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Abstract:  Gravitational collapse of diffuse material has been investigated 

using a new solution of Einstein’s equations of general relativity. This obviates 

the theory of black-hole formation developed for the standard vacuum solution 

of Schwarzschild. The bodies which now form have reasonable physical 

properties, such as nuclear hard core density in collapsed stars, or 104kg/l in 

galactic centres. Accreting material converts to kinetic energy then radiation so 

that a singularity cannot be produced.  

 

PACS Codes: 98.62.Mw; 98.35.Mp; 97.10.Gz 

 

 

 

1.  Introduction 

        A recent article has revealed that the observed precession of planet Mercury’s 

orbit is no longer compatible with standard General Relativity theory, [1]. That is, the 

orthodox vacuum solution with its concomitant spacetime curvature interpretation may not 

be physically meaningful. Consequently, black-hole singularities cannot exist so the end 

state of stellar evolution theory needs to be reconsidered in the light of a new solution of 

Einstein’s Equations. 
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Some years ago [2] it was shown how Einstein’s equations could be interpreted in 

straight-forward physical terms by explicit introduction of gravitational field energy as 

gravitons, analogous to the electromagnetic field. These field gravitons produce the 

gravitational force by momentum exchange interactions, all conducted in flat spacetime. 

Metric tensor components then describe the variation in dimensions and time-rate or 

energy of particles in a gravitational field, not the spacetime curvature. Agreement with the 

ideas found in Special Relativity theory and accelerated frames is thereby guaranteed, and 

gravity is no longer detached from other forces. The old problem of justifying the equality 

of spacetime manifold curvature R and physical matter T is rendered obsolete. 

Consequently, mass particles and their field gravitons are expressions of the same material, 

energy, existing in empty flat spacetime. 

 

2.  Building a massive body from diffuse matter. 

In reference [2], Einstein’s equations were solved for the exterior solution of the 

spherically-symmetric static field of energetic gravitons in polar coordinates. The line 

element was then found to be 
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Logically, it was derived that the gravitational field induces mass particles to fall by 

converting their own mass (potential energy) into kinetic energy. Upon impact, the particle 

KE is radiated away, leaving the particle with reduced rest mass 

      )rc/GM1(mm 2
or −=    .       (2) 

Thus, some mass is lost to radiation so additional free diffuse mass is required to build a 

body of mass M up to its ultimate gravitational radius (R0 = GM0/c
2). As an example, if the 

final density is to be nuclear hard-core density (n) throughout, then let [M = (4/3)πnr
3]. 

And for an originally diffuse mass element (dm), only 

      )rc/GM1(dmdM 2−=  ,         (3) 

is added to M. Upon eliminating (r), this may be integrated to find the total amount of 

diffuse mass required to build a body of mass M: 
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Thus, it is impossible to build a body up to its gravitational radius because infalling matter 

is increasingly less effective at adding mass. Figure 1 illustrates the amount of diffuse 

matter necessary to build the body up to any particular mass M. 
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Figure 1  The total diffuse mass MT necessary to build a body from zero to    

         mass M, relative to the maximum possible body mass M0 . 

 

If during the building process the core material should collapse to a denser state, the 

mass to kinetic energy to radiation conversion will continue further and still prevent a 

singular surface from forming. This means that it is impossible to build the black-holes 

peculiar to the Schwarzschild solution. More energy is actually liberated by this process of 

accretion than that predicted by the Schwarzschild solution. Energetic -rays may be 

produced by total conversion of infalling matter, and these may subsequently leave the 

gravitational field without loss of energy, see reference [2 Section 3]. 

The bulk density of collapsed bodies increases through that of quasars, galactic centres, 

white dwarfs, neutron stars, and quark stars. For bodies approaching their gravitational 

radius, their masses may be related to mean densities o as follows. Let  
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then upon eliminating R, 
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Thus, body mass must decrease with increasing density because infalling matter converts 

to free radiation more and more as it compacts, see Figure 2. It follows that a stable body 

with relatively low density must be supported by internal kinetic energy and radiation 

pressure. Collapse will cease when the core material is able to resist self-gravity. A final 

body of nuclear density (say 1015kg/l ) has a mass around 12MΘ, while another of quark 

density (say 1022kg/l ) has four times Jupiter's mass. In the Galaxy core the density is 

around 104kg/l, while the huge core of M87 has only 0.0035kg/l density. Collapsing bodies 

can act like photon factories, unless they collapse violently and blast their material into 

space. When there is no further accretion of matter, the body will cool, eventually 

appearing dark but gravitationally active. 
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Figure 2  Variation of body mass (in units of Solar mass) with density,  

  for bodies at their gravitational radius. 
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3.  Interior properties of a massive body  

The interior properties of a collapsed body may be calculated using the new solution 

of Einstein’s equations, (see [2] Section 16). For example, a black-hole of mass 4×106MΘ 

has been predicted at the centre of our Galaxy; see [3-5]. It could be re-named a 

‘black-corps’ because it is really a dark body near to its final radius ( R ≈ GM/c2 ≈ 5 x 

106km), with average density around 104 kg/l. This very high density implies that the 

material would behave like a fluid in hydrostatic equilibrium. In contrast, quasars are 

commonly believed to contain black-holes of up to 108 MΘ , but these would be 

black-corps with terrestrial density around 10 kg/l . 

The line element for the interior of a spherically-symmetric static body consisting of a 

“perfect fluid” will be expressed in isotropic form as: 

    ( ) 22222222 dtedsinrdrdreds  +++−=    .    (7) 

For the energy-momentum tensor components we shall take the mechanical local 

hydrostatic pressure po and constant local mass density oo : 
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Solution of Einstein’s equations then yields the spatial metric tensor component: 

    3/8kfor),4/kr1(e oo
22/ =+=−    ,     (9) 

and temporal metric tensor component: 
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where 
2/me


 pertains to the maximum radius rm at the surface. Both these equations 

automatically designate the centre of the fluid sphere as the coordinate reference frame of 

special relativity. On going from the surface towards the centre of the body, a material 

element is compressed isotropically according to Eq.(9), and slows down internally 

according to Eq.(10), due to loss of potential energy (mass). The local (pressure/density) 

ratio increases on going from the surface inwards: 
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Figure 3 illustrates the variation of central pressure of a body (where 1e 2/ = ), in terms 

of its actual size rm relative to its theoretical gravitational radius R0 . 
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Figure 3. Pressure / density ratio at the centre of a massive body in hydrostatic 

equilibrium. A body of mass M and maximum radius rm has a theoretical gravitational 

radius R0 = GM / c2 . 

 

These results are interesting because the body material behaves reasonably, even 

though an exterior observer would lose sight of the ultimate black-corps. In the most 

extreme case, the time-rate at the centre would slow to zero relative to the surface time-rate, 

when in Eq.(10) we have: 

     02e3
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  .            (12) 

After introducing Eq.(9) and practical units, this means: 
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which is compatible with Eq.(5), although oo is the locally measured constant density. 

Particle energy varies with e/2, so a test particle could lose all of its mass on falling from 

the surface to the centre, whereas particle size varies with e−/2 by a factor of 3/2 only.  
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According to Eq.(11) the local pressure experienced by particles increases inwards and 

could cause them to rupture then collapse suddenly to a denser state. The consequent 

release of radiation energy would probably cause some outer material to be blown away, 

while inner material would be compressed, as predicted for a super-nova event. 

 

4.  Conclusion 

The new solution of Einstein’s equations has been employed to describe how 

gravitational collapse of diffuse material may produce very dense bodies of low luminosity. 

During the contraction, mass converts to kinetic energy which is lost from the system as 

radiation upon impact with the stationary core. Thus, black-hole theory really has been 

built on stellar buffoonery, as put in plain words by Eddington. 
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