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Three fallacies that illustrate why division by zero is frequently considered undefined operation 
are examined. The example fallacies consider the unique case of zero divided by zero. Two 
examples are fallacies of equality, and the other is an example of ambiguity in the solution for an 
equation. These fallacies are examined using the transmathematic number nullity F. By utilizing 
nullity, division by zero is no longer an undefined or indeterminate operation, but a consistent, 
well-defined operation in arithmetic. 
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1. Introduction 
 
In mathematics, division by zero is formally an undefined or indeterminate operation. Three 
examples demonstrate why division by zero is an undefined operation. These examples are: 
 

1. Ambiguity of value 
2. Fallacy of equal numbers 
3. Fallacy of equal proportions 

 
1.1 Ambiguity of Value 
 
The explanation for the ambiguity [Bit 1995] of division by zero is: 
 

"On the other hand, if we divide 0 by 0, we look for a number r such that 0 ´ r = 
0. But 0 ´ r = 0 for any number r. Thus it appears 0 ÷ 0 could be any number we 
choose. Getting any answer we want when we divide 0 by 0 would be very 
confusing. Thus we agree that division by zero is undefined." 

 
For the expression: 
 

0	×	𝑟	 = 	0 
 
Hence the calculation of r has the possibility of any number n such that: 
 

−∞ < −𝑛 < −𝑛 + 1 <. . . < −1 < 0 < +1 <	. . . < 𝑛 − 1 < 𝑛 < +∞	 
 
Thus there are infinitely many solutions for the equation, and this ambiguity contradicts the 
certainty of one resulting number for a solution to satisfy the equation. 
 
1.2 Fallacy of Equal Numbers 
 
The fallacy of equal numbers [Nor 1944a] is explained with: 
 

Suppose that: 
 

𝑎	 = 	𝑏	 + 	𝑐 
 
where a, b, and c are positive numbers. Then inasmuch as a is equal to b plus 
some number, a is greater than b. Multiply both sides by a - b. Then 
 

𝑎0 	− 	𝑎𝑏	 = 	𝑎𝑏	 + 	𝑎𝑐	 −	𝑏0 − 	𝑏𝑐. 
 
 
 
 
Subtract ac from both sides: 
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𝑎0 	− 	𝑎𝑏	 − 	𝑎𝑐	 = 	𝑎𝑏	 + 	𝑎𝑐	 −	𝑏0	– 	𝑏𝑐 − 𝑎𝑐. 

 
Simplify the equation: 
 

𝑎0 	− 	𝑎𝑏	 − 	𝑎𝑐	 = 	𝑎𝑏	 −	𝑏0 	− 	𝑏𝑐. 
 

Factor: 
 

𝑎(𝑎 − 𝑏 − 𝑐) = 𝑏(𝑎 − 𝑏 − 𝑐) 
 
Divide both sides by a - b - c. Then 
 

𝑎	 = 	𝑏 
 
Thus a, which was originally assumed to be greater than b, has been show to be 
equal to b. 

 
Using actual numbers, the fallacy is rewritten for a more concrete illustration. 
 

Suppose that: 
 

3	 = 	2	 + 	1 
 
where a = 3, b = 2, and c = 1 are positive numbers. Then inasmuch as a is equal to b plus 
some number, 3 is greater than 1. Multiply both sides by 3 - 2. Then 
 

	3(3 − 2) = (3 − 2)(2 + 1) 
  

Expand the equation into multiplicative terms: 
 

3 ∙ 3	 − 	3 ∙ 2	 = 	3 ∙ 2	 + 	3 ∙ 1	 − 	2 ∙ 2 − 	1 ∙ 2. 
 
Subtract 3×1 from both sides: 
 

3 ∙ 3	 − 	3 ∙ 2	 − 	3 ∙ 1 = 	3 ∙ 2	 + 	3 ∙ 1	 − 	2 ∙ 2 − 	1 ∙ 2 − 3 ∙ 1. 
 
Simplify the equations: 
 

3 ∙ 3	 − 	3 ∙ 2	 − 	3 ∙ 1 = 	3 ∙ 2	 − 	2 ∙ 2 − 	1 ∙ 2. 
 

Factor: 
 

3(3 − 2 − 1) = 2(3 − 2 − 1) 
 
Divide both sides by 3 - 2 - 1. Then 



 5 

 
3	 = 	2 

 
Thus 3, which was originally assumed to be greater than 2, has been shown to be equal to 
2. 

 
The result is a contradiction, where three is equal to two. 
 
1.3 Fallacy of Equal Proportions 
 
The fallacy of equal proportions [Nor 1944b] is explained with: 
 

Given 
 

a
b
=
a
c
,  

 
Multiply both sides by bc. Then 
 

ac = ab.  
 
Divide both sides by a: 
 

c = b.  
 
But if a = 0, then this last step involves division by zero. 
 

 
Using actual numbers, the fallacy is rewritten for a more concrete illustration, where a = 0, b = 1, 
and c = 2. 
 

Given 
 

0
1
=
0
2

 

 
Multiply both sides by 1×2. Then 
 

(1⋅2) ⋅ 0
1
=
0
2
⋅ (1⋅2)  

 
Simplifying the expression: 
 

2 ⋅0 =1⋅0  
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By the commutative property: 
 

0 ⋅2 = 0 ⋅1  
 
Divide both sides by 0: 
 

0
0
⋅2 = 0

0
⋅1 

 
Simplifying the expression: 
 

2 =1  
 
The result is a contradiction where the number two is equal to one. 
 
2. Application 
 
Both examples of ambiguity and a contradiction for division by zero can be re-evaluated using 
the transmathematic number nullity represented by the Greek letter Φ	phi.  
 
2.1 Nullity 
 
The standard, conventional thinking of mathematics is that nullity is undefined or indeterminate. 
Reid [Rei 2006] writes, "The expression 0/0 is neither mathematically meaningful nor 
meaningless. It is indeterminate." Nullity is formally defined with the expression: 
 

Φ	 = 	
0
0 

 
Nullity is a determinate number resulting from the specific case of zero divided by zero. 
 
2.2 Ambiguity of Value 
 
Utilizing nullity and re-evaluating the example: 
 

0	×	𝑟	 = 	0 
 
Divide by zero: 
 

0
0	×	𝑟	 = 	

0
0 

 
Substitute the definition of nullity: 
 

Φ	×	𝑟	 = 	Φ 
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Multiply by nullity: 
 

Φ	 = 	Φ 
 
The result is a logically true expression.  
 
2.3 Fallacy of Equal Numbers 
 
Utilizing nullity and re-evaluating the example: 
 

Suppose that: 
 

𝑎	 = 	𝑏	 + 	𝑐 
 
where a, b, and c are positive numbers. Then inasmuch as a is equal to b plus 
some number, a is greater than b.  
 
Multiply both sides by a - b. Then 
 

𝑎0 	− 	𝑎𝑏	 = 	𝑎𝑏	 + 	𝑎𝑐	 −	𝑏0 − 	𝑏𝑐. 
 
Subtract ac from both sides: 
 

𝑎0 	− 	𝑎𝑏	 − 	𝑎𝑐	 = 	𝑎𝑏 −	𝑏0 	− 	𝑏𝑐. 
 
Factor: 
 

𝑎(𝑎 − 𝑏 − 𝑐) = 𝑏(𝑎 − 𝑏 − 𝑐) 
 
Divide both sides by a - b - c. Then 
 

𝑎	 ∙
(𝑎 − 𝑏 − 𝑐)
(𝑎 − 𝑏 − 𝑐) 	= 	𝑏 ∙

(𝑎 − 𝑏 − 𝑐)
(𝑎 − 𝑏 − 𝑐) 

 
Substituting for the expression a - b - c as zero: 
 

𝑎	 ∙ 	
0
0 	= 	𝑏 ∙ 	

0
0 

 
Substituting into the expression with nullity: 
 

𝑎	 ∙ 	Φ = 	𝑏 ∙ 	Φ 
 
Multiply by nullity: 
 

Φ = Φ 
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The result is a logically true expression. 
 
2.4 Fallacy of Equal Proportions 
 
Utilizing nullity and re-evaluating the example: 
 

Given 
 

a
b
=
a
c
,  

 
Multiply both sides by bc. Then 
 

ac = ab.  
 

Divide both sides by a: 
 

a
a
⋅c = a

a
⋅b  

 
Substitute a = 0 into the expression: 
 

0
0
⋅c = 0

0
⋅b  

 
Substitute nullity: 
 

Φ⋅c =Φ⋅b  
 
Multiply by nullity: 
 

Φ=Φ  
 
The result is a logically true expression. 
 
3. Discussion 
 
The standard definitions of division by zero as an undefined operation are by fiat. The definition 
of division by zero is inconsistent with division by other numbers, and the solution is that 
division by zero is an undefined operation. Yet the overall problem of contradiction and 
ambiguity remains unresolved. 
 
Yet the definition of division by zero in transmathematics has consistent results in both examples 
of division by zero. For each example, the multiplication of nullity with another term is nullity.  
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In transmathematics, this is formally the axiom of multiplicative nullity. This axiom states 
multiplication of a real or complex number a with nullity [And 2009a] is: 
 

a × Φ = Φ 
 
The axiom of multiplicative nullity avoids both ambiguity and the contradiction in the operation 
of division by zero. This eliminates the special case where division by zero is undefined, thus 
division is defined for all possible numbers. 
 
The ambiguity and contradiction in the operation of division by zero produces confusion in both 
students and teachers of mathematics. Crespo and Nicol [Cre 2006a] explain, "...teachers would 
be challenged to think of ways of explaining to young students why the answer to dividing by 0 
is not 0 using mathematical arguments rather than appeal to authority."  
 
The conclusion [Cres 2006b] is "...understanding of 0 and division by 0 were founded more on 
rule-based and flawed reasoning than on well-reasoned mathematical explanations and that they 
[teachers] lacked the experience and inclination to understand or appreciate different ideas and 
approaches to this topic." 
 
Mathematics is logical, yet in teaching and understanding division by zero, there is flawed 
thinking of appeal to authority without any mathematical explanation. Division by zero in 
mathematics is simply forbidden. 
 
4. Conclusion 
 
The formalism of conventional mathematics is that division by zero is undefined or 
indeterminate. The examples using the definition of an undefined operation for division by zero 
result in ambiguity and contradiction. Reid [Rei 2006b] explains division by zero, 
"Mathematicians say, more technically, that it is indeterminate, and it took them centuries to 
realize that it is. Only then had they finally mastered zero the number." Yet with the 
transmathematic number nullity F produces a consistent mathematical result without simply 
defining the operation as indeterminate. 
 
The transmathematical number nullity is used in the examples that consider the special and 
unique case of division of zero by zero. Yet there are two other transmathematical numbers, 
positive infinite +¥ and negative infinity -¥ that are the result of any positive or negative 
number divided by zero, respectively. All three transmathematical numbers are necessary in 
general for a consistent, uniform arithmetic that avoids contradictions. 
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