Ramanujan and Hardy's mathematics: New possible mathematical connections with some sectors of Particle Physics and a possible theoretical value of Dark Matter mass

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

In this research thesis, we have described some new mathematical connections between Hardy and Ramanujan mathematics and some sectors of Particle Physics and a possible theoretical value of Dark Matter mass

[^0]
https://www.pinterest.it/pin/444237950734694507/?lp=true

https://citacoes.in/autores/g-h-hardy/

From:

COLLECTED PAPERS OF

G. H. HARDY

INCLUDING JOINT PAPERS WITH J. E LITTLEWOOD AND OTHERS

EDITED BY A COMMITTEE APPOINTED BY
THE LONDON MATHEMATIOAL SOGIETY
vOLUME VI

OXFORD
AT THE CLARENDON PRESS
1974

I assume that $\dot{u}(x)$ is an integral function. Then the sums of the series (1) and (2) are defined as

$$
\int_{0}^{\infty} e^{-x} u(x) d x, \quad \int_{0}^{\infty} e^{-x} \frac{d}{d x} u(x) d x
$$

respectively. Since

$$
\int_{0}^{\mathbb{X}} e^{-x} u(x) d x=-\left[e^{-x} u(x)\right]_{0}^{\mathbb{x}}+\int_{0}^{\mathbb{x}} e^{-x} u^{\prime}(x) d x
$$

it follows that if

$$
\lim _{x=\infty} e^{-x} u(x)=0
$$

the summability of either (1) or (2) involves that of the other, and the relation

$$
\text { (3) } s=u_{0}+s^{\prime} \text {. }
$$

Again, if both are summable, $e^{-x} u(x)$ has a limit for $x=\infty$, which can only be zero; so that (3) must be true.

But it can be shown that if (2) is summable, (1) must be so. The converse is not true ; if, for instance

$$
\begin{aligned}
& u_{n}=2^{n} \sum_{\nu=0}^{\infty} \frac{(-)^{\nu}(\nu+1)^{n}}{2 v+1!}=R\left[\frac{1}{i} \sum_{p=0}^{\infty} \frac{i^{p}(p+1)^{n}}{p!}\right] \\
& u(x)=R\left[\frac{1}{i} \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \sum_{p=0}^{\infty} \frac{i^{p}(p+1)^{n}}{p!}\right] \\
&=R\left[\frac{1}{i} \sum_{p-0}^{\infty} \frac{i^{p}}{p!} e^{(p+1)^{x}}\right] \\
&=e^{x} \sin e^{x},
\end{aligned}
$$

Thence:

$$
\begin{aligned}
& \int_{0}^{\mathrm{X}} e^{-x} u(x) d x=-\left[e^{-x} u(x)\right]_{0}^{\mathrm{X}}+\int_{0}^{\mathrm{X}} e^{-x} u^{\prime}(x) d x \\
& u(x)=R\left[\frac{1}{i} \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \sum_{p=0}^{\infty} \frac{i^{p}(p+1)^{n}}{p!}\right] \\
& =e^{x} \sin e^{x}
\end{aligned}
$$

For $\mathrm{x}=8$, we have that:
$e^{\wedge} 8 \sin \left(e^{\wedge} 8\right)$
Input:
$e^{8} \sin \left(e^{8}\right)$

Decimal approximation:
1197.638538846852199821934129923324179692699944826913248228...
$1197.6385 \ldots$ result practically equal to the rest mass of Sigma baryon 1197.449

Alternate form:

$\frac{1}{2} i e^{8-i e^{8}}-\frac{1}{2} i e^{8+i e^{8}}$

Series representations:

$$
e^{8} \sin \left(e^{8}\right)=e^{8} \sum_{k=0}^{\infty} \frac{(-1)^{k} e^{8+16 k}}{(1+2 k)!}
$$

$$
e^{8} \sin \left(e^{8}\right)=2 e^{8} \sum_{k=0}^{\infty}(-1)^{k} J_{1+2 k}\left(e^{8}\right)
$$

$$
e^{8} \sin \left(e^{8}\right)=e^{8} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(e^{8}-\frac{\pi}{2}\right)^{2 k}}{(2 k)!}
$$

Integral representations:

$$
e^{8} \sin \left(e^{8}\right)=e^{16} \int_{0}^{1} \cos \left(e^{8} t\right) d t
$$

$$
e^{8} \sin \left(e^{8}\right)=-\frac{i e^{16}}{4 \sqrt{\pi}} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-e^{16} /(4 s)+s}}{s^{3 / 2}} d s \text { for } \gamma>0
$$

$$
e^{8} \sin \left(e^{8}\right)=-\frac{i e^{8}}{2 \sqrt{\pi}} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{2^{-1+2 s} e^{8-16 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s \text { for } 0<\gamma<1
$$

Furthermore, we have, calculating the eleventh root and multiplying by $10^{19} \mathrm{GeV}$:
$\left(\left(\left(e^{\wedge} 8 \sin \left(e^{\wedge} 8\right)\right)\right)\right)^{\wedge} 1 / 11 * 10^{\wedge} 19 \mathrm{GeV}$

Input interpretation:

$\sqrt[11]{e^{8} \sin \left(e^{8}\right)} \times 10^{19} \mathrm{GeV}$ (gigaelectronvolts)

Result:

$1.905 \times 10^{19} \mathrm{GeV}$ (gigaelectronvolts)

Unit conversions:

$1.905 \times 10^{28} \mathrm{eV}$ (electronvolts) $1.9047930 \ldots * 10^{19} \mathrm{GeV}$ practically near to the mean value $1.962 * 10^{19}$ of DM particle that has a Planck scale mass: $\mathrm{m} \approx 10^{19} \mathrm{GeV}$

From 0.0814135 and 1.227343217 that are two Ramanujan mock theta functions, we obtain:

$$
(1.9047930+0.0814135) / 1.227343217=1,6182975328
$$

Indeed:

Input:

$\sqrt[11]{e^{8} \sin \left(e^{8}\right) \times 10^{19}}$

Exact result:

$10000000000000000000 e^{8 / 11} \sqrt[11]{\sin \left(e^{8}\right)}$

Decimal approximation:

$1.9047930448186736269966428892465957333663960544821908 \ldots \times 10^{19}$

Series representations:

$\sqrt[11]{e^{8} \sin \left(e^{8}\right)} 10^{19}=10000000000000000000 e^{8 / 11} \sqrt[11]{\sum_{k=0}^{\infty} \frac{(-1)^{k} e^{8+16 k}}{(1+2 k)!}}$

$$
\sqrt[11]{e^{8} \sin \left(e^{8}\right)} 10^{19}=10000000000000000000 \sqrt[11]{2} e^{8 / 11} \sqrt[11]{\sum_{k=0}^{\infty}(-1)^{k} J_{1+2 k}\left(e^{8}\right)}
$$

$\sqrt[11]{e^{8} \sin \left(e^{8}\right)} 10^{19}=10000000000000000000 e^{8 / 11} \sqrt[11]{\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(e^{8}-\frac{\pi}{2}\right)^{2 k}}{(2 k)!}}$
$J_{n}(z)$ is the Bessel function of the first kind
$\underline{\text { More information } \gg}$

Integral representations:

$\sqrt[11]{e^{8} \sin \left(e^{8}\right)} 10^{19}=10000000000000000000 e^{16 / 11} \sqrt[11]{\int_{0}^{1} \cos \left(e^{8} t\right) d t}$
$\sqrt[11]{e^{8} \sin \left(e^{8}\right)} 10^{19}=$
$\frac{5000000000000000000 \times 2^{9 / 11} e^{16 / 11} \sqrt[11]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-e^{16} /(4 s)+s}}{s^{3 / 2}} d s}}{\sqrt[22]{\pi}}$ for $\gamma>0$
$\sqrt[11]{e^{8} \sin \left(e^{8}\right)} 10^{19}=$
$5000000000000000000 \times 2^{10 / 11} e^{8 / 11} \sqrt[11]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{2^{-1+2 s} e^{8-16 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}$ for
$0<\gamma<1$
$\Gamma(x)$ is the gamma function

And:
$\left(\left(\left(e^{\wedge} 8 \sin \left(e^{\wedge} 8\right)\right)\right)\right)^{\wedge} 1 / 14$

Input:

$\sqrt[14]{e^{8} \sin \left(e^{8}\right)}$

Exact result:

$e^{4 / 7} \sqrt[14]{\sin \left(e^{8}\right)}$

Decimal approximation:

1.659129982496649247779052120101039323912136416274858681573...
$1.65912998 \ldots$ is very near to the 14 th root of the following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164,2696$ i.e. 1,65578...

Series representations:

$\sqrt[14]{e^{8} \sin \left(e^{8}\right)}=e^{4 / 7} \sqrt[14]{\sum_{k=0}^{\infty} \frac{(-1)^{k} e^{8+16 k}}{(1+2 k)!}}$
$\sqrt[14]{e^{8} \sin \left(e^{8}\right)}=\sqrt[14]{2} e^{4 / 7} \sqrt[14]{\sum_{k=0}^{\infty}(-1)^{k} J_{1+2 k}\left(e^{8}\right)}$
$\sqrt[14]{e^{8} \sin \left(e^{8}\right)}=e^{4 / 7} \sqrt[14]{\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(e^{8}-\frac{\pi}{2}\right)^{2 k}}{(2 k)!}}$

Integral representations:
$\sqrt[14]{e^{8} \sin \left(e^{8}\right)}=e^{8 / 7} \sqrt[14]{\int_{0}^{1} \cos \left(e^{8} t\right) d t}$
$\sqrt[14]{e^{8} \sin \left(e^{8}\right)}=\frac{e^{8 / 714}-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-e^{16} /(4 s)+s}}{s^{3 / 2}} d s}{\sqrt[7]{2} \sqrt[28]{\pi}}$ for $\gamma>0$
$\sqrt[14]{e^{8} \sin \left(e^{8}\right)}=\frac{e^{4 / 7} \sqrt[14]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{2^{-1+2 s} e^{8-16 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}}{\sqrt[14]{2} \sqrt[28]{\pi}}$ for $0<\gamma<1$
$\Gamma(x)$ is the gamma function
More information »>

We have also that:
$24 \wedge 2+e^{\wedge} 8 \sin \left(e^{\wedge} 8\right)$

Input:

$24^{2}+e^{8} \sin \left(e^{8}\right)$

Exact result:

$576+e^{8} \sin \left(e^{8}\right)$

Decimal approximation:

1773.638538846852199821934129923324179692699944826913248228...
$1773.6385 \ldots$. result in the range of the mass of candidate "glueball" $f_{0}(1710)$ and the hypothetical mass of Gluino ("glueball" $=1760 \pm 15 \mathrm{MeV}$; gluino $=1785.16 \mathrm{GeV}$).

Series representations:

$24^{2}+e^{8} \sin \left(e^{8}\right)=576+e^{8} \sum_{k=0}^{\infty} \frac{(-1)^{k} e^{8+16 k}}{(1+2 k)!}$
$24^{2}+e^{8} \sin \left(e^{8}\right)=576+2 e^{8} \sum_{k=0}^{\infty}(-1)^{k} J_{1+2 k}\left(e^{8}\right)$
$24^{2}+e^{8} \sin \left(e^{8}\right)=576+e^{8} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(e^{8}-\frac{\pi}{2}\right)^{2 k}}{(2 k)!}$

Integral representations:

$24^{2}+e^{8} \sin \left(e^{8}\right)=576+e^{16} \int_{0}^{1} \cos \left(e^{8} t\right) d t$
$24^{2}+e^{8} \sin \left(e^{8}\right)=576-\frac{i e^{16}}{4 \sqrt{\pi}} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-e^{16} /(4 s)+s}}{s^{3 / 2}} d s$ for $\gamma>0$
$24^{2}+e^{8} \sin \left(e^{8}\right)=576-\frac{i e^{8}}{2 \sqrt{\pi}} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{2^{-1+2 s} e^{8-16 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s$ for $0<\gamma<1$
$\Gamma(x)$ is the gamma function
More information »>

And:
$\left(\left(\left(24^{\wedge} 2+e^{\wedge} 8 \sin \left(e^{\wedge} 8\right)\right)\right)\right)^{\wedge} 1 / 15$

Input:

$\sqrt[15]{24^{2}+e^{8} \sin \left(e^{8}\right)}$

Exact result:

$\sqrt[15]{576+e^{8} \sin \left(e^{8}\right)}$

Decimal approximation:

$1.646610982748644028610952777831898242951804137376419935147 \ldots$
$1.64661098 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Series representations:

$\sqrt[15]{24^{2}+e^{8} \sin \left(e^{8}\right)}=\sqrt[15]{576+e^{8} \sum_{k=0}^{\infty} \frac{(-1)^{k} e^{8+16 k}}{(1+2 k)!}}$
$\sqrt[15]{24^{2}+e^{8} \sin \left(e^{8}\right)}=\sqrt[15]{576+2 e^{8} \sum_{k=0}^{\infty}(-1)^{k} J_{1+2 k}\left(e^{8}\right)}$
$\sqrt[15]{24^{2}+e^{8} \sin \left(e^{8}\right)}=\sqrt[15]{576+e^{8} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(e^{8}-\frac{\pi}{2}\right)^{2 k}}{(2 k)!}}$
$n!$ is the factorial function
$J_{n}(z)$ is the Bessel function of the first kind
More information »

Integral representations:

$\sqrt[15]{24^{2}+e^{8} \sin \left(e^{8}\right)}=\sqrt[15]{576+e^{16} \int_{0}^{1} \cos \left(e^{8} t\right) d t}$
$\sqrt[15]{24^{2}+e^{8} \sin \left(e^{8}\right)}=\sqrt[15]{576-\frac{i e^{16}}{4 \sqrt{\pi}} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-e^{16} /(4 s)+s}}{s^{3 / 2}} d s}$ for $\gamma>0$
$\sqrt[15]{24^{2}+e^{8} \sin \left(e^{8}\right)}=\sqrt[15]{576-\frac{i e^{8}}{2 \sqrt{\pi}} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{2^{-1+2 s} e^{8-16 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s}$ for $0<\gamma<1$
$\Gamma(x)$ is the gamma function
More information »

Now, we have that:

Some particular cases of the formulæ (1)-(5) arc interesting. Thus

$$
\begin{aligned}
& L \cos \alpha x=L \sin a x=0, \\
& L\left(\cos ^{2} a x\right)^{\mathrm{i} m}=L\left(\sin ^{3} a x\right)^{\mathrm{tm} m}=\frac{1}{\pi} \int_{0}^{\pi}\left(\cos ^{3} x\right)^{\frac{\mathrm{j}}{} m} d x \\
& =\frac{\Gamma\left(\frac{m+1}{2}\right)}{\sqrt{ } \pi \Gamma\left(\frac{m}{2}+1\right)},
\end{aligned}
$$

if $m>0$; and if $2 n$ is a positive integer
Thence:
$\frac{1}{\pi} \int_{0}^{\pi}\left(\cos ^{2} x\right)^{\frac{1 m}{m}} d x=\frac{\Gamma\left(\frac{m+1}{2}\right)}{\sqrt{ } \pi \Gamma\left(\frac{m}{2}+1\right)}$,

We obtain for $\mathrm{m}=2$:
gamma (3/2) / sqrt((((Pi* gamma ((2)))

Input:

$\frac{\Gamma\left(\frac{3}{2}\right)}{\sqrt{\pi \Gamma(2)}}$
$\Gamma(x)$ is the gamma function

Exact result:

$\frac{1}{2}$

Decimal form:

0.5
0.5

Series representations:
$\frac{\Gamma\left(\frac{3}{2}\right)}{\sqrt{\pi \Gamma(2)}}=\frac{\sum_{k=0}^{\infty} \frac{\left(\frac{3}{2}-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}}{\sqrt{-1+\pi \Gamma(2)} \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}(-1+\pi \Gamma(2))^{-k}}$ for $\left(z_{0} \notin \mathbb{Z}\right.$ or $\left.z_{0}>0\right)$

$$
\frac{\Gamma\left(\frac{3}{2}\right)}{\sqrt{\pi \Gamma(2)}}=\frac{\Gamma\left(\frac{3}{2}\right)}{\exp \left(i \pi\left\lfloor\frac{\arg (-x+\pi \Gamma(2))}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{-k}(-x+\pi \Gamma(2))^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}
$$

for $(x \in \mathbb{R}$ and $x<0)$
$\frac{\Gamma\left(\frac{3}{2}\right)}{\sqrt{\pi \Gamma(2)}}=\frac{\sum_{k=0}^{\infty} \frac{\left(\frac{3}{2}-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}}{\sqrt{-1+\pi \Gamma(2)} \sum_{k=0}^{\infty} \frac{(-1)^{k}(-1+\pi \Gamma(2))^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}$ for $\left(z_{0} \notin \mathbb{Z}\right.$ or $\left.z_{0}>0\right)$

$$
\binom{n}{m} \text { is the binomial coefficient }
$$

Z is the set of integers $\arg (z)$ is the complex argument
$\lfloor x\rfloor$ is the floor function
i is the imaginary unit

Integral representations:

$\frac{\Gamma\left(\frac{3}{2}\right)}{\sqrt{\pi \Gamma(2)}}=\frac{1}{\sqrt{\pi \int_{0}^{1} \log \left(\frac{1}{t}\right) d t}} \int_{0}^{1} \sqrt{\log \left(\frac{1}{t}\right)} d t$
$\frac{\Gamma\left(\frac{3}{2}\right)}{\sqrt{\pi \Gamma(2)}}=\frac{1}{\sqrt{\pi \int_{0}^{\infty} e^{-t} t d t}} \int_{0}^{\infty} e^{-t} \sqrt{t} d t$
$\frac{\Gamma\left(\frac{3}{2}\right)}{\sqrt{\pi \Gamma(2)}}=\frac{\exp \left(\int_{0}^{1} \frac{\frac{1}{2}-\frac{3 x}{2}+x^{3 / 2}}{(-1+x) \log (x)} d x\right)}{\sqrt{e \int_{0}^{1}(-1+x) \log (x) d x} \pi}$
$\log (x)$ is the natural logarithm

For $m=3$:
gamma (2) / sqrt((((Pi* gamma ((2.5)))))
Input:
$\frac{\Gamma(2)}{\sqrt{\pi \Gamma(2.5)}}$
$\Gamma(x)$ is the gamma function

Result:

0.489336...
0.489336...

Series representations:

$\frac{\Gamma(2)}{\sqrt{\pi \Gamma(2.5)}}=\frac{\sum_{k=0}^{\infty} \frac{\left(2-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}}{\sqrt{-1+\pi \Gamma(2.5)} \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}(-1+\pi \Gamma(2.5))^{-k}}$ for $\left(z_{0} \notin \mathbb{Z}\right.$ or $\left.z_{0}>0\right)$
$\frac{\Gamma(2)}{\sqrt{\pi \Gamma(2.5)}}=\frac{\Gamma(2)}{\exp \left(i \pi\left\lfloor\frac{\arg (-x+\pi \Gamma(2.5))}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{-k}(-x+\pi \Gamma(2.5))^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}$
for ($x \in \mathbb{R}$ and $x<0$)
$\frac{\Gamma(2)}{\sqrt{\pi \Gamma(2.5)}}=\frac{\sum_{k=0}^{\infty} \frac{\left(2-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}}{\sqrt{-1+\pi \Gamma(2.5)} \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}(-1+\pi \Gamma(2.5))^{-k}\left(-\frac{1}{2}\right)\right)_{k}}{k!}}$ for $\left(z_{0} \& \mathbb{Z}\right.$ or $\left.z_{0}>0\right)$
$\binom{n}{m}$ is the binomial coefficient

Integral representations:

$$
\begin{aligned}
& \frac{\Gamma(2)}{\sqrt{\pi \Gamma(2.5)}}=\frac{1}{\sqrt{\pi \int_{0}^{1} \log ^{1.5}\left(\frac{1}{t}\right) d t}} \int_{0}^{1} \log \left(\frac{1}{t}\right) d t \\
& \frac{\Gamma(2)}{\sqrt{\pi \Gamma(2.5)}}=\frac{1}{\sqrt{\pi \int_{0}^{\infty} e^{-t} t^{1.5} d t}} \int_{0}^{\infty} e^{-t} t d t \\
& \frac{\Gamma(2)}{\sqrt{\pi \Gamma(2.5)}}=\frac{e^{\int_{0}^{1}(-1+x) \log (x) d x}}{\sqrt{e^{\int_{0}^{1} \frac{1.5-2.5 x+x^{2.5}}{(-1+x) \log (x)} d x} \pi}}
\end{aligned}
$$

For $\mathrm{m}=5$:
$\operatorname{gamma}(3) / \operatorname{sqrt}\left(\left(\left(\left(\mathrm{Pi}^{*} \operatorname{gamma}((5 / 2)+1)\right)\right)\right)\right.$

Input:

$\frac{\Gamma(3)}{\sqrt{\pi \Gamma\left(\frac{5}{2}+1\right)}}$

Exact result:

$\frac{4 \sqrt{\frac{2}{15}}}{\pi^{3 / 4}}$

Decimal approximation:

$0.618966229989182849498852751892010926919043801229940544773 \ldots$
$0.618966229 \ldots$ result very near to the reciprocal of the golden ratio

Property:

$\frac{4 \sqrt{\frac{2}{15}}}{\pi^{3 / 4}}$ is a transcendental number

Series representations:

$\frac{\Gamma(3)}{\sqrt{\pi \Gamma\left(\frac{5}{2}+1\right)}}=\frac{\sum_{k=0}^{\infty} \frac{\left(3-z_{0} k^{k} \Gamma^{(k)}\left(z_{0}\right)\right.}{k!}}{\sqrt{-1+\pi \Gamma\left(\frac{7}{2}\right)} \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\left(-1+\pi \Gamma\left(\frac{7}{2}\right)\right)^{-k}}$ for $\left(z_{0} \notin \mathbb{Z}\right.$ or $\left.z_{0}>0\right)$
$\frac{\Gamma(3)}{\sqrt{\pi \Gamma\left(\frac{5}{2}+1\right)}}=\frac{\Gamma(3)}{\exp \left(i \pi\left[\frac{\arg \left(-x+\pi \Gamma\left(\frac{7}{2}\right)\right)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{-k}\left(-x+\pi \Gamma\left[\frac{7}{2}\right)\right)^{k}\left(-\frac{1}{2}\right)}{k!}}$
for $(x \in \mathbb{R}$ and $x<0)$
$\frac{\Gamma(3)}{\sqrt{\pi \Gamma\left(\frac{5}{2}+1\right)}}=\frac{\sum_{k=0}^{\infty} \frac{\left(3-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}}{\sqrt{-1+\pi \Gamma\left(\frac{7}{2}\right)} \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}\left(-1+\pi \Gamma\left(\frac{7}{2}\right)\right)^{-k}\left(-\frac{1}{2}\right)\right)_{k}}{k!}}$ for $\left(z_{0} \notin \mathbb{Z}\right.$ or $\left.z_{0}>0\right)$
$\binom{n}{m}$ is the binomial coefficient
Z is the set of integers
$\arg (z)$ is the complex argument

Integral representations:

$\frac{\Gamma(3)}{\sqrt{\pi \Gamma\left(\frac{5}{2}+1\right)}}=\frac{1}{\sqrt{\pi \int_{0}^{1} \log ^{5 / 2}\left(\frac{1}{t}\right) d t}} \int_{0}^{1} \log ^{2}\left(\frac{1}{t}\right) d t$
$\frac{\Gamma(3)}{\sqrt{\pi \Gamma\left(\frac{5}{2}+1\right)}}=\frac{1}{\sqrt{\pi \int_{0}^{\infty} e^{-t} t^{5 / 2} d t}} \int_{0}^{\infty} e^{-t} t^{2} d t$
$\frac{\Gamma(3)}{\sqrt{\pi \Gamma\left(\frac{5}{2}+1\right)}}=\frac{e^{\int_{0}^{1}((-1+x)(2+x)) / \log (x) d x}}{\sqrt{\exp \left(\int_{0}^{1} \frac{\frac{5}{2}-\frac{7 x}{2}+x^{7 / 2}}{(-1+x) \log (x)} d x\right) \pi}}$

For $m=8$:
gamma (4.5) / $\operatorname{sqrt}\left(\left(\left(\left(\mathrm{Pi}^{*} \operatorname{gamma}((5))\right)\right)\right)\right.$

Input:

$\frac{\Gamma(4.5)}{\sqrt{\pi \Gamma(5)}}$

Result:
1.33956...
1.33956...

Series representations:
$\frac{\Gamma(4.5)}{\sqrt{\pi \Gamma(5)}}=\frac{\sum_{k=0}^{\infty} \frac{\left(4.5-z_{0} k^{k} \Gamma^{(k)}\left(z_{0}\right)\right.}{k!}}{\sqrt{-1+\pi \Gamma(5)} \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}(-1+\pi \Gamma(5))^{-k}}$ for $\left(z_{0} \notin \mathbb{Z}\right.$ or $\left.z_{0}>0\right)$
$\frac{\Gamma(4.5)}{\sqrt{\pi \Gamma(5)}}=\frac{\Gamma(4.5)}{\exp \left(i \pi\left\lfloor\frac{\arg (-x+\pi \Gamma(5))}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{-k}(-x+\pi \Gamma(5))^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}$
for $(x \in \mathbb{R}$ and $x<0)$
$\frac{\Gamma(4.5)}{\sqrt{\pi \Gamma(5)}}=\frac{\sum_{k=0}^{\infty} \frac{\left(4.5-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}}{\sqrt{-1+\pi \Gamma(5)} \sum_{k=0}^{\infty} \frac{(-1)^{k}(-1+\pi \Gamma(5))^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}$ for $\left(z_{0} \notin \mathbb{Z}\right.$ or $\left.z_{0}>0\right)$

$$
\binom{n}{m} \text { is the binomial coefficient }
$$

Z is the set of integers $\arg (z)$ is the complex argument
$\lfloor x\rfloor$ is the floor function $(a)_{n}$ is the Pochhammer symbol (rising factorial)

More information >

Integral representations:

$\frac{\Gamma(4.5)}{\sqrt{\pi \Gamma(5)}}=\frac{1}{\sqrt{\pi \int_{0}^{1} \log ^{4}\left(\frac{1}{t}\right) d t}} \int_{0}^{1} \log ^{3.5}\left(\frac{1}{t}\right) d t$
$\frac{\Gamma(4.5)}{\sqrt{\pi \Gamma(5)}}=\frac{1}{\sqrt{\pi \int_{0}^{\infty} e^{-t} t^{4} d t}} \int_{0}^{\infty} e^{-t} t^{3.5} d t$
$\frac{\Gamma(4.5)}{\sqrt{\pi \Gamma(5)}}=\frac{e^{\int_{0}^{13.5-4.5 x+x^{4.5}}(-1+x) \log (x)} d x}{\sqrt{e^{\int_{0}^{1}\left(-4+x+x^{2}+x^{3}+x^{4}\right) / \log (x) d x} \pi}}$

For $m=13$:
gamma (7) / sqrt((((Pi* gamma ((7.5))))

Input:

$\frac{\Gamma(7)}{\sqrt{\pi \Gamma(7.5)}}$
$\Gamma(x)$ is the gamma function

Result:

9.39055...
9.39055...

Series representations:

$\frac{\Gamma(7)}{\sqrt{\pi \Gamma(7.5)}}=\frac{\sum_{k=0}^{\infty} \frac{\left(7-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}}{\sqrt{-1+\pi \Gamma(7.5)} \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}(-1+\pi \Gamma(7.5))^{-k}}$ for $\left(z_{0} \notin \mathbb{Z}\right.$ or $\left.z_{0}>0\right)$
$\frac{\Gamma(7)}{\sqrt{\pi \Gamma(7.5)}}=\frac{\Gamma(7)}{\exp \left(i \pi\left\lfloor\frac{\arg (-x+\pi \Gamma(7.5))}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{-k}(-x+\pi \Gamma(7.5))^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}$
for $(x \in \mathbb{R}$ and $x<0)$
$\frac{\Gamma(7)}{\sqrt{\pi \Gamma(7.5)}}=\frac{\sum_{k=0}^{\infty} \frac{\left.\left(7-z_{0}\right)^{k} \Gamma^{k}\right)\left(z_{0}\right)}{k!}}{\sqrt{-1+\pi \Gamma(7.5)} \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}(-1+\pi \Gamma(7.5))^{-k}\left(-\frac{1}{2}\right)\right)_{k}}{k!}}$ for $\left(z_{0} \notin \mathbb{Z}\right.$ or $\left.z_{0}>0\right)$
$\binom{n}{m}$ is the binomial coefficient

Integral representations:

$$
\begin{aligned}
& \frac{\Gamma(7)}{\sqrt{\pi \Gamma(7.5)}}=\frac{1}{\sqrt{\pi \int_{0}^{1} \log ^{6.5}\left(\frac{1}{t}\right) d t}} \int_{0}^{1} \log ^{6}\left(\frac{1}{t}\right) d t \\
& \frac{\Gamma(7)}{\sqrt{\pi \Gamma(7.5)}}=\frac{1}{\sqrt{\pi \int_{0}^{\infty} e^{-t} t^{6.5} d t}} \int_{0}^{\infty} e^{-t} t^{6} d t \\
& \frac{\Gamma(7)}{\sqrt{\pi \Gamma(7.5)}}=\frac{e^{\int_{0}^{1} \frac{-6+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}}{\log (x)} d x}}{\sqrt{e^{\int_{0}^{1} \frac{6.5-7.5 x+x^{7.5}}{(-1+x) \log (x)} d x} \pi}}
\end{aligned}
$$

We note that the values of m: $2,3,5,8$ and 13 are all Fibonacci's numbers. Now, we add the results obtained and carry out various calculations and observations on what we get.
gamma (3/2) / sqrt((((Pi* gamma ((2))) $+\operatorname{gamma}(2) / \operatorname{sqrt}\left(\left(\left(\left(\mathrm{Pi}^{*} \operatorname{gamma}((2.5))\right)+\right.\right.\right.$ gamma (3) / sqrt((((Pi* gamma ((5/2)+1))) + gamma (4.5) / sqrt((((Pi* gamma ((5))) $+\operatorname{gamma}(7) / \operatorname{sqrt}\left(\left(\left(\left(\mathrm{Pi}^{*} \operatorname{gamma}((7.5))\right)\right.\right.\right.$
$(0.5+0.489336+0.618966229+1.33956+9.39055)$

Input interpretation:

$0.5+0.489336+0.618966229+1.33956+9.39055$

Result:

12.338412229
12.338412229 result that is very near to the black hole entropy 12.1904 that is the result of $\ln (196883)$
$\log (196883)$
12.19036492265709345876645557600490542971897381806124467083
12.19036492....
$\log (196883)$ is a transcendental number
We have that:
$(0.5+0.489336+0.618966229+1.33956+9.39055)^{\wedge} 1 / 5$

Input interpretation:

$\sqrt[5]{0.5+0.489336+0.618966229+1.33956+9.39055}$

Result:
1.652920..
1.652920... is very near to the 14th root of the following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164,2696$ i.e. $1,65578 \ldots$

11 * $(0.5+0.489336+0.618966229+1.33956+9.39055)^{\wedge} 2$

Input interpretation:

$11(0.5+0.489336+0.618966229+1.33956+9.39055)^{2}$

Result:

1674.600579660104232851
$1674.6005 \ldots$ result very near to the rest mass of Omega baryon 1672.45
$27 * 2+11 *(0.5+0.489336+0.618966229+1.33956+9.39055)^{\wedge} 2$

Input interpretation:

$27 \times 2+11(0.5+0.489336+0.618966229+1.33956+9.39055)^{2}$

Result:

1728.600579660104232851

Repeating decimal:

1728.600579660104232851
1728.60057....

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

We can to obtain, calculating the eleventh root and multiplying by $10^{19} \mathrm{GeV}$:
$\left(\left(\left(\left(\left(27 * 2+11^{*}(0.5+0.489336+0.618966229+1.33956+9.39055)^{\wedge} 2\right)\right)\right)\right)\right)^{\wedge} 1 / 11 * 10^{\wedge} 19$ GeV

Input interpretation:

$\sqrt[11]{27 \times 2+11(0.5+0.489336+0.618966229+1.33956+9.39055)^{2}} \times 10^{19} \mathrm{GeV}$
(gigaelectronvolts)

Result:

$1.969 \times 10^{19} \mathrm{GeV}$ (gigaelectronvolts)
$1.969 * 10^{19} \mathrm{GeV}$ practically near to the mean value $1.962 * 10^{19}$ of DM particle that has a Planck scale mass: $\mathrm{m} \approx 10^{19} \mathrm{GeV}$

From 0.0814135 and 1.227343217 that are two Ramanujan mock theta functions, we obtain:
$(1.969+0.0814135) / 1.227343217=1.6706113429$ result very near to the value of the formula:
$m_{p^{\prime}}=2 \times \frac{\eta}{R} m_{P}=1.6714213 \times 10^{-24} \mathrm{gm}$
that is the holographic proton mass (N. Haramein)

Unit conversions:

$1.969 \times 10^{28} \mathrm{eV}$ (electronvolts)
3.155 GJ (gigajoules)
3.155×10^{9} J (joules)
$3.155 * 10^{9} \mathrm{~J}$

Now, we have that:
according as $2 n=2 k+1$ or $=2 k$. But

$$
L(\cos x)^{2 k+1}=L(\sin x)^{2 k+1}=0 .
$$

Some of these results may be easily deduced from first principles. Thus, e.g., if $L \cos x$ is determinate, it must, by II., be equal to

$$
L \cos (x+\pi)=-L \cos x,
$$

and therefore $=0$.
Again

$$
\begin{gathered}
G \int_{0}^{\infty} \cos a x d x=0, \\
G \int_{a}^{\infty} \sin \alpha x d x=\frac{1}{a}, \\
G \int_{0}^{\infty}(\cos x)^{2 k+1} d x=0, \\
G \int_{0}^{\infty}(\sin x)^{2 k+1} d x=\int_{0}^{2 \pi}(\cos x)^{2 k+1} d x \\
=\frac{2.4 \ldots 2 k}{3.5 \ldots 2 k+1} .
\end{gathered}
$$

Again

$$
\begin{aligned}
& G \int_{0}^{\infty} \cos a x(\cos x)^{2 k} d x=0, \\
& G \int_{0}^{\infty} \sin a x(\sin x)^{2 k} d x \\
& =\frac{1}{\sin \frac{1}{2} a \pi} \int_{0}^{2 \pi} \cos a u(\cos u)^{2 k} d u \\
& =\frac{\pi}{2^{2 k+1} \sin \frac{1}{2} a \pi} \frac{\Gamma(2 k+1)}{\Gamma\left(k+1-\frac{1}{2} a\right) \Gamma\left(k+1+\frac{1}{2} a\right)} \\
& =\frac{2 k!}{a\left(2^{2}-a^{2}\right)\left(4^{2}-a^{Q}\right) \ldots\left(4 k^{2}-a^{2}\right)},
\end{aligned}
$$

provided a is not an even integer.

Thence:

$$
G \int_{0}^{\infty} \sin a x(\sin x)^{2 k} d x=\frac{\pi}{2^{2 k+1} \sin \frac{1}{2} a \pi} \frac{\Gamma(2 k+1)}{\Gamma\left(k+1-\frac{1}{2} a\right) \Gamma\left(k+1+\frac{1}{2} a\right)}
$$

$$
=\frac{2 k!}{a\left(2^{2}-a^{2}\right)\left(4^{2}-a^{2}\right) \ldots\left(4 k^{2}-a^{2}\right)}
$$

For $\mathrm{k}=2, \mathrm{a}=3$, we obtain:
$\left(2^{*} 2\right)!/\left(\left(\left(3\left(2^{\wedge} 2-3^{\wedge} 2\right)\left(4^{\wedge} 2-3^{\wedge} 2\right)\left(4^{*} 2^{\wedge} 2-3^{\wedge} 2\right)\right)\right)\right.$

Input:

$\frac{(2 \times 2)!}{\left(3\left(2^{2}-3^{2}\right)\right)\left(4^{2}-3^{2}\right)\left(4 \times 2^{2}-3^{2}\right)}$

Exact result:

$$
-\frac{8}{245}
$$

Decimal approximation:

$-0.03265306122448979591836734693877551020408163265306122448 \ldots$
-0.03265306...

Series representation:

$\frac{(2 \times 2)!}{\left(\left(4^{2}-3^{2}\right)\left(4 \times 2^{2}-3^{2}\right)\right) 3\left(2^{2}-3^{2}\right)}=-\frac{1}{735} \sum_{k=0}^{\infty} \frac{\left(4-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}$
for $\left(\left(n_{0} \notin \mathbb{Z}\right.\right.$ or $\left.n_{0} \geq 0\right)$ and $\left.n_{0} \rightarrow 4\right)$

More information »

Integral representations:

$\frac{(2 \times 2)!}{\left(\left(4^{2}-3^{2}\right)\left(4 \times 2^{2}-3^{2}\right)\right) 3\left(2^{2}-3^{2}\right)}=-\frac{1}{735} \int_{0}^{\infty} e^{-t} t^{4} d t$
$\frac{(2 \times 2)!}{\left(\left(4^{2}-3^{2}\right)\left(4 \times 2^{2}-3^{2}\right)\right) 3\left(2^{2}-3^{2}\right)}=-\frac{1}{735} \int_{0}^{1} \log ^{4}\left(\frac{1}{t}\right) d t$
$\frac{(2 \times 2)!}{\left(\left(4^{2}-3^{2}\right)\left(4 \times 2^{2}-3^{2}\right)\right) 3\left(2^{2}-3^{2}\right)}=-\frac{1}{735} \int_{1}^{\infty} e^{-t} t^{4} d t-\frac{1}{735} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(5+k) k!}$

We note that:
$1.0061571663 *-1 / 2 * 10^{\wedge} 2 *(2 * 2)!/\left(\left(\left(3\left(2^{\wedge} 2-3^{\wedge} 2\right)\left(4^{\wedge} 2-3^{\wedge} 2\right)\left(4^{*} 2^{\wedge} 2-3^{\wedge} 2\right)\right)\right)\right.$
Where 1.0061571663 is a Ramanujan mock theta function

Input interpretation:

$\frac{1}{2} \times 1.0061571663 \times(-1) \times 10^{2} \times \frac{(2 \times 2)!}{\left(3\left(2^{2}-3^{2}\right)\right)\left(4^{2}-3^{2}\right)\left(4 \times 2^{2}-3^{2}\right)}$

Result:

1.642705577632653061224489795918367346938775510204081632653.
$1.64270557 \ldots \ldots \approx(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Series representation:

$$
\frac{\left(1.00615716630000(-1) 10^{2}\right)(2 \times 2)!}{2\left(\left(3\left(2^{2}-3^{2}\right)\right)\left(4^{2}-3^{2}\right)\left(4 \times 2^{2}-3^{2}\right)\right)}=0.0684460657346939 \sum_{k=0}^{\infty} \frac{\left(4-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}
$$

for $\left(n_{0} \notin \mathbb{Z}\right.$ or $\left.n_{0} \geq 0\right)$ and $n_{0} \rightarrow 4$)

More information »

Integral representations:

$$
\begin{aligned}
& \frac{\left(1.00615716630000(-1) 10^{2}\right)(2 \times 2)!}{2\left(\left(3\left(2^{2}-3^{2}\right)\right)\left(4^{2}-3^{2}\right)\left(4 \times 2^{2}-3^{2}\right)\right)}=0.0684460657346939 \int_{0}^{\infty} e^{-t} t^{4} d t \\
& \frac{\left(1.00615716630000(-1) 10^{2}\right)(2 \times 2)!}{2\left(\left(3\left(2^{2}-3^{2}\right)\right)\left(4^{2}-3^{2}\right)\left(4 \times 2^{2}-3^{2}\right)\right)}=0.0684460657346939 \int_{0}^{1} \log ^{4}\left(\frac{1}{t}\right) d t
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(1.00615716630000(-1) 10^{2}\right)(2 \times 2)!}{2\left(\left(3\left(2^{2}-3^{2}\right)\right)\left(4^{2}-3^{2}\right)\left(4 \times 2^{2}-3^{2}\right)\right)}= \\
& 0.0684460657346939 \int_{1}^{\infty} e^{-t} t^{4} d t+0.0684460657346939 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(5+k) k!}
\end{aligned}
$$

$\log (x)$ is the natural logarithm

And:

$$
\left(\left(\left(\left(-60^{*}\left(2^{*} 2\right)!/\left(\left(\left(3\left(2^{\wedge} 2-3^{\wedge} 2\right)\left(4^{\wedge} 2-3^{\wedge} 2\right)\left(4^{*} 2^{\wedge} 2-3^{\wedge} 2\right)\right)\right)\right)\right)\right)\right) * 10^{\wedge} 19 \mathrm{GeV}\right.
$$

Input interpretation:

$$
\left(-60 \times \frac{(2 \times 2)!}{\left(3\left(2^{2}-3^{2}\right)\right)\left(4^{2}-3^{2}\right)\left(4 \times 2^{2}-3^{2}\right)}\right) \times 10^{19} \mathrm{GeV} \text { (gigaelectronvolts) }
$$

Result:

$1.959 \times 10^{19} \mathrm{GeV}$ (gigaelectronvolts)
$1.959 * 10^{19} \mathrm{GeV}$ result practically near to the mean value $1.962 * 10^{19}$ of DM particle that has a Planck scale mass: $\mathrm{m} \approx 10^{19} \mathrm{GeV}$.

And, as previously:
$(1.959+0.0814135) / 1.227343217=1,66246366276$

Input:

$-60 \times \frac{(2 \times 2)!}{\left(3\left(2^{2}-3^{2}\right)\right)\left(4^{2}-3^{2}\right)\left(4 \times 2^{2}-3^{2}\right)}$

Exact result:

$\frac{96}{49}$

Decimal approximation:

1.959183673469387755102040816326530612244897959183673469387...
1.95918367...

Series representation:

$$
\begin{aligned}
& -\frac{60(2 \times 2)!}{\left(3\left(2^{2}-3^{2}\right)\right)\left(4^{2}-3^{2}\right)\left(4 \times 2^{2}-3^{2}\right)}=\frac{4}{49} \sum_{k=0}^{\infty} \frac{\left(4-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!} \\
& \quad \text { for }\left(\left(n_{0} \notin \mathbb{Z} \text { or } n_{0} \geq 0\right) \text { and } n_{0} \rightarrow 4\right)
\end{aligned}
$$

More information >>

Integral representations:

$$
\begin{aligned}
& -\frac{60(2 \times 2)!}{\left(3\left(2^{2}-3^{2}\right)\right)\left(4^{2}-3^{2}\right)\left(4 \times 2^{2}-3^{2}\right)}=\frac{4}{49} \int_{0}^{\infty} e^{-t} t^{4} d t \\
& -\frac{60(2 \times 2)!}{\left(3\left(2^{2}-3^{2}\right)\right)\left(4^{2}-3^{2}\right)\left(4 \times 2^{2}-3^{2}\right)}=\frac{4}{49} \int_{0}^{1} \log ^{4}\left(\frac{1}{t}\right) d t \\
& -\frac{60(2 \times 2)!}{\left(3\left(2^{2}-3^{2}\right)\right)\left(4^{2}-3^{2}\right)\left(4 \times 2^{2}-3^{2}\right)}=\frac{4}{49} \int_{1}^{\infty} e^{-t} t^{4} d t+\frac{4}{49} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(5+k) k!}
\end{aligned}
$$

For $\mathrm{k}=5$ and $\mathrm{a}=13$, we obtain:
$\left(2^{*} 5\right)!/\left(\left(\left(13\left(2^{\wedge} 2-13^{\wedge} 2\right)\left(4^{\wedge} 2-13^{\wedge} 2\right)\left(4^{*} 5^{\wedge} 2-13^{\wedge} 2\right)\right)\right)\right.$

Input:

$\frac{(2 \times 5)!}{\left(13\left(2^{2}-13^{2}\right)\right)\left(4^{2}-13^{2}\right)\left(4 \times 5^{2}-13^{2}\right)}$

Exact result:
 $-\frac{8960}{55913}$

Decimal approximation:

$-0.16024895820292239729579883032568454563339473825407329243 \ldots$
-0.1602489582...

Series representation:

$$
\frac{(2 \times 5)!}{\left(\left(4^{2}-13^{2}\right)\left(4 \times 5^{2}-13^{2}\right)\right) 13\left(2^{2}-13^{2}\right)}=-\frac{\sum_{k=0}^{\infty} \frac{\left(10-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}}{22644765}
$$

Integral representations:

$$
\begin{aligned}
& \frac{(2 \times 5)!}{\left(\left(4^{2}-13^{2}\right)\left(4 \times 5^{2}-13^{2}\right)\right) 13\left(2^{2}-13^{2}\right)}=-\frac{1}{22644765} \int_{0}^{\infty} e^{-t} t^{10} d t \\
& \frac{(2 \times 5)!}{\left(\left(4^{2}-13^{2}\right)\left(4 \times 5^{2}-13^{2}\right)\right) 13\left(2^{2}-13^{2}\right)}=-\frac{1}{22644765} \int_{0}^{1} \log ^{10}\left(\frac{1}{t}\right) d t \\
& \frac{(2 \times 5)!}{\left(\left(4^{2}-13^{2}\right)\left(4 \times 5^{2}-13^{2}\right)\right) 13\left(2^{2}-13^{2}\right)}=-\frac{1}{22644765} \int_{1}^{\infty} e^{-t} t^{10} d t-\frac{\sum_{k=0}^{\infty} \frac{(-1) k}{(11+k) k!}}{22644765}
\end{aligned}
$$

Note that:
$-10 *\left(2^{*} 5\right)!/\left(\left(\left(13\left(2^{\wedge} 2-13^{\wedge} 2\right)\left(4^{\wedge} 2-13^{\wedge} 2\right)\left(4^{*} 5^{\wedge} 2-13^{\wedge} 2\right)\right)\right)\right.$

Input:

$-10 \times \frac{(2 \times 5)!}{\left(13\left(2^{2}-13^{2}\right)\right)\left(4^{2}-13^{2}\right)\left(4 \times 5^{2}-13^{2}\right)}$

Exact result:

89600
55913

Decimal approximation:

1.602489582029223972957988303256845456333947382540732924364...
$1.6024895 \ldots$. result very near to the electric charge of positron

Series representation:

$-\frac{10(2 \times 5)!}{\left(13\left(2^{2}-13^{2}\right)\right)\left(4^{2}-13^{2}\right)\left(4 \times 5^{2}-13^{2}\right)}=\frac{2 \sum_{k=0}^{\infty} \frac{\left(10-n_{0} k^{k} \Gamma^{(k)}\left(1+n_{0}\right)\right.}{k!}}{4528953}$
for ($n_{0} \notin \mathbb{Z}$ or $n_{0} \geq 0$) and $n_{0} \rightarrow 10$)

More information »

Integral representations:

$-\frac{10(2 \times 5)!}{\left(13\left(2^{2}-13^{2}\right)\right)\left(4^{2}-13^{2}\right)\left(4 \times 5^{2}-13^{2}\right)}=\frac{2}{4528953} \int_{0}^{\infty} e^{-t} t^{10} d t$
$-\frac{10(2 \times 5)!}{\left(13\left(2^{2}-13^{2}\right)\right)\left(4^{2}-13^{2}\right)\left(4 \times 5^{2}-13^{2}\right)}=\frac{2}{4528953} \int_{0}^{1} \log ^{10}\left(\frac{1}{t}\right) d t$
$-\frac{10(2 \times 5)!}{\left(13\left(2^{2}-13^{2}\right)\right)\left(4^{2}-13^{2}\right)\left(4 \times 5^{2}-13^{2}\right)}=\frac{2}{4528953} \int_{1}^{\infty} e^{-t} t^{10} d t+\frac{2 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(11+k) k!}}{4528953}$
$\log (x)$ is the natural logarithm
More information $>$
$\left(\left(\left(\left(-12^{*}\left(2^{*} 5\right)!/\left(\left(\left(13\left(2^{\wedge} 2-13^{\wedge} 2\right)\left(4^{\wedge} 2-13^{\wedge} 2\right)\left(4^{*} 5^{\wedge} 2-13^{\wedge} 2\right)\right)\right)\right)\right)\right)\right) * 10^{\wedge} 19 \mathrm{GeV}\right.$
Input interpretation:
$\left(-12 \times \frac{(2 \times 5)!}{\left(13\left(2^{2}-13^{2}\right)\right)\left(4^{2}-13^{2}\right)\left(4 \times 5^{2}-13^{2}\right)}\right) \times 10^{19} \mathrm{GeV}$ (gigaelectronvolts)

Result:

$1.923 \times 10^{19} \mathrm{GeV}$ (gigaelectronvolts)
$1.923 * 10^{19} \mathrm{GeV}$ result practically near to the mean value $1.962 * 10^{19}$ of DM particle that has a Planck scale mass: $\mathrm{m} \approx 10^{19} \mathrm{GeV}$.

And, as previously:

Input:

$-12 \times \frac{(2 \times 5)!}{\left(13\left(2^{2}-13^{2}\right)\right)\left(4^{2}-13^{2}\right)\left(4 \times 5^{2}-13^{2}\right)}$
n ! is the factorial function

Exact result:

$\frac{107520}{55913}$

Decimal approximation:

1.922987498435068767549585963908214547600736859048879509237...
1.922987498...

Series representation:

$-\frac{12(2 \times 5)!}{\left(13\left(2^{2}-13^{2}\right)\right)\left(4^{2}-13^{2}\right)\left(4 \times 5^{2}-13^{2}\right)}=\frac{4 \sum_{k=0}^{\infty} \frac{\left(10-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}}{7548255}$
for ($n_{0} \notin \mathbb{Z}$ or $n_{0} \geq 0$) and $n_{0} \rightarrow 10$)

Integral representations:

$-\frac{12(2 \times 5)!}{\left(13\left(2^{2}-13^{2}\right)\right)\left(4^{2}-13^{2}\right)\left(4 \times 5^{2}-13^{2}\right)}=\frac{4}{7548255} \int_{0}^{\infty} e^{-t} t^{10} d t$
$-\frac{12(2 \times 5)!}{\left(13\left(2^{2}-13^{2}\right)\right)\left(4^{2}-13^{2}\right)\left(4 \times 5^{2}-13^{2}\right)}=\frac{4}{7548255} \int_{0}^{1} \log ^{10}\left(\frac{1}{t}\right) d t$
$-\frac{12(2 \times 5)!}{\left(13\left(2^{2}-13^{2}\right)\right)\left(4^{2}-13^{2}\right)\left(4 \times 5^{2}-13^{2}\right)}=\frac{4}{7548255} \int_{1}^{\infty} e^{-t} t^{10} d t+\frac{4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(11+k) k!}}{7548255}$
$\log (x)$ is the natural logarithm

For $\mathrm{k}=8$ and $\mathrm{a}=21$, we obtain:
$\left(\left(\left(\left(2^{*} 8\right)!/\left(\left(\left(21\left(2^{\wedge} 2-21^{\wedge} 2\right)\left(4^{\wedge} 2-21^{\wedge} 2\right)\left(4^{*} 8^{\wedge} 2-21^{\wedge} 2\right)\right)\right)\right)\right)\right.\right.$

Input:

$\frac{(2 \times 8)!}{\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)}$

Exact result:

$-\frac{7970586624}{274873}$

Decimal approximation:

- More digits
-28997.3428601572362509231536018452157905650973358605610591
-28997.34286....

Series representation:

$\frac{(2 \times 8)!}{\left(\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)\right) 21\left(2^{2}-21^{2}\right)}=-\frac{\sum_{k=0}^{\infty} \frac{\left(16-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}}{721541625}$
for $\left(n_{0} \notin \mathbb{Z}\right.$ or $\left.n_{0} \geq 0\right)$ and $\left.n_{0} \rightarrow 16\right)$
Z is the set of integers
More information »>

Integral representations:

$\frac{(2 \times 8)!}{\left(\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)\right) 21\left(2^{2}-21^{2}\right)}=-\frac{1}{721541625} \int_{0}^{\infty} e^{-t} t^{16} d t$
$\frac{(2 \times 8)!}{\left(\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)\right) 21\left(2^{2}-21^{2}\right)}=-\frac{1}{721541625} \int_{0}^{1} \log ^{16}\left(\frac{1}{t}\right) d t$
$\frac{(2 \times 8)!}{\left(\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)\right) 21\left(2^{2}-21^{2}\right)}=-\frac{1}{721541625} \int_{1}^{\infty} e^{-t} t^{16} d t-\frac{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(17+k) k!}}{721541625}$
$\log (x)$ is the natural logarithm
More information »

And:

$$
\left(\left(\left(\left(\left(2^{*} 8\right)!/\left(\left(\left(21\left(2^{\wedge} 2-21^{\wedge} 2\right)\left(4^{\wedge} 2-21^{\wedge} 2\right)\left(4^{*} 8 \wedge 2-21^{\wedge} 2\right)\right)\right)\right)\right)\right)^{*-1 /\left(27^{*} 8\right)}\right.\right.
$$

Input:

$$
\frac{\frac{(2 \times 8)!}{\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)} \times(-1)}{27 \times 8}
$$

Exact result:

$\frac{36900864}{274873}$

Decimal approximation:

134.2469576859131307913108963048389619933569321104655604588...
$134.246957 \ldots$. result very near to the rest mass of Pion meson

Mixed fraction:

$$
134 \frac{67882}{274873}
$$

Alternative representations:

$$
\begin{aligned}
& -\frac{(2 \times 8)!}{(27 \times 8)\left(\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)\right)}= \\
& -\frac{\Gamma(17)}{216\left(21\left(4-21^{2}\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)\right)}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{(2 \times 8)!}{(27 \times 8)\left(\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)\right)}= \\
& -\frac{\Gamma(17,0)}{216\left(21\left(4-21^{2}\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)\right)}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{(2 \times 8)!}{(27 \times 8)\left(\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)\right)}= \\
& -\frac{(1)_{16}}{216\left(21\left(4-21^{2}\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)\right)}
\end{aligned}
$$

$\left(\left(\left(\left(-\left(2^{*} 8\right)!/\left(\left(\left(21\left(2^{\wedge} 2-21^{\wedge} 2\right)\left(4^{\wedge} 2-21^{\wedge} 2\right)\left(4^{*} 8^{\wedge} 2-21^{\wedge} 2\right)\right)\right)\right)\right)^{\wedge} 1 / 20\right.\right.\right.$

> Input:
> $\sqrt[20]{-\frac{(2 \times 8)!}{\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)}}$
n ! is the factorial function

Exact result:

$\sqrt[20]{\frac{1001}{274873}} 2^{3 / 4} \sqrt[4]{3}$

Decimal approximation:

1.671544374041458031109581054371556871680303096174576248305
$1.671544374 \ldots$ a result practically equal to the value of the formula:
$m_{p^{\prime}}=2 \times \frac{\eta}{R} m_{P}=1.6714213 \times 10^{-24} \mathrm{gm}$
that is the holographic proton mass (N. Haramein)

We have also that:
$1.0061571663^{*}\left(\left(\left(\left(-\left(2^{*} 8\right)!/\left(\left(\left(21\left(2^{\wedge} 2-21^{\wedge} 2\right)\left(4^{\wedge} 2-21^{\wedge} 2\right)\left(4^{*} 8^{\wedge} 2-21^{\wedge} 2\right)\right)\right)\right)\right)^{\wedge} 1 / 21\right.\right.\right.$
Where 1.0061571663 is a Ramanujan mock theta function

Input interpretation:

$1.0061571663 \sqrt[21]{-\frac{(2 \times 8)!}{\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)}}$

Result:

1.6411907954...
$1.6411907954 \ldots . \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Series representation:

$$
\begin{aligned}
& 1.00615716630000 \sqrt[21]{-\frac{(2 \times 8)!}{\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)}}= \\
& 0.380928839666646 \sqrt[21]{\sum_{k=0}^{\infty} \frac{\left(16-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& 1.00615716630000 \sqrt[21]{-\frac{(2 \times 8)!}{\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)}}= \\
& 0.380928839666646 \sqrt[21]{\int_{0}^{\infty} e^{-t} t^{16} d t}
\end{aligned}
$$

$$
1.00615716630000 \sqrt[21]{-\frac{(2 \times 8)!}{\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)}}=
$$

$$
0.380928839666646 \sqrt[21]{\int_{0}^{1} \log ^{16}\left(\frac{1}{t}\right) d t}
$$

$1.00615716630000 \sqrt[21]{-\frac{(2 \times 8)!}{\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)}}=$
$0.380928839666646 \sqrt[21]{\int_{1}^{\infty} e^{-t} t^{16} d t+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(17+k) k!}}$
$\left(\left(\left(() .0061571663^{\wedge} 5 *\left(\left(\left(-\left(2^{*} 8\right)!/\left(\left((21)\left(2^{\wedge} 2-21^{\wedge} 2\right)\left(4 \wedge 2-21^{\wedge} 2\right)\left(4^{*} 8^{\wedge} 2-\right.\right.\right.\right.\right.\right.\right.\right.\right.$
$\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.21^{\wedge} 2\right)\right)\right)\right)\right)^{\wedge} 1 / 16\right)\right)\right)\right)\right) \quad$ * $10^{\wedge} 19 \mathrm{GeV}$

Input interpretation:

$\left(1.0061571663^{5} \sqrt[16]{-\frac{(2 \times 8)!}{\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)}}\right) \times 10^{19} \mathrm{GeV}$
(gigaelectronvolts)

Result:

$1.9598666 \times 10^{19} \mathrm{GeV}$ (gigaelectronvolts)
$1.959866 \ldots * 10^{19} \mathrm{GeV}$ result practically near to the mean value $1.962 * 10^{19}$ of DM particle that has a Planck scale mass: $\mathrm{m} \approx 10^{19} \mathrm{GeV}$.

And, as previously:
$(1.959866+0.0814135) / 1.227343217=1,66316925186$

Unit conversions:

- More
$1.9598666 \times 10^{28} \mathrm{eV}$ (electronvolts)
$\left(\left(()\left(1.0061571663^{\wedge} 5 *\left(\left(\left(-(2 * 8)!/\left(\left((21)\left(2^{\wedge} 2-21^{\wedge} 2\right)\left(4^{\wedge} 2-21^{\wedge} 2\right)(4 * 8 \wedge 2-\right.\right.\right.\right.\right.\right.\right.\right.$
$\left.\left.\left.\left.\left.\left.\left.\left.\left.21^{\wedge} 2\right)\right)\right)\right)\right)^{\wedge} 1 / 16\right)\right)\right)\right)$)
Where 1.0061571663 is a Ramanujan mock theta function
Input interpretation:
$1.0061571663^{5} \sqrt[16]{-\frac{(2 \times 8)!}{\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)}}$

Result:

1.959866600 ...
1.959866....

Series representation:

$$
\begin{aligned}
& 1.00615716630000^{5} \sqrt[16]{ } \sqrt{-\frac{(2 \times 8)!}{\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)}}= \\
& 0.28819589267433 \sqrt[16]{\sum_{k=0}^{\infty} \frac{\left(16-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}}
\end{aligned}
$$

Z is the set of integers
More information >>

Integral representations:

$$
\begin{aligned}
& 1.00615716630000^{5} \sqrt[16]{-\frac{(2 \times 8)!}{\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)}}= \\
& 0.28819589267433 \sqrt[16]{\int_{0}^{\infty} e^{-t} t^{16} d t}
\end{aligned}
$$

$1.00615716630000^{5} \sqrt[16]{-\frac{(2 \times 8)!}{\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)}}=$
$0.28819589267433 \sqrt[16]{\int_{0}^{1} \log ^{16}\left(\frac{1}{t}\right) d t}$
$1.00615716630000^{5} \sqrt[16]{-\frac{(2 \times 8)!}{\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)}}=$
$0.28819589267433 \sqrt[16]{\int_{1}^{\infty} e^{-t} t^{16} d t+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(17+k) k!}}$
$\log (x)$ is the natural logarithm
More information >>
$1 / 8^{*}\left(\left(\left(\left(-\left(2^{*} 8\right)!/\left(\left(\left(21\left(2^{\wedge} 2-21^{\wedge} 2\right)\left(4^{\wedge} 2-21^{\wedge} 2\right)\left(4^{*} 8^{\wedge} 2-21^{\wedge} 2\right)\right)\right)\right)\right)\right.\right.\right.$
Input:
$\frac{1}{8}\left(-\frac{(2 \times 8)!}{\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)}\right)$

Exact result:

$\frac{996323328}{274873}$

Decimal approximation:

3624.667857519654531365394200230651973820637166982570132388...
3624.66785 ... result very near to the rest mass of double charmed Xi baryon 3621.40

Series representation:

$-\frac{(2 \times 8)!}{\left(\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)\right) 8}=\frac{\sum_{k=0}^{\infty} \frac{\left(16-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}}{5772333000}$
for $\left(n_{0} \notin \mathbb{Z}\right.$ or $\left.n_{0} \geq 0\right)$ and $\left.n_{0} \rightarrow 16\right)$

Integral representations:

$$
\begin{aligned}
& -\frac{(2 \times 8)!}{\left(\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)\right) 8}=\frac{1}{5772333000} \int_{0}^{\infty} e^{-t} t^{16} d t \\
& -\frac{(2 \times 8)!}{\left(\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)\right) 8}=\frac{1}{5772333000} \int_{0}^{1} \log ^{16}\left(\frac{1}{t}\right) d t \\
& -\frac{(2 \times 8)!}{\left(\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)\right) 8}= \\
& \frac{1}{5772333000} \int_{1}^{\infty} e^{-t} t^{16} d t+\frac{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(17+k) k!}}{5772333000}
\end{aligned}
$$

$$
1.0061571663^{\wedge} 6^{*} 1 / 17 *\left(\left(\left(\left(-(2 * 8)!/\left(\left(\left(21\left(2^{\wedge} 2-21^{\wedge} 2\right)\left(4^{\wedge} 2-21^{\wedge} 2\right)\left(4^{*} 8^{\wedge} 2-21^{\wedge} 2\right)\right)\right)\right)\right)\right.\right.\right.
$$

Where 1.0061571663 is a Ramanujan mock theta function

Input interpretation:

$1.0061571663^{6} \times \frac{1}{17}\left(-\frac{(2 \times 8)!}{\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)}\right)$

Result:

1769.718663239028866351698335267571099347734762806592059433...

Repeating decimal:

1769.718663239028866351698335267571099347734762806592059433...
(period 26928)
$1769.718663 \ldots$ result in the range of the mass of candidate "glueball" $\mathrm{f}_{0}(1710)$ and the hypothetical mass of Gluino ("glueball" $=1760 \pm 15 \mathrm{MeV}$; gluino $=1785.16$ GeV).

Series representation:

$$
\begin{aligned}
& \frac{1.00615716630000^{6}(-(2 \times 8)!)}{\left(\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)\right) 17}= \\
& 8.4583302356538 \times 10^{-11} \sum_{k=0}^{\infty} \frac{\left(16-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!} \\
& \quad \text { for }\left(\left(n_{0} \oplus \mathbb{Z} \text { or } n_{0} \geq 0\right) \text { and } n_{0} \rightarrow 16\right)
\end{aligned}
$$

Integral representations:

```
\(\frac{1.00615716630000^{6}(-(2 \times 8)!)}{\left(\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)\right) 17}=8.4583302356538 \times 10^{-11} \int_{0}^{\infty} e^{-t} t^{16} d t\)
\(\frac{1.00615716630000^{6}(-(2 \times 8)!)}{\left(\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)\right) 17}=8.4583302356538 \times 10^{-11} \int_{0}^{1} \log ^{16}\left(\frac{1}{t}\right) d t\)
\(\frac{1.00615716630000^{6}(-(2 \times 8)!)}{\left(\left(21\left(2^{2}-21^{2}\right)\right)\left(4^{2}-21^{2}\right)\left(4 \times 8^{2}-21^{2}\right)\right) 17}=\)
    \(8.4583302356538 \times 10^{-11} \int_{1}^{\infty} e^{-t} t^{16} d t+8.4583302356538 \times 10^{-11} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(17+k) k!}\)
```

From Collected Papers of G. H. Hardy - Vol. VI:
I. Further researches in the Theory of Divergent Series and Integrals.

By G. H. Hardy, M.a.
[Received, April 2, 1908. Read, May 18, 1908.]
We have that (pg.235):
More generally we may take

$$
x^{\mu} F(x)=x^{\rho-1} J_{a}(x)
$$

where $\rho+\alpha>0$, and express

$$
G \int_{0}^{\infty} x^{\rho-1} \cos m x J_{a}(x) d x
$$

as a hypergeometric series. When $-\alpha<\rho<\frac{3}{2}$ we obtain a known expression of an ordinary integral. An interesting special case is that in which $\rho-1=\alpha$. In this case we find

$$
\begin{aligned}
G \int_{0}^{\infty} x^{\mathrm{a}} J_{a}(x) e^{-m i x} d x & =\Sigma \frac{(-)^{n}}{2^{a+2 n} n!\Gamma(n+\alpha+1)} G \int_{0}^{\infty} e^{-m i x} x^{2 n+2 a} d x \\
& =\Sigma \frac{(-)^{n}}{2^{a+2 n} n!\Gamma(n+\alpha+1)} \Gamma\left(\frac{\Gamma n+2 \alpha+1)}{m^{2 n+2 a+1}} e^{-\frac{1}{2}(2 n+2 a+1) \pi i}\right.
\end{aligned}
$$

Using the formula

$$
\Gamma(\alpha) \Gamma\left(\alpha+\frac{1}{2}\right)=\Gamma(2 \alpha) 2^{\frac{1}{2}-2 \alpha} \sqrt{ } 2 \pi
$$

we can reduce this series to

$$
\begin{gathered}
\frac{2^{\alpha} \Gamma\left(\alpha+\frac{1}{2}\right) e^{\left(-\alpha+\frac{1}{2}\right) \pi i}}{m^{2 \alpha+1} \sqrt{ } \pi} \\
=\frac{\left(\alpha+\frac{1}{2}\right)\left(\alpha+\frac{3}{2}\right) \ldots\left(\alpha+n-\frac{1}{2}\right)}{1 \cdot 2 \ldots n}\left(\frac{1}{m^{2}}\right)^{n} \\
=\frac{2^{a} e^{\left(-\alpha+\frac{1}{2}\right) \pi i} \Gamma\left(\alpha+\frac{1}{2}\right)}{\sqrt{ } \pi\left(m^{2}-1\right)^{\alpha+\frac{1}{2}}}
\end{gathered}
$$

Thence,

$$
=\frac{2^{a} e^{\left(-a+\frac{1}{2}\right) \pi i} \Gamma\left(\alpha+\frac{1}{2}\right)}{\sqrt{\pi\left(m^{2}-1\right)^{a+\frac{1}{2}}}} .
$$

for $\mathrm{m}=3, \alpha=-2$, we obtain:
$\left[2^{\wedge}(-2)^{*} \exp \left(\left((2+1 / 2) * \mathrm{Pi}^{*} \mathrm{i}\right)\right) * \operatorname{gamma}(-2+1 / 2)\right] /\left[\left(\operatorname{sqrt}(\mathrm{Pi}) *\left(3^{\wedge} 2-1\right)^{\wedge}(-2+1 / 2)\right]\right.$

Input:

$$
\frac{\frac{\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) \Gamma\left(-2+\frac{1}{2}\right)}{2^{2}}}{\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}}
$$

Exact result:

$\frac{16 i \sqrt{2}}{3}$

Decimal approximation:

$7.542472332656506926942339862451723085704916668677056390275 \ldots i$
7.5424723...i

Polar coordinates:

```
r\approx7.54247 (radius), }0=9\mp@subsup{0}{}{\circ}\mathrm{ (angle)
```

Position in the complex plane:

Alternative representations:

$$
\begin{aligned}
& \frac{\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) \Gamma\left(-2+\frac{1}{2}\right)}{\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right) 2^{2}}=\frac{\exp \left(\frac{5 i \pi}{2}\right) e^{-\log G(-3 / 2)+\log G(-1 / 2)}}{\frac{4 \sqrt{\pi}}{8^{3 / 2}}} \\
& \frac{\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) \Gamma\left(-2+\frac{1}{2}\right)}{\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right) 2^{2}}=\frac{\exp \left(\frac{5 i \pi}{2}\right)(1)-\frac{5}{2}}{\frac{4 \sqrt{\pi}}{8^{3 / 2}}}
\end{aligned}
$$

$$
\frac{\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) \Gamma\left(-2+\frac{1}{2}\right)}{\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right) 2^{2}}=-\frac{\sqrt[8]{e} \exp \left(\frac{5 i \pi}{2}\right)}{\frac{4 \times 2^{23 / 24} A^{3 / 2} \pi^{3 / 4}(-3 \sqrt[8]{e}) \sqrt{\pi}}{\left(4 \times 2^{23 / 24} A^{3 / 2} \pi^{5 / 4}\right) 8^{3 / 2}}}
$$

$\log G(z)$ gives the logarithm of the Barnes G-function $(a)_{n}$ is the Pochhammer symbol (rising factorial)
A is the Glaisher-Kinkelin constant

Series representations:

$$
\begin{aligned}
& \frac{\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) \Gamma\left(-2+\frac{1}{2}\right)}{\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right) 2^{2}}=\frac{4 \sqrt{2} \exp \left(\frac{5 i \pi}{2}\right) \sum_{k=0}^{\infty} \frac{\left(-\frac{3}{2}-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}}{\exp \left(\pi \mathcal{A}\left[\frac{\arg (\pi-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(\pi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}} \\
& \text { for }\left(x \in \mathbb{R} \text { and }\left(z_{0} \notin \mathbb{Z} \text { or } z_{0}>0\right) \text { and } x<0\right) \\
& \frac{\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) \Gamma\left(-2+\frac{1}{2}\right)}{\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right) 2^{2}}= \\
& \frac{4 \sqrt{2} \exp \left(\frac{5 i \pi}{2}\right)\left(\frac{1}{z_{0}}\right)^{-1 / 2}\left\lfloor\arg \left(\pi-z_{0}\right) /(2 \pi)\right\rfloor}{z_{0}^{-1 / 2-1 / 2}\left\lfloor\arg \left(\pi-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{\left(-\frac{3}{2}-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!} \\
& \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\pi-z_{0}\right)^{k} z_{0}^{-k}}{k!}
\end{aligned}
$$

for $\left(z_{0} \notin \mathbb{Z}\right.$ or $\left.z_{0}>0\right)$
$\arg (z)$ is the complex argument
$\lfloor x\rfloor$ is the floor function
$n!$ is the factorial function
R is the set of real numbers
Z is the set of integers

Integral representations:

$\frac{\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) \Gamma\left(-2+\frac{1}{2}\right)}{\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right) 2^{2}}=\frac{8 \sqrt{2} \pi \mathcal{A} \exp \left(\frac{5 i \pi}{2}\right)}{\sqrt{\pi} \oint_{L} e^{t} t^{3 / 2} d t}$

$$
\begin{aligned}
& \frac{\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) \Gamma\left(-2+\frac{1}{2}\right)}{\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right) 2^{2}}=\frac{4 \sqrt{2} \exp \left(\frac{5 i \pi}{2}\right)}{\sqrt{\pi}} \int_{0}^{\infty} \frac{e^{-t}-\sum_{k=0}^{n} \frac{(-t)^{k}}{k!}}{t^{5 / 2}} d t \\
& \text { for }\left(n \in \mathbb{Z} \text { and } \frac{1}{2}<n<\frac{3}{2}\right) \\
& \frac{\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) \Gamma\left(-2+\frac{1}{2}\right)}{\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right) 2^{2}}=\frac{4 i \sqrt{\frac{2}{\pi}}}{-1+e^{-3 \pi \mathscr{F}}} \oint_{L} \frac{e^{-t}}{t^{5 / 2}} d t
\end{aligned}
$$

$1+\left(\left(\left(\left(1 / \mathrm{sqrt}\left(\left(\left(()\left((\ln)\left(\left(\left(\left[2^{\wedge}(-2)^{*} \exp \left(\left((2+1 / 2) * \mathrm{Pi}^{*} \mathrm{i}\right)\right) * \operatorname{gamma}(-2+1 / 2)\right] /[(\operatorname{sqrt}(\mathrm{Pi}) *\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left(3^{\wedge} 2-1\right)^{\wedge}(-2+1 / 2)\right]\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)$

Input:

Exact result:

$1+\frac{1}{\sqrt{\log \left(\frac{16 i \sqrt{2}}{3}\right)}}$

Decimal approximation:

1.5912746589484317635445499066411535727722302880807179205... -
$0.20279523999003103209699953850147171928561504466158608857 \ldots i$

Property:

$1+\frac{1}{\sqrt{\log \left(\frac{16 i \sqrt{2}}{3}\right)}}$ is a transcendental number

Position in the complex plane:

Alternate forms:

$$
1+\frac{1}{\sqrt{\frac{i \pi}{2}+\frac{\log (2)}{2}+\log \left(\frac{16}{3}\right)}}
$$

$1+\frac{1}{\sqrt{\frac{1}{2} i(\pi-i(9 \log (2)-2 \log (3)))}}$

$$
\frac{1+\sqrt{\log \left(\frac{16 i \sqrt{2}}{3}\right)}}{\sqrt{\log \left(\frac{16 i \sqrt{2}}{3}\right)}}
$$

Alternative representations:

$$
\begin{aligned}
& 1+\frac{1}{\sqrt{\log \left(\frac{\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) \Gamma\left(-2+\frac{1}{2}\right)}{\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right) 2^{2}}\right)}}=1+\frac{1}{\sqrt{\log \left(\frac{\exp \left(\frac{5 i \pi}{2}\right) e^{-\log \mathrm{G}(-3 / 2)+\log \mathrm{G}(-1 / 2)}}{\frac{4 \sqrt{\pi}}{8^{3 / 2}}}\right)}} \\
& 1+\frac{1}{\sqrt{\log \left(\frac{\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) \Gamma\left(-2+\frac{1}{2}\right)}{\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right) 2^{2}}\right)}}=1+\frac{1}{\sqrt{\log _{e}\left(\frac{\exp \left(\frac{5 i \pi}{2}\right) \Gamma\left(-\frac{3}{2}\right)}{\frac{4 \sqrt{\pi}}{8^{3 / 2}}}\right)}}
\end{aligned}
$$

$$
1+\frac{1}{\sqrt{\log \left(\frac{\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) r\left(-2+\frac{1}{2}\right)}{\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right)^{2}}\right)}}=1+\frac{1}{\left.\sqrt{\log \left(\frac{\exp \left(\frac{5 i \pi}{2}\right)(1)}{\frac{4 \sqrt{\pi}}{2}}\right.} \frac{8^{3 / 2}}{}\right)}
$$

$\log G(z)$ gives the logarithm of the Barnes G-function
$\log _{b}(x)$ is the base- b logarithm
$(a)_{n}$ is the Pochhammer symbol (rising factorial)
More information »>

Series representations:

$$
1+\frac{1}{\sqrt{2 i \pi\left[\frac{\arg \left(\frac{16 i \sqrt{2}}{3}-x\right)}{2 \pi} \left\lvert\,+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{16 i \sqrt{2}}{3}-x\right)^{k} x^{-k}}{k}\right.\right.} \text { for } x<0 \text {, }} \text { f }
$$

$$
1+\frac{1}{\sqrt{\log \left(\frac{\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) r\left(-2+\frac{1}{2}\right)}{\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right) 2^{2}}\right)}}=
$$

$$
1+\frac{1}{\sqrt{\log \left(z_{0}\right)+\left[\frac{\arg \left(\frac{16 i \sqrt{2}}{3}-z_{0}\right)}{2 \pi} \left\lvert\,\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{16 i \sqrt{2}}{3}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right.}}
$$

$\arg (z)$ is the complex argument

Integral representations:

More information »

Input interpretation:

$1.5912746589484317635445499+i \times(-0.2027952399900310320969995)$
i is the imaginary unit

Result:

1.5912746589484317635445499... -
0.2027952399900310320969995...

Polar coordinates:

$r=1.6041449278584719281499017$ (radius)
, $\theta=-7.262738953958388120124847^{\circ}$ (angle)
$1.6041449278 \ldots$ result very near to the electric charge of positron
And:
$(1.6041449278) * 1.369955709-(0.50970737445 / 2)$
Where 1.369955709 and 0.50970737445 are two Ramanujan mock theta functions

Input interpretation:

$1.6041449278 \times 1.369955709-\frac{0.50970737445}{2}$

Result:

1.9427538146780028102
$1.9427538 \ldots$ result practically near to the mean value $1.962 * 10^{19}$ of DM particle that has a Planck scale mass: $\mathrm{m} \approx 10^{19} \mathrm{GeV}$

We have also that:
$\operatorname{sqrt}\left(9^{\wedge} 3-1\right)+10^{\wedge} 3+10^{\wedge} 2\left(\left(\left(\left[2^{\wedge}(-2)^{*} \exp \left(\left((2+1 / 2)^{*} \mathrm{Pi}^{*} \mathrm{i}\right)\right) * \operatorname{gamma}(-2+1 / 2)\right] /[(\operatorname{sqrt}(\mathrm{Pi})\right.\right.\right.$ * (3^2-1)^(-2+1/2)])))i

Input:

$\sqrt{9^{3}-1}+10^{3}+10^{2} \times \frac{\frac{\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) r\left(-2+\frac{1}{2}\right)}{2^{2}}}{\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right) i}$

Exact result:

$1000+\frac{1600 \sqrt{2}}{3}+2 \sqrt{182}$

Decimal approximation:

1781.228708392114775625334597468163398515402403068140661736...
$1781.2287 \ldots$ result in the range of the hypothetical mass of Gluino (gluino $=$ $1785.16 \mathrm{GeV})$.

Alternate forms:

$\frac{2}{3}(1500+800 \sqrt{2}+3 \sqrt{182})$
$2 \sqrt{182}+\frac{200}{3}(15+8 \sqrt{2})$
$\frac{2}{3}(1500+\sqrt{2(640819+4800 \sqrt{91})})$

Alternative representations:

$$
\begin{aligned}
& \sqrt{9^{3}-1}+10^{3}+\frac{10^{2}\left(\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) \Gamma\left(-2+\frac{1}{2}\right)\right)}{2^{2}\left(\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right) i\right)}= \\
& 10^{3}+\frac{\exp \left(\frac{5 i \pi}{2}\right) 10^{2} e^{-\log G(-3 / 2)+\operatorname{logG}(-1 / 2)}}{\frac{4(i \sqrt{\pi})}{8^{3 / 2}}}+\sqrt{-1+9^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{9^{3}-1}+10^{3}+\frac{10^{2}\left(\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) \Gamma\left(-2+\frac{1}{2}\right)\right)}{2^{2}\left(\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right) i\right)}= \\
& 10^{3}+\frac{\exp \left(\frac{5 i \pi}{2}\right)(1)-\frac{5}{2} 10^{2}}{\frac{4(i \sqrt{\pi})}{8^{3 / 2}}}+\sqrt{-1+9^{3}}
\end{aligned}
$$

$$
\begin{gathered}
\sqrt{9^{3}-1}+10^{3}+\frac{10^{2}\left(\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) \Gamma\left(-2+\frac{1}{2}\right)\right)}{2^{2}\left(\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right) i\right)}= \\
10^{3}-\frac{\sqrt[8]{e} \exp \left(\frac{5 i \pi}{2}\right) 10^{2}}{\frac{4 \times 2^{23 / 24} A^{3 / 2} \pi^{3 / 4}(-3 \sqrt[8]{e})(i \sqrt{\pi})}{\left(4 \times 2^{23 / 24} A^{3 / 2} \pi^{5 / 4}\right) 8^{3 / 2}}}+\sqrt{-1+9^{3}}
\end{gathered}
$$

$\log G(z)$ gives the logarithm of the Barnes G-function $(a)_{n}$ is the Pochhammer symbol (rising factorial)
A is the Glaisher-Kinkelin constant

Series representations:

$$
\begin{aligned}
& \sqrt{9^{3}-1}+10^{3}+\frac{10^{2}\left(\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) \Gamma\left(-2+\frac{1}{2}\right)\right)}{2^{2}\left(\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right) i\right)}= \\
& \left(1000 i \exp \left(\pi \mathcal{A} \left\lvert\, \frac{\arg (\pi-x)}{2 \pi}\right.\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(\pi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+400 \sqrt{2} \exp \left(\frac{5 i \pi}{2}\right) \\
& \left.\left.\sum_{k=0}^{\infty} \frac{\left(-\frac{3}{2}-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}+i \exp \left(\pi \mathcal{A} \left\lvert\, \frac{\arg (728-x)}{2 \pi}\right.\right]\right) \exp \left(\pi \mathcal{A} \left\lvert\, \frac{\arg (\pi-x)}{2 \pi}\right.\right]\right) \\
& \left.\sqrt{x}^{2} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}}(728-x)^{k_{1}}(\pi-x)^{k_{2}} x^{-k_{1}-k_{2}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}}}{k_{1}!k_{2}!}\right) / \\
& \left(i \exp \left(\pi \mathcal{A}\left[\frac{\arg (\pi-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(\pi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned}
$$

for ($x \in \mathbb{R}$ and ($z_{0} \notin \mathbb{Z}$ or $z_{0}>0$) and $x<0$)

$$
\begin{aligned}
& \sqrt{9^{3}-1}+10^{3}+\frac{10^{2}\left(\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) \Gamma\left(-2+\frac{1}{2}\right)\right)}{2^{2}\left(\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right) i\right)}= \\
& \left((\frac { 1 } { z _ { 0 } }) ^ { - 1 / 2 \lfloor \operatorname { a r g } (\pi - z _ { 0 }) / (2 \pi) \rfloor } z _ { 0 } ^ { - 1 / 2 - 1 / 2 \lfloor \operatorname { a r g } (\pi - z _ { 0 }) / (2 \pi) \rfloor \rfloor } \left(1000 i\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(\pi-z_{0}\right) /(2 \pi)\right\rfloor}\right.\right. \\
& z_{0}^{1 / 2+1 / 2\left\lfloor\arg \left(\pi-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\pi-z_{0}\right)^{k} z_{0}^{-k}}{k!}+400 \sqrt{2} \exp \left(\frac{5 i \pi}{2}\right) \\
& \left.\left.\sum_{k=0}^{\infty} \frac{\left(-\frac{3}{2}-z_{0}\right)^{k} \Gamma^{(k)\left(z_{0}\right)}}{k!}+i\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(728-z_{0}\right) /(2 \pi)+1 / 2\left\lfloor\arg \left(\pi-z_{0}\right) /(2 \pi)\right\rfloor\right.}\right)\right) / \\
& z_{0}^{\left.1+1 / 2\left\lfloor\arg \left(728-z_{0}\right) /(2 \pi)\right\rfloor+1 / 2\left\lfloor\arg \left(\pi-z_{0}\right)\right)(2 \pi)\right\rfloor} \\
& \left.\left.\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}\left(728-z_{0}\right)^{k_{1}}\left(\pi-z_{0}\right)^{k_{2}} z_{0}^{-k_{1}-k_{2}}}{k_{1}!k_{2}!}\right)\right) \\
& \left(i \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\pi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \text { for }\left(z_{0} \notin \mathbb{Z} \text { or } z_{0}>0\right)
\end{aligned}
$$

$\arg g(z)$ is the complex argument
$\lfloor x\rfloor$ is the floor function $n!$ is the factorial function R is the set of real numbers

Integral representations:

$$
\begin{aligned}
& \sqrt{9^{3}-1}+10^{3}+\frac{10^{2}\left(\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) \Gamma\left(-2+\frac{1}{2}\right)\right)}{2^{2}\left(\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right) i\right)}= \\
& 1000+\sqrt{728}+\frac{800 \sqrt{2} \pi \mathcal{A} \exp \left(\frac{5 i \pi}{2}\right)}{i \sqrt{\pi} \oint_{L} e^{t} t^{3 / 2} d t} \\
& \sqrt{9^{3}-1}+10^{3}+\frac{10^{2}\left(\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) \Gamma\left(-2+\frac{1}{2}\right)\right)}{2^{2}\left(\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right) i\right)}= \\
& 1000+\sqrt{728}+\frac{400 \sqrt{2} \exp \left(\frac{5 i \pi}{2}\right)}{i \sqrt{\pi}} \int_{0}^{\infty} \frac{e^{-t}-\sum_{k=0}^{n} \frac{(-t)^{k}}{k!}}{t^{5 / 2}} d t \\
& \text { for }\left(n \in \mathbb{Z} \text { and } \frac{1}{2}<n<\frac{3}{2}\right) \\
& \sqrt{9^{3}-1}+10^{3}+\frac{10^{2}\left(\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) \Gamma\left(-2+\frac{1}{2}\right)\right)}{2^{2}\left(\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right) i\right)}= \\
& 1000+\sqrt{728}+\frac{400 \sqrt{\frac{2}{\pi}}}{-1+e^{-3 \pi \mathcal{F}} \oint_{L} \frac{e^{-t}}{t^{5 / 2}} d t} \\
& 1
\end{aligned}
$$

And:
$-5-27^{\wedge} 2+10^{\wedge} 3+10^{\wedge} 2\left(\left(\left(\left[2^{\wedge}(-2)^{*} \exp \left(\left((2+1 / 2) * \mathrm{Pi}^{*} \mathrm{i}\right)\right) * \operatorname{gamma}(-2+1 / 2)\right] /[(\operatorname{sqrt}(\mathrm{Pi}) *\right.\right.\right.$ $\left.\left.\left.\left.\left(3^{\wedge} 2-1\right)^{\wedge}(-2+1 / 2)\right]\right)\right)\right) \mathrm{i}$

Input:

$-5-27^{2}+10^{3}+10^{2} \times \frac{\frac{\exp \left(\left(2+\frac{1}{2}\right) \pi i\right) r\left(-2+\frac{1}{2}\right)}{2^{2}}}{\left(\sqrt{\pi}\left(3^{2}-1\right)^{-2+1 / 2}\right) i}$

Exact result:

$266+\frac{1600 \sqrt{2}}{3}$

Decimal approximation:

1020.247233265650692694233986245172308570491666867705639027...
$1020.2472 \ldots$ result very near to the rest mass of Phi meson 1019.461

Now, we have that (pg.237-238):

$$
\begin{align*}
& \int_{0}^{\infty} J^{\alpha}(m x) e^{\rightarrow x} x^{\rho} d x=\frac{m^{a}}{\tau^{\alpha+\rho+1}} \frac{\Gamma(\alpha+\rho+1)}{2^{a} \Gamma(\alpha+1)} F\left(\frac{\alpha+\rho+1}{2}, \frac{\alpha+\rho+2}{2}, \alpha+1,-\frac{m^{2}}{\tau^{2}}\right) . . \tag{12}\\
& \int_{0}^{\infty} J^{\alpha}(m x) e^{-\tau x} x^{\rho} d x \\
& \quad=\frac{\Gamma(\alpha+\rho+1)}{\Gamma(\alpha+1)} \frac{\left(\frac{1}{2} m\right)^{\alpha}}{\left(m^{2}+\tau^{2}\right)^{\frac{1}{2}(a+\rho+1)}} F\left(\frac{\alpha+\rho+1}{2}, \frac{\alpha-\rho}{2}, \alpha+1, \frac{m^{2}}{m^{2}+\tau^{2}}\right) \ldots(1 \tag{13}
\end{align*}
$$

In the limit for $\tau=0$ this equation becomes

$$
\begin{equation*}
G \int_{0}^{\infty} J^{a}(m x) x^{\rho} d x=\frac{2^{\rho}}{m^{\rho+1}} \Gamma\left\{\frac{1}{2}(\alpha+\rho+1)\right\} . \tag{14}
\end{equation*}
$$

This formula holds for $a+\rho>-1$. If also $\rho<\frac{1}{2}$, the integral is convergent in the ordinary sense ${ }^{*}$.

Thence, we have:

$$
G \int_{0}^{\infty} J^{a}(m x) x^{\rho} d x=\frac{2^{\rho}}{m^{\rho+1}} \frac{\Gamma\left\{\frac{1}{2}(\alpha+\rho+1)\right\}}{\Gamma\left\{\frac{1}{2}(x-\rho+1)\right\}} \cdots
$$

For $\alpha=-1.5, m=2$ and $\rho=0.4$, we obtain:
$\left(\left(\left(2^{\wedge}(0.4) / 2^{\wedge}(1.4)\right)\right)\right) *\left(\left(\left(\right.\right.\right.$ gamma $\left.\left.\left(\left(1 / 2^{*}(-1.5+0.4+1)\right)\right)\right)\right) /\left(\left(\left(\operatorname{gamma}\left(\left(1 / 2^{*}(-1.5-\right.\right.\right.\right.\right.$ $0.4+1))$))

Input:

$$
\frac{2^{0.4}}{2^{1.4}} \times \frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}
$$

Result:

2.87202..
2.87202...

Alternative representations:

$\frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right) 2^{0.4}}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1) 2^{1.4}\right.}=-\frac{0.977273 \times 2^{0.4}}{-\frac{0.0473736 \times 0.659133 \times 2^{1.4}}{0.183532}}$
$\frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right) 2^{0.4}}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right) 2^{1.4}}=\frac{(-1.05)!2^{0.4}}{(-1.45)!2^{1.4}}$
$\frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right) 2^{0.4}}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right) 2^{1.4}}=\left(\frac{2^{0.4} e^{3.0267-3.14159 i}}{2^{1.4} e^{1.27854-3.14159 i}}=0.5 e^{1.74816+0 i}\right)$
n ! is the factorial function

Series representations:

$\frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right) 2^{0.4}}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right) 2^{1.4}}=\frac{4.5 \sum_{k=0}^{\infty} \frac{(-0.05)^{k} \Gamma^{(k)}(1)}{k!}}{\sum_{k=0}^{\infty} \frac{(-0.45)^{k} \Gamma^{(k)}(1)}{k!}}$
$\frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right) 2^{0.4}}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right) 2^{1.4}} \propto$

$$
\frac{(0.375899+1.1569 i)\left((1+0 i)+(1+0 i) \sum_{k=1}^{\infty} \sum_{j=1}^{2 k} \frac{(-1)^{j}(-0.05)^{-k} 2^{-j-k} \mathcal{D}_{2(j+k), j}}{(j+k)!}\right)}{e^{0.4}\left(1+\sum_{k=1}^{\infty} \sum_{j=1}^{2 k} \frac{(-1)^{j}(-0.45)^{-k} 2^{-j-k} \mathcal{D}_{2(j+k), j}}{(j+k)!}\right)}
$$

for False for $n \leq-1+3 j$
$\frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right) 2^{0.4}}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right) 2^{1.4}}=\frac{0.5 \sum_{k=0}^{\infty} \frac{\left(-0.05-z_{0} k^{k} \Gamma^{(k)}\left(z_{0}\right)\right.}{k!}}{\sum_{k=0}^{\infty} \frac{\left(-0.45-z_{0} k^{k} \Gamma^{(k)}\left(z_{0}\right)\right.}{k!}}$ for $\left(z_{0} \notin \mathbb{Z}\right.$ or $\left.z_{0}>0\right)$

$$
\begin{aligned}
& \frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right) 2^{0.4}}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right) 2^{1.4}}= \\
& \frac{0.5 \sum_{k=0}^{\infty}\left(-0.45-z_{0}\right)^{k} \sum_{j=0}^{k} \frac{(-1)^{j} \pi^{-j+k} \sin \left(\frac{1}{2} \pi\left(-j+k+2 z_{0}\right)\right) \Gamma^{(j)}\left(1-z_{0}\right)}{j!(-j+k)!}}{\sum_{k=0}^{\infty}\left(-0.05-z_{0}\right)^{k} \sum_{j=0}^{k} \frac{(-1)^{j} \pi^{-j+k} \sin \left(\frac{1}{2} \pi\left(-j+k+2 z_{0}\right)\right) \Gamma^{-(j)}\left(1-z_{0}\right)}{j!(-j+k)!}}
\end{aligned}
$$

Integral representations:

$\frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right) 2^{0.4}}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right) 2^{1.4}}=\frac{0.5 \csc (-0.025 \pi) \int_{0}^{\infty} \frac{\sin (t)}{t^{1.05}} d t}{\csc (-0.225 \pi) \int_{0}^{\infty} \frac{\sin (t)}{t^{1.45}} d t}$
$\frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right) 2^{0.4}}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right) 2^{1.4}}=\frac{0.5}{\oint_{L} e^{t} t^{0.05} d t} \oint_{L} e^{t} t^{0.45} d t$
$\frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right) 2^{0.4}}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right) 2^{1.4}}=\frac{0.5 \int_{0}^{\infty} \frac{e^{-t}-\sum_{k=0}^{n} \frac{(-t)^{k}}{k!}}{t^{1.05}} d t}{\int_{0}^{\infty} \frac{e^{-t}-\sum_{k=0}^{n} \frac{(-t)^{k}}{k!}}{t^{1.45}} d t}$ for $(n \in \mathbb{Z}$ and $0 \leq n<0.05)$
$\csc (x)$ is the cosecant function
$-\left(48 / 10^{\wedge} 3\right)+\operatorname{sqrt}\left[\left(\left(\left(2^{\wedge}(0.4) / 2^{\wedge}(1.4)\right)\right)\right)\right.$ * $\left(\left(\left(\operatorname{gamma}\left(\left(1 / 2^{*}(-1.5+0.4+1)\right)\right)\right)\right) /\right.$ (((gamma $\left.\left.\left.\left(\left(1 / 2^{*}(-1.5-0.4+1)\right)\right)\right)\right)\right]$

Input:

$-\frac{48}{10^{3}}+\sqrt{\frac{2^{0.4}}{2^{1.4}} \times \frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}}$

Result:

1.64670...

$$
1.64670 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots
$$

Alternative representations:

$$
-\frac{48}{10^{3}}+\sqrt{\frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right) 2^{0.4}}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right) 2^{1.4}}}=-\frac{48}{10^{3}}+\sqrt{-\frac{0.977273 \times 2^{0.4}}{-\frac{0.0473736 \times 0.659133 \times 2^{1.4}}{0.183532}}}
$$

$$
-\frac{48}{10^{3}}+\sqrt{\frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right) 2^{0.4}}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right) 2^{1.4}}}=-\frac{48}{10^{3}}+\sqrt{\frac{(-1.05)!2^{0.4}}{(-1.45)!2^{1.4}}}
$$

$$
-\frac{48}{10^{3}}+\sqrt{\frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right) 2^{0.4}}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right) 2^{1.4}}}=
$$

$$
\left(-\frac{48}{10^{3}}+\sqrt{\frac{2^{0.4} e^{3.0267-3.14159 i}}{2^{1.4} e^{1.27854-3.14159 i}}}=-\frac{6}{125}+\sqrt{0.5 e^{1.74816+0 i}}\right)
$$

Series representations:

$$
\begin{aligned}
& -\frac{48}{10^{3}}+\sqrt{\frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right) 2^{0.4}}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right) 2^{1.4}}}= \\
& -\frac{6}{125}+\sqrt{-1+\frac{0.5 \Gamma(-0.05)}{\Gamma(-0.45)}} \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\left(-1+\frac{0.5 \Gamma(-0.05)}{\Gamma(-0.45)}\right)^{-k}
\end{aligned}
$$

$$
-\frac{48}{10^{3}}+\sqrt{\frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right) 2^{0.4}}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right) 2^{1.4}}}=
$$

$$
-\frac{6}{125}+\sqrt{-1+\frac{0.5 \Gamma(-0.05)}{\Gamma(-0.45)}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-1+\frac{0.5 \Gamma(-0.05)}{\Gamma(-0.45)}\right)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}
$$

$$
-\frac{48}{10^{3}}+\sqrt{\frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right) 2^{0.4}}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1) 2^{1.4}\right.}}=\frac{1}{125}\left(-6+125 \sqrt{\frac{4.5 \sum_{k=0}^{\infty} \frac{(-0.0)^{k} \Gamma^{(k)}(1)}{k!}}{\sum_{k=0}^{\infty} \frac{(-0.45)^{k} \Gamma^{(k)}(1)}{k!}}}\right)
$$

$\binom{n}{m}$ is the binomial coefficient
$(a)_{n}$ is the Pochhammer symbol (rising factorial)

Integral representations:

$-\frac{48}{10^{3}}+\sqrt{\frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right) 2^{0.4}}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right) 2^{1.4}}}=\frac{1}{125}\left(-6+125 \sqrt{\frac{0.5 \csc (-0.025 \pi) \int_{0}^{\infty} \frac{\sin (t)}{\frac{1}{1}^{1.05}} d t}{\csc (-0.225 \pi) \int_{0}^{\infty} \frac{\sin (t)}{t^{1.45} d t}}}\right)$
$-\frac{48}{10^{3}}+\sqrt{\frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right) 2^{0.4}}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right) 2^{1.4}}}=-\frac{6}{125}+\sqrt{\frac{0.5}{\oint_{L}^{t} t^{0.05} d t} \oint_{L} e^{t} t^{0.45} d t}$
$-\frac{48}{10^{3}}+\sqrt{\frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right) 2^{0.4}}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right) 2^{1.4}}}=\frac{1}{125}\left(-6+125 \sqrt{\frac{0.5 \int_{0}^{\infty} \frac{e^{-t}-\sum_{k=0}^{n} \frac{(-t)^{k}}{k!}}{t^{1.05}} d t}{\int_{0}^{\infty} \frac{e^{-t}-\sum_{k=0}^{n} \frac{(t-t)^{k}}{k!}}{t^{1.45}} d t}}\right)$
for ($n \in \mathbb{Z}$ and $0 \leq n<0.05$)
$\csc (x)$ is the cosecant function
\mathbb{Z} is the set of integers
(0.5957823226*2)* $\left(\left(\left(\left(\left(()\left(-\left(48 / 10^{\wedge} 3\right)+\operatorname{sqrt}\left[\left(\left(2^{\wedge}(0.4) / 2^{\wedge}(1.4)\right)\right)\right)\right)^{*}((\right.\right.\right.\right.\right.$ gamma $\left.\left.\left(\left(1 / 2^{*}(-1.5+0.4+1)\right)\right)\right)\right) /\left(\left(\left(\right.\right.\right.$ gamma $\left.\left.\left.\left(\left(1 / 2^{*}(-1.5-0.4+1)\right)\right)\right)\right)\right]$
where $\boldsymbol{\psi}(\boldsymbol{q})=\mathbf{0 . 5 9 5 7 8 2 3 2 2 6} \ldots$ is a Ramanujan mock theta function

Input interpretation:

$(0.5957823226 \times 2)\left(-\frac{48}{10^{3}}+\sqrt{\frac{2^{0.4}}{2^{1.4}} \times \frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}}\right)$

Result:

1.96215 .
$1.96215 \ldots$. result practically equal to the mean value $1.962 * 10^{19}$ of DM particle that has a Planck scale mass: $\mathrm{m} \approx 10^{19} \mathrm{GeV}$

Alternative representations:

$$
\begin{aligned}
& \left(-\frac{48}{10^{3}}+\sqrt{\frac{2^{0.4} \Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{2^{1.4} \Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}}\right) 0.595782 \times 2= \\
& 1.19156\left(-\frac{48}{10^{3}}+\sqrt{-\frac{0.977273 \times 2^{0.4}}{-\frac{0.0473736 \times 0.659133 \times 2^{1.4}}{0.183532}}}\right) \\
& \left(-\frac{48}{10^{3}}+\sqrt{\frac{2^{0.4} \Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{2^{1.4} \Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}}\right) 0.595782 \times 2= \\
& 1.19156\left(-\frac{48}{10^{3}}+\sqrt{\frac{(-1.05)!2^{0.4}}{(-1.45)!2^{1.4}}}\right) \\
& \left(-\frac{48}{10^{3}}+\sqrt{\frac{2^{0.4} \Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{2^{1.4} \Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}}\right) 0.595782 \times 2= \\
& 1.19156\left(-\frac{48}{10^{3}}+\sqrt{\frac{(1)-1.05}{(1)-1.452^{0.4}}}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \left(-\frac{48}{10^{3}}+\sqrt{\frac{2^{0.4} \Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{2^{1.4} \Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}}\right) 0.595782 \times 2= \\
& -0.0571951+1.19156 \sqrt{-1+\frac{0.5 \Gamma(-0.05)}{\Gamma(-0.45)}} \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\left(-1+\frac{0.5 \Gamma(-0.05)}{\Gamma(-0.45)}\right)^{-k} \\
& \left(-\frac{48}{10^{3}}+\sqrt{\frac{2^{0.4} \Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{2^{1.4} \Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}}\right) 0.595782 \times 2= \\
& -0.0571951+1.19156 \sqrt{-1+\frac{0.5 \Gamma(-0.05)}{\Gamma(-0.45)}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-1+\frac{0.5 \Gamma(-0.05)}{\Gamma(-0.45)}\right)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!} \\
& \left(-\frac{48}{10^{3}}+\sqrt{\left.\frac{2^{0.4} \Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{2^{1.4} \Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}\right) 0.595782} \times 2=\right. \\
& 1.19156\left(-0.048+\sqrt{\frac{4.5 \sum_{k=0}^{\infty} \frac{(-0.05)^{k} \Gamma^{(k)}(1)}{k!}}{\sum_{k=0}^{\infty} \frac{(-0.45)^{k} \Gamma^{(k)}(1)}{k!}}}\right)
\end{aligned}
$$

$\binom{n}{m}$ is the binomial coefficient

Integral representations:

$$
\begin{aligned}
& \left(-\frac{48}{10^{3}}+\sqrt{\frac{2^{0.4} \Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{2^{1.4} \Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}}\right) 0.595782 \times 2= \\
& 1.19156\left(-0.048+\sqrt{\frac{0.5 \csc (-0.025 \pi) \int_{0}^{\infty} \frac{\sin (t)}{t^{1.05}} d t}{\csc (-0.225 \pi) \int_{0}^{\infty} \frac{\sin (t)}{t^{1.45}} d t}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(-\frac{48}{10^{3}}+\sqrt{\frac{2^{0.4} \Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{2^{1.4} \Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}}\right) 0.595782 \times 2= \\
& -0.0571951+1.19156 \sqrt{\frac{0.5}{\oint_{L} e^{0.05} d t} \oint_{L} e^{t} t^{0.45} d t} \\
& \left(-\frac{48}{10^{3}}+\sqrt{\left.\frac{2^{0.4} \Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{2^{1.4} \Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}\right) 0.595782 \times 2}=\right. \\
& 1.19156\left(-0.048+\sqrt{\frac{0.5 \int_{0}^{\infty} \frac{e^{-t}-\sum_{k=0}^{n} \frac{-t-t)^{k}}{t^{1.05}}}{\int_{0}^{e^{e t}-\sum_{k=0}^{n} \frac{(-t)^{k}}{k!}}} d t}{t^{1.45}} d t}\right) \text { for }(n \in \mathbb{Z} \text { and } 0 \leq n<0.05)
\end{aligned}
$$

$\csc (x)$ is the cosecant function
Z is the set of integers

And:
$5+10^{\wedge} 3^{*}\left(0.5957823226^{*} 2\right) *\left(\left(\left(\left(\left(\left(\left(\left(-\left(48 / 10^{\wedge} 3\right)+\operatorname{sqrt}\left[\left(\left(\left(2^{\wedge}(0.4) / 2^{\wedge}(1.4)\right)\right)\right){ }^{*}\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\left(((\right.$ gamma $((1 / 2 *(-1.5+0.4+1))))) /\left(\left(\left(\right.\right.\right.$ gamma $\left.\left.\left.\left(\left(1 / 2^{*}(-1.5-0.4+1)\right)\right)\right)\right)\right]$

Input interpretation:

$5+10^{3}(0.5957823226 \times 2)\left(-\frac{48}{10^{3}}+\sqrt{\frac{2^{0.4}}{2^{1.4}} \times \frac{\Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{\Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}}\right)$

Result:

1967.15...
1967.15... result very near to the rest mass of strange D meson 1968.30

Alternative representations:

$$
\begin{aligned}
& 5+\left(10^{3}\left(-\frac{48}{10^{3}}+\sqrt{\frac{2^{0.4} \Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{2^{1.4} \Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}}\right)\right) 0.595782 \times 2= \\
& 5+1.19156 \times 10^{3}\left(-\frac{48}{10^{3}}+\sqrt{-\frac{0.977273 \times 2^{0.4}}{-\frac{0.0473736 \times 0.659133 \times 2^{1.4}}{0.183532}}}\right) \\
& 5+\left(10^{3}\left(-\frac{48}{10^{3}}+\sqrt{\frac{2^{0.4} \Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{2^{1.4} \Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}}\right)\right) 0.595782 \times 2= \\
& 5+1.19156 \times 10^{3}\left(-\frac{48}{10^{3}}+\sqrt{\frac{(-1.05)!2^{0.4}}{(-1.45)!2^{1.4}}}\right) \\
& 5+\left(10^{3}\left(-\frac{48}{10^{3}}+\sqrt{\frac{2^{0.4} \Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{2^{1.4} \Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}}\right)\right) 0.595782 \times 2= \\
& 5+1.19156 \times 10^{3}\left(-\frac{48}{10^{3}}+\sqrt{\frac{(1)-1.052^{2.4}}{(1)-1.452^{1.4}}}\right)
\end{aligned}
$$

Series representations:

$5+\left(10^{3}\left(-\frac{48}{10^{3}}+\sqrt{\frac{2^{0.4} \Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{2^{1.4} \Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}}\right)\right) 0.595782 \times 2=$
$-52.1951+1191.56 \sqrt{-1+\frac{0.5 \Gamma(-0.05)}{\Gamma(-0.45)}} \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\left(-1+\frac{0.5 \Gamma(-0.05)}{\Gamma(-0.45)}\right)^{-k}$
$5+\left(10^{3}\left(-\frac{48}{10^{3}}+\sqrt{\frac{2^{0.4} \Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{2^{1.4} \Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}}\right)\right) 0.595782 \times 2=$
$-52.1951+1191.56 \sqrt{-1+\frac{0.5 \Gamma(-0.05)}{\Gamma(-0.45)}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-1+\frac{0.5 \Gamma(-0.05)}{\Gamma(-0.45)}\right)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}$
$5+\left(10^{3}\left(-\frac{48}{10^{3}}+\sqrt{\frac{2^{0.4} \Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{2^{1.4} \Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}}\right)\right) 0.595782 \times 2=$
$1191.56\left(-0.0438038+\sqrt{\frac{4.5 \sum_{k=0}^{\infty} \frac{(-0.05)^{k} \Gamma^{(k)}(1)}{k!}}{\sum_{k=0}^{\infty} \frac{(-0.45)^{k^{k}} \Gamma^{(k)}(1)}{k!}}}\right)$
$\binom{n}{m}$ is the binomial coefficient

Integral representations:

$5+\left(10^{3}\left(-\frac{48}{10^{3}}+\sqrt{\frac{2^{0.4} \Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{2^{1.4} \Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}}\right)\right) 0.595782 \times 2=$
$1191.56\left(-0.0438038+\sqrt{\frac{0.5 \csc (-0.025 \pi) \int_{0}^{\infty} \frac{\sin (t)}{t^{1.05}} d t}{\csc (-0.225 \pi)} \int_{0}^{\infty} \frac{\sin (t)}{t^{1.45}} d t}\right)$
$5+\left(10^{3}\left(-\frac{48}{10^{3}}+\sqrt{\frac{2^{0.4} \Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{2^{1.4} \Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}}\right)\right) 0.595782 \times 2=$
$-52.1951+1191.56 \sqrt{\frac{0.5}{\oint_{L}^{t} t^{0.05} d t} \oint_{L} e^{t} t^{0.45} d t}$
$5+\left(10^{3}\left(-\frac{48}{10^{3}}+\sqrt{\frac{2^{0.4} \Gamma\left(\frac{1}{2}(-1.5+0.4+1)\right)}{2^{1.4} \Gamma\left(\frac{1}{2}(-1.5-0.4+1)\right)}}\right)\right) 0.595782 \times 2=$
$1191.56\left(-0.0438038+\sqrt{\left.\frac{0.5 \int_{0}^{\infty} \frac{e^{-t}-\sum_{k=0}^{n} \frac{(t-t)^{k}}{k!}}{t^{1.05}} d t}{\int_{0}^{\infty} \frac{e^{-t}-\sum_{k=0}^{n} \frac{(t-)^{k}}{k!}}{t^{1.45}} d t}\right)}\right.$
for ($n \in \mathbb{Z}$ and $0 \leq n<0.05$)
$\csc (x)$ is the cosecant function

We have that (pag.86)

```
Thus, e.g.,
    \(L \log (\cos x-\cos \alpha)^{2} \quad(0<\alpha<\pi)\)
    \(=\frac{1}{\pi} \int_{0}^{\pi} \log (\cos x-\cos \alpha)^{2} d x\)
    \(=-2 \log 2\),
    \(G P \int_{0}^{\infty} \frac{\sin x d x}{\cos x-\cos \alpha}=\log \left(4 \sin ^{2} \frac{1}{2} \alpha\right)\),
```

For $\alpha=\pi / 2$, we obtain:
$\ln \left(\left(4 \sin ^{\wedge} 2(1 / 2 * \mathrm{Pi} / 2)\right)\right)$

Input:

$\log \left(4 \sin ^{2}\left(\frac{1}{2} \times \frac{\pi}{2}\right)\right)$
$\log (x)$ is the natural logarithm

Exact result:

$\log (2)$

Decimal approximation:

0.693147180559945309417232121458176568075500134360255254120...
0.69314718...

Property:

$\log (2)$ is a transcendental number

Alternative representations:

$\log \left(4 \sin ^{2}\left(\frac{\pi}{2 \times 2}\right)\right)=\log \left(4 \cos ^{2}\left(\frac{\pi}{4}\right)\right)$
$\log \left(4 \sin ^{2}\left(\frac{\pi}{2 \times 2}\right)\right)=\log \left(4\left(-\cos \left(\frac{3 \pi}{4}\right)\right)^{2}\right)$
$\log \left(4 \sin ^{2}\left(\frac{\pi}{2 \times 2}\right)\right)=\log _{e}\left(4 \sin ^{2}\left(\frac{\pi}{4}\right)\right)$

Integral representations:

$$
\begin{aligned}
& \log \left(4 \sin ^{2}\left(\frac{\pi}{2 \times 2}\right)\right)=\int_{1}^{2} \frac{1}{t} d t \\
& \log \left(4 \sin ^{2}\left(\frac{\pi}{2 \times 2}\right)\right)=-\frac{i}{2 \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
\end{aligned}
$$

$1.1424432422 * 1 / \ln \left(\left(4 \sin ^{\wedge} 2(1 / 2 * \mathrm{Pi} / 2)\right)\right)$

Where $\mathbf{f}(\mathbf{q})=\mathbf{1 . 1 4 2 4 4 3 2 4 2 2} \ldots$ is a Ramanujan mock theta function

Input interpretation:

$1.1424432422 \times \frac{1}{\log \left(4 \sin ^{2}\left(\frac{1}{2} \times \frac{\pi}{2}\right)\right)}$

Result:

1.6481972000...
$1.6481972 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Alternative representations:

$$
\frac{1.14244324220000}{\log \left(4 \sin ^{2}\left(\frac{\pi}{2 \times 2}\right)\right)}=\frac{1.14244324220000}{\log \left(4 \cos ^{2}\left(\frac{\pi}{4}\right)\right)}
$$

$$
\frac{1.14244324220000}{\log \left(4 \sin ^{2}\left(\frac{\pi}{2 \times 2}\right)\right)}=\frac{1.14244324220000}{\log \left(4\left(-\cos \left(\frac{3 \pi}{4}\right)\right)^{2}\right)}
$$

$$
\frac{1.14244324220000}{\log \left(4 \sin ^{2}\left(\frac{\pi}{222}\right)\right)}=\frac{1.14244324220000}{\log _{e}\left(4 \sin ^{2}\left(\frac{\pi}{4}\right)\right)}
$$

Series representations:

$$
\begin{aligned}
& \frac{1.14244324220000}{\log \left(4 \sin ^{2}\left(\frac{\pi}{2 \times 2}\right)\right)}=\frac{1.14244324220000}{\log \left(16\left(\sum_{k=0}^{\infty}(-1)^{k} J_{1+2 k}\left(\frac{\pi}{4}\right)\right)^{2}\right)} \\
& \frac{1.14244324220000}{\log \left(4 \sin ^{2}\left(\frac{\pi}{2 \times 2}\right)\right)}=\frac{1.14244324220000}{\left.\log \left(4\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{16}\right)^{k}(-\pi)^{2 k}}{(2 k)!}\right)^{2}\right)\right)} \\
& \frac{1.14244324220000}{\log \left(4 \sin ^{2}\left(\frac{\pi}{2 \times 2}\right)\right)}=\frac{1.14244324220000}{\log \left(4\left(\sum_{k=0}^{\infty} \frac{(-1)^{k} 4^{-1-2 k} \pi^{1+2 k}}{(1+2 k)!}\right)^{2}\right)}
\end{aligned}
$$

$24+1.1424432422^{*} 10^{\wedge} 3 * 1 / \ln \left(\left(4 \sin ^{\wedge} 2(1 / 2 * \operatorname{Pi} / 2)\right)\right)$

Input interpretation:

$24+1.1424432422 \times 10^{3} \times \frac{1}{\log \left(4 \sin ^{2}\left(\frac{1}{2} \times \frac{\pi}{2}\right)\right)}$
$\log (x)$ is the natural logarithm

Result:

1672.1972000...
1672.1972.... result practically equal to the rest mass of Omega baryon 1672.45

And:
$2 * 0.5957823226^{*} 1.1424432422 * 1 / \ln \left(\left(4 \sin ^{\wedge} 2(1 / 2 * \operatorname{Pi} / 2)\right)\right)$

Where 0.5957823226 is a Ramanujan mock theta function

Input interpretation:

$2 \times 0.5957823226 \times 1.1424432422$

$$
\frac{1}{\log \left(4 \sin ^{2}\left(\frac{1}{2} \times \frac{\pi}{2}\right)\right)}
$$

Result:

1.963933512...
$1.963933 \ldots$ result very near to the mean value $1.962 * 10^{19}$ of DM particle that has a Planck scale mass: $\mathrm{m} \approx 10^{19} \mathrm{GeV}$

Alternative representations:

$\frac{2 \times 0.595782 \times 1.14244324220000}{\log \left(4 \sin ^{2}\left(\frac{\pi}{2 \times 2}\right)\right)}=\frac{1.36129}{\log \left(4 \cos ^{2}\left(\frac{\pi}{4}\right)\right)}$
$\frac{2 \times 0.595782 \times 1.14244324220000}{\log \left(4 \sin ^{2}\left(\frac{\pi}{2 \times 2}\right)\right)}=\frac{1.36129}{\log \left(4\left(-\cos \left(\frac{3 \pi}{4}\right)\right)^{2}\right)}$
$\frac{2 \times 0.595782 \times 1.14244324220000}{\log \left(4 \sin ^{2}\left(\frac{\pi}{2 \times 2}\right)\right)}=\frac{1.36129}{\log _{e}\left(4 \sin ^{2}\left(\frac{\pi}{4}\right)\right)}$
$\log _{b}(x)$ is the base- b logarithm

Series representations:

$\frac{2 \times 0.595782 \times 1.14244324220000}{\log \left(4 \sin ^{2}\left(\frac{\pi}{2 \times 2}\right)\right)}=\frac{1.36129}{\log \left(16\left(\sum_{k=0}^{\infty}(-1)^{k} J_{1+2 k}\left(\frac{\pi}{4}\right)\right)^{2}\right)}$

$\frac{2 \times 0.595782 \times 1.14244324220000}{\log \left(4 \sin ^{2}\left(\frac{\pi}{2 \times 2}\right)\right)}=\frac{1.36129}{\log \left(4\left(\sum_{k=0}^{\infty} \frac{(-1)^{k} 4^{-1-2 k^{1}}{ }^{1+2 k}}{(1+2 k)!}\right)^{2}\right)}$
$J_{n}(z)$ is the Bessel function of the first kind

Now, we have that (pag.241):

Thus the equations

$$
\begin{align*}
& G \int_{0}^{\infty} x^{a-1} f(x) d x=\sum_{1}^{\infty} a_{n} G \int_{0}^{\infty} x^{\alpha-1} e^{-2 n \pi i x} d x \\
&=\Gamma(\alpha)(2 \pi)^{-\alpha} e^{-\frac{1}{2} a \pi i} \sum_{1}^{\infty} \frac{a_{n}}{n^{\alpha}}, \\
& G \int_{0}^{\infty} x^{\alpha-1} \sum_{1}^{\infty} a_{n} \frac{\cos }{\sin } 2 n \pi x d x=\Gamma(\alpha)(2 \pi)^{-\alpha} \frac{\cos }{\sin } \frac{1}{2} \alpha \pi \sum_{1}^{\infty} \frac{a_{n}}{n^{\alpha}} \tag{18}
\end{align*}
$$

are certainly valid if $\alpha>1$. On the other hand they are not necessarily valid if $0<\alpha<1$. Thus if $\alpha=\frac{1}{2}$ and $a_{n}=1 / \sqrt{ } n$ we are led to the series

$$
\begin{aligned}
G \int_{0}^{\infty} x^{\alpha-1} f(x) d x & =\sum_{1}^{\infty} a_{n} G \int_{0}^{\infty} x^{\alpha-1} e^{-2 n \pi i x} d x \\
& =\Gamma(\alpha)(2 \pi)^{-\alpha} e^{-\frac{1}{2} a \pi i} \sum_{1}^{\infty} \frac{a_{n}}{n^{\alpha}},
\end{aligned}
$$

For $\alpha=2$, and $a_{n}=1 / n$, we obtain:
$\operatorname{gamma}(2) * 1 /(2 \mathrm{Pi})^{\wedge} 2 * \exp (-2 \mathrm{pi} / 2 * \mathrm{i}) * \operatorname{sum}((1 /(\mathrm{n}))) /\left(\mathrm{n}^{\wedge} 2\right), \mathrm{n}=1 .$. infinity
Input interpretation:
$\Gamma(2) \times \frac{1}{(2 \pi)^{2}} \exp \left(-2 \times \frac{\pi}{2} i\right) \sum_{n=1}^{\infty} \frac{\frac{1}{n}}{n^{2}}$

Result:

$-\frac{\zeta(3)}{4 \pi^{2}} \approx-0.0304485$

Input:

$-\frac{\zeta(3)}{4 \pi^{2}}$

Decimal approximation:

$-0.03044845705839327078025153047115477664700048354497393625$

Alternative representations:

$-\frac{\zeta(3)}{4 \pi^{2}}=\frac{\mathrm{Li}_{3}(-1)}{\frac{3}{4}\left(4 \pi^{2}\right)}$

$$
\begin{aligned}
& -\frac{\zeta(3)}{4 \pi^{2}}=-\frac{\zeta(3,1)}{4 \pi^{2}} \\
& -\frac{\zeta(3)}{4 \pi^{2}}=-\frac{S_{2,1}(1)}{4 \pi^{2}}
\end{aligned}
$$

$\mathrm{Li}_{n}(x)$ is the polylogarithm function

Series representations:

$-\frac{\zeta(3)}{4 \pi^{2}}=-\frac{\sum_{k=1}^{\infty} \frac{1}{k^{3}}}{4 \pi^{2}}$
$-\frac{\zeta(3)}{4 \pi^{2}}=-\frac{2 \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{3}}}{7 \pi^{2}}$
$-\frac{\zeta(3)}{4 \pi^{2}}=-\frac{e^{\sum_{k=1}^{\infty} P(3 k) / k}}{4 \pi^{2}}$

Integral representations:

$$
\begin{aligned}
& -\frac{\zeta(3)}{4 \pi^{2}}=\frac{1}{12 \pi^{2}} \int_{0}^{1} \frac{\log ^{3}\left(1-t^{2}\right)}{t^{3}} d t \\
& -\frac{\zeta(3)}{4 \pi^{2}}=-\frac{1}{8 \pi^{2}} \int_{0}^{\infty} \frac{t^{2}}{-1+e^{t}} d t \\
& -\frac{\zeta(3)}{4 \pi^{2}}=-\frac{1}{6 \pi^{2}} \int_{0}^{\infty} \frac{t^{2}}{1+e^{t}} d t
\end{aligned}
$$

$-27 * 2 * 1 /\left(\left(-\operatorname{zeta}(3) /\left(4 \mathrm{Pi}^{\wedge} 2\right)\right)\right)$

Input:

$-27 \times 2\left(-\frac{1}{\frac{c(3)}{4 \pi^{2}}}\right)$
$\zeta(s)$ is the Riemann zeta function

Exact result:

$$
\frac{216 \pi^{2}}{\zeta(3)}
$$

Decimal approximation:

1773.488879795786814954848546764290355705534833389528443012...
$1773.488 \ldots$ result in the range of the mass of candidate "glueball" $\mathrm{f}_{0}(1710)$ and the hypothetical mass of Gluino ("glueball" $=1760 \pm 15 \mathrm{MeV}$; gluino $=1785.16 \mathrm{GeV}$).

Alternative representations:

$$
\begin{aligned}
& \frac{-27 \times 2}{-\frac{C(3)}{4 \pi^{2}}}=\frac{-54}{-\frac{\zeta(3,1)}{4 \pi^{2}}} \\
& \frac{-27 \times 2}{-\frac{\zeta(3)}{4 \pi^{2}}}=\frac{-54}{-\frac{S_{2,1}(1)}{4 \pi^{2}}} \\
& \frac{-27 \times 2}{-\frac{C(3)}{4 \pi^{2}}}=-\frac{54}{\frac{L_{3}(-1)}{3}\left(4 \pi^{2}\right)}
\end{aligned}
$$

$\zeta(s, a)$ is the generalized Riemann zeta function
$S_{n, p}(x)$ is the Nielsen generalized polylogarithm function
$\mathrm{Li}_{n}(x)$ is the polylogarithm function

$$
\begin{aligned}
& \frac{-27 \times 2}{-\frac{\zeta(3)}{4 \pi^{2}}}=\frac{216 \pi^{2}}{\sum_{k=1}^{\infty} \frac{1}{k^{3}}} \\
& \frac{-27 \times 2}{-\frac{\zeta(3)}{4 \pi^{2}}}=\frac{189 \pi^{2}}{\sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{3}}} \\
& \frac{-27 \times 2}{-\frac{\zeta(3)}{4 \pi^{2}}}=216 e^{-\sum_{k=1}^{\infty} P(3 k) / k} \pi^{2}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{-27 \times 2}{-\frac{\zeta(3)}{4 \pi^{2}}}=\frac{756 \pi^{2}}{\int_{0}^{\infty} t^{2} \operatorname{csch}(t) d t} \\
& \frac{-27 \times 2}{-\frac{\zeta(3)}{4 \pi^{2}}}=-\frac{648 \pi^{2}}{\int_{0}^{1} \frac{\log ^{3}\left(1-t^{2}\right)}{t^{3}} d t} \\
& \frac{-27 \times 2}{-\frac{\zeta(3)}{4 \pi^{2}}}=\frac{432 \pi^{2}}{\int_{0}^{\infty} \frac{t^{2}}{-1+t^{t}} d t}
\end{aligned}
$$

$\operatorname{csch}(x)$ is the hyperbolic cosecant function
$\log (x)$ is the natural logarithm

$(-1.2273432177 / 43)+\left(\left(\left(\left(-27^{*} 2 * 1 /\left(\left(-z e t a(3) /\left(4 \mathrm{Pi}^{\wedge} 2\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 15\right.$

Where $\mathbf{f}(\mathbf{q})=\mathbf{1 . 2 2 7 3 4 3 2 1 7 7 1 2 5 9} \ldots$.. is a Ramanujan mock theta function

Input interpretation:

$-\frac{1.2273432177}{43}+\sqrt[15]{-27 \times 2\left(-\frac{1}{\frac{c(3)}{4 \pi^{2}}}\right)}$

Result:

1.618058854156...
1.618058....

This result is a very good approximation to the value of the golden ratio 1,618033988749...

Alternative representations:

$-\frac{1.22734321770000}{43}+\sqrt[15]{\frac{-27 \times 2}{-\frac{\zeta(3)}{4 \pi^{2}}}}=-\frac{1.22734321770000}{43}+\sqrt[15]{\frac{-54}{-\frac{\zeta(3,1)}{4 \pi^{2}}}}$

$-\frac{1.22734321770000}{43}+\sqrt[15]{\frac{-27 \times 2}{-\frac{\zeta(3)}{4 \pi^{2}}}}=-\frac{1.22734321770000}{43}+\sqrt[15]{-\frac{54}{\frac{L_{3}(-1)}{\frac{3}{4}\left(4 \pi^{2}\right)}}}$
$\zeta(s, a)$ is the generalized Riemann zeta function
$S_{n, p}(x)$ is the Nielsen generalized polylogarithm function
$\mathrm{Li}_{n}(x)$ is the polylogarithm function

Series representations:

$$
\begin{aligned}
& -\frac{1.22734321770000}{43}+\sqrt[15]{\frac{-27 \times 2}{-\frac{\zeta(3)}{4 \pi^{2}}}}= \\
& -0.0285428655279070+1.43096908110526 \sqrt[15]{\frac{\pi^{2}}{\sum_{k=1}^{\infty} \frac{1}{k^{3}}}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1.22734321770000}{43}+\sqrt[15]{\frac{-27 \times 2}{-\frac{C(3)}{4 \pi^{2}}}}= \\
& -0.0285428655279070+1.40378630417471 \sqrt[15]{-\frac{\pi^{2}}{\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{3}}}} \\
& -\frac{1.22734321770000}{43}+\sqrt[15]{\frac{-27 \times 2}{-\frac{C(3)}{4 \pi^{2}}}}= \\
& -0.0285428655279070+1.41828699380265 \sqrt[15]{\frac{\pi^{2}}{\sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{3}}}}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& -\frac{1.22734321770000}{43}+\sqrt[15]{\frac{-27 \times 2}{-\frac{\zeta(3)}{4 \pi^{2}}}}= \\
& -0.0285428655279070+1.48536363308245 \sqrt[15]{\frac{\pi^{2} \Gamma(3)}{\int_{0}^{\infty} t^{2} \operatorname{csch}(t) d t}}
\end{aligned}
$$

$$
\begin{aligned}
- & \frac{1.22734321770000}{43}+\sqrt[15]{\frac{-27 \times 2}{-\frac{\zeta(3)}{4 \pi^{2}}}}= \\
& -0.0285428655279070+1.30464669167515 \sqrt[15]{\frac{\pi^{2} \Gamma(4)}{\int_{0}^{\infty} t^{3} \operatorname{csch}^{2}(t) d t}}
\end{aligned}
$$

$$
-\frac{1.22734321770000}{43}+\sqrt[15]{\frac{-27 \times 2}{-\frac{C(3)}{4 \pi^{2}}}}=
$$

$$
-0.0285428655279070+1.43096908110526 \sqrt[15]{\frac{\pi^{2} \Gamma(3)}{\int_{0}^{\infty} \frac{t^{2}}{-1+t^{t}} d t}}
$$

We have also:
$\left(\left(\left(\left(-(1.716864664+1.962364415+0.509707374) * 1 /\left(\left(-z \operatorname{ta}(3) /\left(4 \mathrm{Pi}^{\wedge} 2\right)\right)\right)\right)\right.\right.\right.$

Input interpretation:

$-(1.716864664+1.962364415+0.509707374)\left(-\frac{1}{\frac{C(3)}{4 \pi^{2}}}\right)$

Result:

137.5746707...
$137.57467 \ldots$ result very near to the mean of the rest masses of two Pion mesons 134.9766 and 139.57 that is 137.2733 and very near to the inverse of fine-structure constant 137,035

Alternative representations:

$\frac{-(1.71686+1.96236+0.509707)}{-\frac{\zeta(3)}{4 \pi^{2}}}=\frac{-4.18894}{-\frac{\zeta(3,1)}{4 \pi^{2}}}$
$\frac{-(1.71686+1.96236+0.509707)}{-\frac{\zeta(3)}{4 \pi^{2}}}=\frac{-4.18894}{-\frac{S_{2,1}(1)}{4 \pi^{2}}}$
$\frac{-(1.71686+1.96236+0.509707)}{-\frac{L(3)}{4 \pi^{2}}}=-\frac{4.18894}{\frac{L_{3}(-1)}{\frac{3}{4}\left(4 \pi^{2}\right)}}$
$\zeta(s, a)$ is the generalized Riemann zeta function
$S_{n, p}(x)$ is the Nielsen generalized polylogarithm function
$\mathrm{Li}_{n}(x)$ is the polylogarithm function

Series representations:

$$
\frac{-(1.71686+1.96236+0.509707)}{-\frac{\zeta(3)}{4 \pi^{2}}}=\frac{16.7557 \pi^{2}}{\sum_{k=1}^{\infty} \frac{1}{k^{3}}}
$$

$$
\frac{-(1.71686+1.96236+0.509707)}{-\frac{\zeta(3)}{4 \pi^{2}}}=-\frac{12.5668 \pi^{2}}{\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{3}}}
$$

$$
\frac{-(1.71686+1.96236+0.509707)}{-\frac{\zeta(3)}{4 \pi^{2}}}=\frac{14.6613 \pi^{2}}{\sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{3}}}
$$

Integral representations:

$$
\begin{aligned}
& \frac{-(1.71686+1.96236+0.509707)}{-\frac{\zeta(3)}{4 \pi^{2}}}=\frac{29.3226 \pi^{2} \Gamma(3)}{\int_{0}^{\infty} t^{2} \operatorname{csch}(t) d t} \\
& \frac{-(1.71686+1.96236+0.509707)}{-\frac{\zeta(3)}{4 \pi^{2}}}=\frac{16.7557 \pi^{2} \Gamma(3)}{\int_{0}^{\infty} \frac{t^{2}}{-1+e^{t}} d t} \\
& \frac{-(1.71686+1.96236+0.509707)}{-\frac{\zeta(3)}{4 \pi^{2}}}=\frac{12.5668 \pi^{2} \Gamma(3)}{\int_{0}^{\infty} \frac{t^{2}}{1+t^{t}} d t}
\end{aligned}
$$

References

Collected Papers of G. H. Hardy - including joint papers with J. E. Littlewod and others - Vol. VI - Oxford At The Clarendon Press - 1974

[^0]: ${ }^{1}$ M.Nardelli have studied by Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

