origin of K at the time ¢ + dt , point that we have represented by P,.
Now the distance traveled by the signal will be 7' + dr’, taking time (r' + dr’) / ¢ and in that
time the point P, has passed to P, carrying a velocity u, the distances considered are
PP, =udl’; PP, =u’"

c

Drawing 4 shows all the emissions and receptions of the two gravitational signals. At point
P, the first signal arrived and at point P, the second signal, these points are the origin of K at time
tand t+dt . So since the frame has a velocity u, the distance between P, and P, must be udt.
Let's check it out. From drawing 4 we find
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Drawing 2.- On the left, the reference frame is represented in continuous strokes at time t', which we now
call K, which for simplicity we have assumed moves in the horizontal direction and in the sense to the
right. The origin, point P,, is where the observer is. In the time t' the mass m emits a gravitational signal
that will reach the point P, at the time t. The point represented by P, is where P, will be when the
gravitational signal arrives, since K is in motion with a constant velocity u to the right. In the drawing on
the right, the situation is represented at time t. The mass m is in the same position, since we assume that it
is the frame K that moves, and the frame K, now called K |, has shifted to the right. The distance traveled by
the gravitational signal is r'.

¢) Time ¢' +dt’ d) Time ¢+ dt
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Drawing 3.- At the time t'+ dt’ the frame K, which we now call K ,, has shifted to the right, passing point
P, to P, during the interval dt'. At the time t'+ dt' the mass emits another gravitational signal that reach
the point P, at the time t + dt. At that time the point P, will be in position P,, since K moves to the right
with a velocity u. The moment t + dt is shown in the drawing on the right. The signal has reached the point
P,, which at the time t + dt coincides with P,. The distance traveled by the signal is now r'+dr'.

PPy =P,P,-P,P; P,P,=PP —PP,
therefore
PP, =udt

as we had assumed; which tells us that it is equivalent to assume that the mass m moves with
velocity u or or that it is the frame K that moves with equal velocity but in the opposite sense.

It is easy to generalize the reasoning for any velocity, so the quantities that interest us are
(drawing 4)

ot t'+r'fc t'+dt’ t'+r'fc t'+r'/c

P,P, :ju(t')dt' = _[ u(s)dr' = j u(s)de' + j u(s)dt' =u(s)dr' + j u(s)dr'
'

t' t' t'+dt’ t'+dt’
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Drawing 4.- We assume that the frame K moves to the right in a horizontal direction with a velocity u, while
the mass m is at rest. The observer is at the origin of K, which is in various positions according to the
moment: P, is the origin at time t'; P, in t'+dt'; P, intand P, int+dt. P, and P, are the positions in
which the origin of K is when the signals arrive, which starting from m, were emitted at times t' and t'+dt'.
The distance between P, and P, is that traveled by K in the time interval dt.

P,P, =u(t')dt’

., tde t t+dt t'+r'fe

PP = [ u(t)d'= [ u(t')dr'+ [u()dt'= [ u(t')de' +u(t)ds
{'+dt’ t'+dt’ t t'+dt’

and so

P,P,=P,P,— PP, +P,P, =u(t)dt
As we wanted to check. Naturally all this reasoning extends when both K and m move, once again
u will be the relative velocity between them.

5 Relationship between the times ¢ and #’

We have said that 7 and ' are not two different time scales. We are in classical mechanics
and only consider absolute time. The clocks linked to m and K are synchronized with each other
and therefore give the same time for any event. However, t and ¢’ are different because they refer
to different phenomena, ¢ measures the emission of a signal and ¢ its reception. Moreover, as a
result of the relative motion between the source m and the frame K, the interval dt' is different
from the associated interval dt. Next we will calculate the relationship between these intervals.

As the gravitational signal propagates at uniform velocity ¢ and travels a distance ' so

r'=c(t—t")
making the derivation
dr'=c(dt-dt') = ar_ c(l —d—tj,
dt dt
we deduce
dr' _dr'dt ( dt’j dr’ 1
—=——2=c|l-—| » —=—7—.
dt dt' dt dt de  1ldr
cdt
On the other hand we have
r!2:r72 = r'd—r:r'd—r (1)
dt’ dt'

r' is the vector that joins the source point and the origin of K at the retarded time, then
A - @
dt r dt _ru

cr'

u is the velocity of the source with respect to the frame K. (2) is the relationship we were looking
for and that we will use later.
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6 Force derived from the potentials

In field theories we have two groups of equations: the first is the field equation which is a
second-order differential equation of the potentials and the second is the equation of motion that
gives us the expression with which the force is calculated of the potentials. In a nonlinear theory,
that is whose field equation is nonlinear, such as General Relativity, the equation of motion is
derived from field equations, something that does not occur in linear field theory.

Potentials are functions of space and time without direct physical significance, but field
strengths are calculated from differential operators, that is, from partial derivatives of the spatio-
temporal coordinates. And from these field strength the force is calculated.

If with ¢ = ¢(x, y,z,t) we represent the potential generically, where x, y, z are the
coordinates of the observer, then to find the field strength, we have to calculate their difference at
the same point at two different times, that is

&)
ot ), .

the time used in the previous derivative is the reception time of the gravitational signal since the
derivation is made at the point of observation, of coordinates x, y, z; but as we will see later the
potential ¢ depends on the relative positions and velocities, so from the previous partial derivative
we would find expressions such as

dr'  du
e odt
that do not have a definite significance, but their derivatives with respect to dt' have meaning
' du_
a7 de

a is the relative acceleration of the source.
Therefore the calculation we have to do is

I
or).,. \or'),,. di

and then use (2)

3 i b i v AR ®
ot )., 1_r’-u ot').,. s\ot'),, .
cr'
we have defined
, r'-u
s=r ——.
c

Something similar occurs with spatial derivatives such as

=)
ox i

which is the difference between the potential at two different points at the same time . When
developing the previous expression we will find expressions of the type

)
Ox .

but the expressions that have physical meaning are

&)
Ox -

Now the derivation is made keeping ¢' constant, that is to say, that we compare two vectors 7’
that, starting from different point, emit signals at the same time retrased, that is, the two signals left
the source at the same time ¢', then the vector r’

r'=(x'—x)i+(y'—y)j+(z'—z)k
in the derivatives of x, y, z remain constant x',’,z".
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¢(x“ ,t’) is the potential, so using Cartesian coordinates we have
dg= %dx +%dy +%dz +%dt’
ox oy 0z ot'
d¢_0¢ 0bdy 0pdz ogdr
dx Ox Oydx Ozdx Of dx

) -(2)_ %) (&)
dx ), ., ox ), ., ot' ey NAdx ),

and similar formulas for the remaining coordinates. So
’ ’ a
V=V'+Vt'—. (4)
ot

where V is calculated with the coordinates x“ taking ¢ as a constant, while V' is also calculated
with respect to the x“ coordinates but taking ' constant.
Now we need to calculate Vz'. For this we apply (3) to the function r'(x"‘ ,t')

v = ave 2 e (5)
o' r' ot'
of r'=c(r-1")
Vr'=—-cVH 6)
of (1), (5) y (6)
vi=-L
cs
equation that we include in (5), obtaining
vyt ™
cs Ot

result we were looking for.

7 Vector gravitational theory

To simplify the calculations, we will consider a vector gravitational field compatible with
the Special Relativity. To get this theory we have to adapt the electromagnetic theory to gravity.
The gavitational potential is a tetravector that we define by

¢' =(4.cA)
¢1s the scalar potential and A the vector potential. The source of the field is the current tetradensity
Jh=put=(°.0)
pis the proper density of gravitational mass and u”* is the tetravelocity of the source defined by

gk = dx*
dr
dr is the proper time of the source particle.
The field equation is
vigh L9 _41G
c? o’

This equation is valid in inertial reference frames and in Cartesian coordinates, although it is
generalizable to non-inertial frames and to other coordinates, but then the partial derivatives must
be substituted by covariant derivatives.

Following the similarity of the electromagnetic theory with vector gravitational theory we
postulate that the force of gravity that acts on a body of gravitational mass m , and has velocity w
is an expression similar to the Lorentz force

F=m,E+m,wAB (8)
where E and B are the gravitoelectric and gravitomagnetic fields defined by
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E=—V¢—aa—?; B=VAA. ©)

8 Potentials of Liénard-Wiechert

The phenomena of gravitational induction is produced by the movement of the source or by
the movement of the observer. In the first case we speak of active induction and in the second of
passive induction.

In our problem the observer moves with respect to the Universe, which is at rest in an
inertial reference frame X .

The observer P, is at rest at the origin of the frame K, which has a velocity —u with
respectto K, . This reference frame, in general, will not be inertial (that is, it will have acceleration
with respect to K ).

We consider a small mass m , at rest with respect to K, . For an observer at rest at K, ,
in the classical approach, there is only the scalar potential, which will correspond to the Newtonian
potential

p=-G (10)

where 7, is the distance from the mass m , to the observer. Now we calculate the tetrapotential
of the mass m, for the observer C that is at rest in K, for which we express (10) in tetravectorial

notation
k mg
= -G—%,0|.
’ [ T ]

Now we make use of the relative movement. Instead of considering the movement of K
with respect to K, , we now consider the movement of K, with respect to K. Then, the mass m,
moves with velocity u with respect to P, . For the observer K this is a retarded velocity, that is to
say, it is the velocity that the mass m , had when it emitted the gravitational action at the moment
t' (retarded time), which reaches observer P, atthe current time ¢. r' is the distance at which the
mass m, was at time ¢, that is to say, the distance at which P, observes the mass m g at the time
tr'=c(t —t’) and r’ is the position of P, with respect to the position retarded of m, and
therefore —r' is the vector of position of m , withrespect to P, . Therefore, the coordinates of the
emission and reception of the gravitational signal with respect to K are

x* (mg) = (ct',—r'); x* (C) = (ct,O),
the tetravelocity of m , with respect to K is
_dxk(mg)_ dxk(mg) ~ c u
dr’ dt'\/l—uz/c2 \/l—uz/c2 ,\/l—uz/cz
d7' is the proper time of the mass m , at the time retarded and u is the velocity with respect to the
observer at rest in K, that is

k
u

_ar
dr'

We define the tetravector

RF =x* (mg)—xk (C) = [c(t'—t),—r’:l :(—r',—r')
then the potential (10) in tetravectorial form is

k
u

u'R (n

since it is a covariant expression it is the same for all reference frames (inertial or non-inertial),
therefore it is the tetrapotential in the frame K. From the above definitions we find

$" =Gm,

i

r'-u r'c S

uiRiz — =— <
\/1—u2/02 \/l—uz/c2 \/l—uz/c2
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therefore the tetrapotential (11) is

' 1
p"=-Gm, (—,ij (12)
s cs
which corresponds to the following scalar and vector potentials
m
Az_ﬁzmgﬂ; ¢=-G—=, (13)
c s s

(13) are the potentials of Liénard-Wiechert. The equation (11) is valid for any observer at rest with
respect to K. In the equations (13) u is the velocity with which the particle m , moves with respect
to the frame K, in which the observer is at rest. However, m is at rest with respect to the system
K, which is an inertial reference system, which means that mass m , does not emit gravitational
radiation.

For the observer P, the mass m ,, that has a velocity u, emitted a gravitational signal at
the previous moment ¢'. Therefore, r' is the position vector of P, with respect to the retarded
positionof m, .

P, would observe all the masses of the Universe move with the same velocity u, since this
movement is the reflection of the movement of P, with respect to K, with velocity —u.

9 Calculation of differential operators
For finding the divergence of the potential ¢ of (13), we have to calculate the divergence
of 1/s for what we have to use (7)

1 1 1 r' Os
Vo-=--=Vs=——| Vs —— 14
s 8 sz( cs at'j (14)
doing the derivatives by parts, we found
V'S=V'(r'—u‘r jzr_'_ﬂ
c r'oc (15)
as o i war__wr i o
ot'" ot c c ot r' ¢ ¢
by replacing it in (14), we get
1 v u  r'(rou) r(ra) ud
V|- |=———t—- - +—, 16
(sj s cs? cs’r' cls? c2s? (16)

Now we calculate the temporary derivative that appears in (13)
al)
ot\ s )
ﬁ(gj_iiﬂgj_i(ﬂ_Lﬁj
ot\s) sot'\s) s\s s*or

for its calculation we use (3)

and by (15)
0 "la u(r'-u) u(r'-a 2
_(EJZL[_+ (<w)  u(e )—“”2}- -
ot\s) s|s s°r cs cs

10 Relationship between mass and density

We will assume an elementary portion of a spherical shell (drawing 5), which has a surface
area dS', a thickness cdt (where dt is an arbitrary elementary time interval), therefore it has the
volume dV'=dS’cdt ; this spherical shell belongs to a sphere whose center is at the point where
the observer is P. In that elementary volume dV' there is a mass distribution that we assume is
uniform. At a given moment ¢" all the matter contained in that volume element emits a gravitational
signal in the direction of the observer. The signal of the part of the volume element dV" closest to
the observer (surface 4 in drawing 5) will arrive at time #, while the signals leaving the furthest part
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P

0

Drawing 5.- The portion of a spherical shell where is the mass that emits at the moment t' a gravitational
signal in the direction of the observer P0.

of the volume element dV' (surface B of the drawing 5) will reach the observer in ¢+ dt .

If the mass contained in that volume dV' were at rest, the observed mass would be

dm,=[pldV’

where [ p] is the density of gravitational mass at the retarded time #'. The situation changes if the
matter that creates the field is in motion relative to the observer. Let us assume that all matter
moves in the direction of the center of the sphere. Again at the instant ¢', a signal is emitted in the
direction of the observer. The gravitational signal of the matter of dV'closest to the observer
(surface A), will arrive at time ¢, as before. But during the time interval dt a portion of mass that
was initially farther away than the volume element dV' will have shifted and entered that volume,
and therefore, the gravitational signal that this matter that at the time ' was external to dV"and
that emitted the signal at time ' reach the observer within the range between ¢ and ¢ + d¢ . Then
the observer feels the gravitational effect of a mass higher than m , which is containing dV”initially.

The mass that has entered in dV' by the movement of matter towards the center of the
sphere occupied the volume dS'udt and therefore will have a mass [ p] dS'udt . Then the observer
will feel a mass higher than if there was no movement. If [ p] is the mass density observed, then

[p]dV' =dm, +|pldSudt = dm;[/)](l‘%j

that is the mass that was at the beginning dm, , plus the mass that due to the movement has
entered the volume dV". If the matter that creates the field moved in the opposite direction, that is,
moving away from the center of the sphere, we would find the result

dm, =[p](1+%].

In general, if the velocity of the source u had whatever direction and sense, then

dm, = 1-=2|[plav’ (18)
r'c
r’is the delayed position of the material contained in dV', where
r/
—_— u
r!

is the component of the velocity in the direction of the observer.

11 Induction force on an accelerated body
We suppose a body C of gravitational mass m, that has velocity —u and acceleration —a
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with respect to the Universe, that is to say, with respect to the inertial reference frame K , . The
Liénard-Wiechert potentials (13) act on the body C, from which the gravitoelectromagnetic field
strengths are calculated using the relations (9). Finally by (8) we calculate the force of induction
that acts on the body C.

In order to see the basic concepts without technical difficulties, we consider a simplified
cosmic model. We assume that the Universe is large enough, of finite age, static and with a constant
and uniform density.

To make the integration of the induction force acting on C we divide the Universe into
spherical layers of negligible thickness dr’, of center in the body C and of radius r'. Let dm , be
the gravitational mass of a portion of a spherical shell, its position vector with respect to the frame
K in which is at rest C in spherical coordinates is

—r'=—r'sinf@cospi—r'sin@sinpj—r'cosOk.
The divergence of the potential d¢ produced by dm, is

Vd¢=— degV(l)
s
and the time derivative of the potential vector dA is
OdA G 0 ( u j

yam, —
ot c ot
Now integrate over the whole mass of the spherical shell considered

00A G¢ofu 1
IG5 vas=-ofv[{Jam,. )

the relation between mass and density is given in (18), [ p] is the density in the retarded moment,
which in our cosmological model always has the same value p and we identify dV' with the
proper volume. Of (19) we obtain in spherical coordinates

85A_ ﬂ( ] (Sjpr sinOdr'dOd e

V6¢:—G”( » jv(ﬂr’z sin@dr'dOd .,

then the integration is made on all the spherical shells and the force induced is calculated by (8).
We limit ourselves to non-relativistic velocities, because we intend is to identify the inertial
force of classical mechanics with the force of gravitational induction (8). So u < ¢, therefore
13 r2

s=r'
65A J-J-
r cr cr
' r'(r'-u) r'(r'-a r’
V§¢=_G.U( . “j[_%+ u'z - ( 14 )_ (2 13 ) + uz I:B}r'zsinﬁdr'dé’dgo,
c
since 7" has cosmic dimensions, we neglect in equation (21) the terms that depend on 1/ r'? versus

r cr cr cr cr
the terms that depend on 1/7" . With this simplification the only terms we consider they are the first
and third terms of the first equation (22) and the first and fourth terms of the second equation (21)

85A J‘J.{ u(r a)}pr sin@dr'dfd ¢

(20)

r. r. 2
)[ Lu(rw) a>_uzz}prnmgdﬂd9d¢
(21)

cr'

vam-c;jj{—rcfr;f)}r” sin 0dr'd0dgp,

the direct calculation gives us

agtA ——4ﬂ£pard s V§¢—4?ﬁ£pard

now we integrate for all the spherical shells, from the radius 0 to the radius »' that is at the distance
ct, where ¢ is the age of the Universe and finally we apply (8), resulting
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F=4T”Gpt2mga (22)
which is the force of induction that the whole of the Universe exerts on a particle of gravitational
mass m, that has an acceleration —a with respect to the whole of the Universe. The body C'is at
rest relative to the frame K, then the second term of (8) is zero.

We identify the force (22) with the force of inertia —m, (—a) so we find the relation
between the inertial mass and the gravitational mass

m, =4T”Gpt2mg, (23)

to the coefficient of proportionality between the inertial mass and the gravitational mass
§(t) =47/3Gpt* we call it the coefficient of inertia and it is a magnitude that depends on the
cosmic model and that in general depends on the age of the Universe.

The cosmic data are

£=99-10"kg/m*; t,=4,35-10"s
then the inertia coefficient for the current moment ¢ is

£(1,)=0,52 (24)
Atpresent the inertial mass is identical to the gravitational mass, thatis & (to ) =1. Considering the
simplified cosmological theory we have adopted and that cosmic values depend of the Universe
model that is considered, the result (24) is quite encouraging and speaks very favorably of the idea
that we have presented, which is identifying the force of inertia with the gravitational induction
force produced by the action of all the Universe over everybody that is accelerated.

11 Proportionality of the inertial and gravitational mass

According to equation (22) when a body moves with acceleration with respect to the
whole of the Universe, gravitational induction force acts on it, proportional to the acceleration of
the body and in the opposite sense, exactly like the force of inertia. Therefore we must identify both
forces, concluding that the force of inertia acting on a body is the inductive force of the Universe.

(22) also shows us that the force of inertia does not depend on the velocity, at least at the
classical level, and is proportional to the acceleration. Note that a is any type of acceleration,
therefore (22) also explains the centrifugal force.

By the equation (23) we find that the inertial mass is proportional to the gravitational mass,
although both magnitudes are conceptually diferent. The universal gravitation constant is chosen so
that the inertial and gravitational mass are equal in the current epoch, that is to say

NER
4r pt.

t, is the current age of the Universe.
The inertial mass varies as the square of the age of the Universe

mf<r>=[tiJ2mi(ro>. 25

0
In our simplified model this increase in inertial mass is explained because as time passes there are
more masses of the Universe that are causally connected to the body that undergoes the force of
induction.

Of (23) we deduce that gravity has to be an exclusively attractive force. In fact, if gravity
were repulsive the scalar potential of equation (10) would be positive and the same will happen
with the vector and scalar potentials of (13). From these new equations we find again (23) but with
a negative sign. But then the inertial mass would be negative, contrary to the observation that
inertia is opposed to the change of movement of a body.

The previous reasoning is valid even in the case in which gravitational mass was negative.
By equation (22) the gravitational mass can only have one sign, either positive or negative. If the
gravitational mass had two signs (like the electric charge), there would be bodies with a negative
inertial mass, which is absurd. Indeed, if the active gravitational mass (which produces the force)
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had a sign and the passive gravitational mass (on which the force acts) had the opposite sign, then
its inertial mass would be negative, which is not observed in nature. Or in other words, if there were
gravitational masses of the two signs, there would be bodies with a negative inertial mass.

The relation (25) produces effects that could be detectable. Among others, we point out
that the variation of the inertial mass with time will affect the emission frequency of the spectral
lines, producing a shift of these lines, an effect that would overlap the shift caused by the cosmic
expansion. The variation of the inertial mass will affect the orbital movements, so the rotation of
distant galaxies will have a different law from the rotation of nearby galaxies. The equivalence
between mass and the energy would also be affected by the variation of the inertial mass. In fact,
in the equation E=mc”, m is the inertial mass; therefore its variation will affect the nuclear
processes, which would have an impact on stellar evolution.



