$A^{x}+B^{y}=C^{z}$
 - Part 1: My theorem

Nguyen Van Quang
Hue - Vietnam, 10-2019

Abstract

Adding to the known partial results, two famous Math problems : Beal conjecture and the Fermat-Catalan conjecture are proved by one theorem - QS theorem that we propose in this article, and also means that the elementary proof of FLt has been found.

1 The theorem

theorem 1. (General - theorem: denoted by $Q G$ theorem)
For all positive integers n and x_{i}, all integers $A_{i} \neq \pm 1$ and $\left(A_{1}, A_{2}, \ldots, A_{n}\right)=1$
$A_{1}^{x_{1}}+A_{2}^{x_{2}}+\ldots+A_{n-1}^{x_{n-1}}+A_{n}^{x_{n}}=0 \Rightarrow \frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n-1}}+\frac{1}{x_{n}}+\frac{n}{\operatorname{LCM}\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right)}>1$.
Notes:
$\operatorname{Sign}(+)$ before A_{i} can be replaced with sigh (-) in any place.
$\operatorname{LCM}\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right)$: least common multiples of $x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}$.
Remark:
If we let $B_{1}^{x_{1}}+B_{2}^{x_{2}}+\ldots+B_{n-1}^{x_{n-1}}=B$
Multiply both sides by $B^{x_{1} x_{2} \ldots x_{n-1}}$
we have $B_{1}^{x_{1}} B^{x_{1} x_{2} \ldots x_{n-1}}+B_{2}^{x_{2}} B^{x_{1} x_{2} \ldots x_{n-1}}+\ldots+B_{n-1}^{x_{n-1}} B^{x_{1} x_{2} \ldots x_{n-1}}=B^{x_{1} x_{2} \ldots x_{n-1}+1}$

$$
\left(B_{1} B^{x_{2} \ldots x_{n-1}}\right)^{x_{1}}+\left(B_{2} B^{x_{1} \ldots x_{n-1}}\right)^{x_{2}}+\ldots+\left(B_{n-1} B^{x_{1} x_{2} \ldots x_{n-2}}\right)^{x-1}=B^{x_{1} x_{2} \ldots x_{n-1}+1}
$$

clearly, if all A_{i} has a common factor, the equation above have solution in integer.
For $\mathrm{n}=3$, we have $A_{1}^{x_{1}}+A_{2}^{x_{2}}+A_{3}^{x_{3}}=0$
This is the same as equation $A^{x}+B^{y}=C^{z}$, and we get the theorem for specific case $n=3$ as below:
theorem 2. (Specific - theorem: denoted by $Q S$-theorem)
For positive integers x, y, z, and $A, B, C \neq \pm 1$, coprime integers:
The equation $A^{x}+B^{y}=C^{z} \Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{3}{\operatorname{LCM}(x, y, z)}>1$
In other worlds, the equation $A^{x}+B^{y}=C^{z}$ has no solution $(A, B, C \neq \pm 1$, coprime $)$ in integer if

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{3}{\operatorname{LCM(x,y,z)}} \leqslant 1
$$

Notes:
LCM (x, y, z): least common multiples of x, y and z.

As above, if A, B and C have a common factor, we always find a solution as below:
Let $a_{0}^{x}+b_{0}^{x}=c_{0}$ then $c_{0}^{x} a_{0}^{x}+c_{0}^{x} b_{0}^{x}=c_{0}^{x+1}$
so $A^{x}+B^{x}=C^{x+1}\left(A=c_{0} a_{0}, B=c_{0} b_{0}, C=c_{0}\right)$
Or
Let $a_{0}^{x}+b_{0}^{y}=c_{0}$ then $c_{0}^{x y} a_{0}^{x}+c_{0}^{x y} b_{0}^{y}=c_{0}^{x y+1}$
so $A^{x}+B^{y}=C^{x y+1}$, $\left(A=c_{0}^{y} a_{0}, B=c_{0}^{x} b_{0}, C=c_{0}\right.$

2 Consequence:

For Beal's conjecture [1]

There are no solution to the equation $A^{x}+B^{y}=C^{z}$ in positive integers A, B, C, x, y, z with A, B, C being pairwise coprime and all of x, y, z being greater than 2.

The cases: $A^{3}+B^{3}=C^{3}, A^{4}+B^{4}=C^{4}, A^{3}+B^{3}=C^{4}, A^{4}+B^{4}=C^{3}, A^{3}+B^{3}=C^{5}, A^{5}+B^{5}=$ C^{5} (and all permutation of the ordered triple ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)) have been shown to have no solution in integer (A, B and C coprimes). By QS - theorem, Beal's conjecture is proven for other cases.That mean Beal's conjecture (including Fermat's Last theorem) is true for all positive integers $x, y, z \geqslant 3$

For Fermat- Catalan conjecture [2]

There are only finitely many triples of relatively integers A, B, C for which $A^{x}+B^{y}=C^{z}$ with x, y, z are positive integers satisfying $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}<1$

All cases of triple: $x, y, z=(2,4,5) ;(2,3,7) ;(2,3,8) ;(2,3,9) ;(2,3,10) ;(2,5,5) ;(4,4,4) ;(5,5,5)$; $(3,3,4) ;(4,4,3) ;(3,3,5)$ (and all permutation of the ordered triple $(\mathrm{x}, \mathrm{y}, \mathrm{z})$) satisfy : $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}<$ $1 \leqslant \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{3}{L C M(x, y, z)}$ have been shown [2] to have only finitely many solutions in integer as follows:

The cases: $x, y, z=(2,4,5) ;(2,3,7) ;(2,3,8) ;(2,3,9)$ have some solutions in integer.

$$
\begin{aligned}
& \quad 2^{5}+7^{2}=3^{4}, 7^{3}+13^{2}=2^{9}, 2^{7}+17^{3}=71^{2}, \\
& 3^{5}+11^{4}=122^{2}, 17^{7}+76271^{3}=21063928^{2} 1414^{3}+2213459^{2}=65^{7}, \\
& 9262^{3}+15312283^{2}=113^{7}, 43^{8}+96222^{3}=30042907^{2}, 33^{8}+1549034^{2}=15613^{3}
\end{aligned}
$$

And for $1^{x}+B^{y}=C^{z}$, the $1^{x}+2^{3}=3^{2}$ is the only solution where one of a,b and c is 1 [3]. The cases: $(2,3,10) ;(2,5,5) ;(4,4,4) ;(5,5,5) ;(3,3,4) ;(4,4,3) ;(3,3,5)$ have no solution in integer.

By QS -theorem, other cases $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{3}{L C M(x, y, z)} \leqslant 1$ have no solution in integer, so that if $\mathrm{x}, \mathrm{y}, \mathrm{z}$ satisfy $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}<1$, then the equation $A^{x}+B^{y}=C^{z}$ has only finitely many solutions in integer.

References

[1] Beal conjecture - Wikipedia
[2] Fermat Catalan conjecture - Wikipedia
[3] Catalan's conjecture - Wikipedia
[4] Euler's Sum of powers conjecture - Wikipedia
[5] Quang N V, Theorem for W^{n} and Fermat's Last theorem VIxra: 1811.0072 v2(NT)
[6] Quang N V, A proof of the four color theorem by induction Vixra: 1601.0247 (CO)
Email:
nguyenvquang67@gmail.com
quangnhu67@yahoo.com.vn

