A Complete Proof of Beal's Conjecture

Abdelmajid Ben Hadj Salem

To my wife Wahida, my daughter Sinda and my son Mohamed Mazen
To the memory of my friend Jalel ZId (1959-2023)

Abstract

In 1997, Andrew Beal announced the following conjecture: Let A, B, C, m, n, and l be positive integers with $m, n, l>2$. If $A^{m}+B^{n}=C^{l}$ then A, B, and C have a common factor. We begin to construct the polynomial $P(x)=\left(x-A^{m}\right)\left(x-B^{n}\right)\left(x+C^{l}\right)=x^{3}-p x+q$ with p, q integers depending on A^{m}, B^{n} and C^{l}. We resolve $x^{3}-p x+q=0$ and we obtain the three roots x_{1}, x_{2}, x_{3} as functions of p and a parameter θ. Since $A^{m}, B^{n},-C^{l}$ are the only roots of $x^{3}-p x+q=0$, we discuss the conditions that x_{1}, x_{2}, x_{3} are integers and have or do have not a common factor. Three numerical examples are given.

Mathematics Subject Classification (2010). Primary 11AXX; Secondary 11D41, 26AXX.
Keywords. Prime numbers, divisibility, roots of polynomials of third degree, Diophantine equations.

1. Introduction

In 1997, Andrew Beal [1] announced the following conjecture :
Conjecture 1.1. Let A, B, C, m, n, and l be positive integers with $m, n, l>2$. If:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{1.1}
\end{equation*}
$$

then A, B, and C have a common factor.
The purpose of this paper is to give a complete proof of Beal's conjecture. Our idea is to construct a polynomial $P(x)$ of order three having as roots A^{m}, B^{n} and $-C^{l}$ with the condition (1.1). We obtain $P(x)=x^{3}-p x+q$ where p, q are depending of A^{m}, B^{n} and C^{l}. Then we express $A^{m}, B^{n},-C^{l}$ the roots of $P(x)=0$ in function of p and a parameter θ that depends of the A, B, C. The calculations give that $A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}$. As $A^{2 m}$ is an integer, it
follows that $\cos ^{2} \frac{\theta}{3}$ must be written as $\frac{a}{b}$ where a, b are two positive coprime integers. Beside the trivial cases, there are two main hypothesis to study:

- the first hypothesis is: $3 \mid a$ and $b \mid 4 p$,
- the second hypothesis is: $3 \mid p$ and $b \mid 4 p$.

We discuss the conditions of divisibility of p, a, b so that the expression of $A^{2 m}$ is an integer. Depending of each individual case, we obtain that A, B, C have or do have not a common factor. Our proof of the conjecture contains many cases to study. there are many cases where we use elementary number theory and some cases need more research to obtain finally the solution. I think that my new idea detailed above overcomes the apparent limitations of the methods I am using.

The paper is organized as follows. In section 1, it is an introduction of the paper. The trivial case, where $A^{m}=B^{n}$, is studied in section 2. The preliminaries needed for the proof are given in section 3 where we consider the polynomial $P(x)=\left(x-A^{m}\right)\left(x-B^{n}\right)\left(x+C^{l}\right)=x^{3}-p x+q$. The section 4 is the preamble of the proof of the main theorem. Section 5 treats the cases of the first hypothesis $3 \mid a$ and $b \mid 4 p$. We study the cases of the second hypothesis $3 \mid p$ and $b \mid 4 p$ in section 6 . Finally, we present three numerical examples and the conclusion in section 7 .

In 1997, Andrew Beal [1] announced the following conjecture :
Conjecture 1.2. Let A, B, C, m, n, and l be positive integers with $m, n, l>2$. If:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{1.2}
\end{equation*}
$$

then A, B, and C have a common factor.

2. Trivial Case

We consider the trivial case when $A^{m}=B^{n}$. The equation (1.2) becomes:

$$
\begin{equation*}
2 A^{m}=C^{l} \tag{2.1}
\end{equation*}
$$

then $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{q} . C_{1}$ with $q \geq 1,2 \nmid C_{1}$ and $2 A^{m}=2^{q l} C_{1}^{l} \Longrightarrow$ $A^{m}=2^{q l-1} C_{1}^{l}$. As $l>2, q \geq 1$, then $2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{r} A_{1}$ with $r \geq 1$ and $2 \nmid A_{1}$. The equation (2.1), becomes:

$$
\begin{equation*}
2 \times 2^{r m} A_{1}^{m}=2^{q l} C_{1}^{l} \tag{2.2}
\end{equation*}
$$

As $2 \nmid A_{1}$ and $2 \nmid C_{1}$, we obtain the first condition :
there exists two positive integers r, q with $r . q \geq 1$ so that $q l=m r+1$
Then from (2.2):

$$
\begin{equation*}
A_{1}^{m}=C_{1}^{l} \tag{2.3}
\end{equation*}
$$

2.1. Case $1 A_{1}=1 \Longrightarrow C_{1}=1$

Using the condition (2.3) above, we obtain 2. $\left(2^{r}\right)^{m}=\left(2^{q}\right)^{l}$ and the Beal conjecture is verified.

2.2. Case $2 A_{1}>1 \Longrightarrow C_{1}>1$

From the fundamental theorem of the arithmetic, we can write:

$$
\begin{gather*}
A_{1}=a_{1}^{\alpha_{1}} \ldots a_{I}^{\alpha_{I}}, \quad a_{1}<a_{2}<\cdots<a_{I} \Longrightarrow A_{1}^{m}=a_{1}^{m \alpha_{1}} \ldots a_{I}^{m \alpha_{I}} \tag{2.5}\\
C_{1}=c_{1}^{\beta_{1}} \ldots c_{J}^{\beta_{J}}, \quad c_{1}<c_{2}<\cdots<c_{J} \Longrightarrow C_{1}^{l}=c_{1}^{l \beta_{1}} \ldots c_{J}^{l \beta_{J}} \tag{2.6}
\end{gather*}
$$

where a_{i} (respectively c_{j}) are distinct positive prime numbers and α_{i} (respectively β_{j}) are integers >0.

From (2.4) and using the uniqueness of the factorization of A_{1}^{m} and C_{1}^{l}, we obtain necessary:

$$
\left\{\begin{array}{l}
I=J \tag{2.7}\\
a_{i}=c_{i}, \quad i=1,2, \ldots, I \\
m \alpha_{i}=l \beta_{i}
\end{array}\right.
$$

As one $a_{i}\left|A^{m} \Longrightarrow a_{i}\right| B^{m} \Longrightarrow a_{i} \mid B$ and in this case, the Beal conjecture is verified.

We suppose in the following that $A^{m}>B^{n}$.

3. Preliminaries

Let $m, n, l \in \mathbb{N}^{*}>2$ and $A, B, C \in \mathbb{N}^{*}$ such:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{3.1}
\end{equation*}
$$

We call:

$$
\begin{gather*}
P(x)=\left(x-A^{m}\right)\left(x-B^{n}\right)\left(x+C^{l}\right)=x^{3}-x^{2}\left(A^{m}+B^{n}-C^{l}\right) \\
+x\left[A^{m} B^{n}-C^{l}\left(A^{m}+B^{n}\right)\right]+C^{l} A^{m} B^{n} \tag{3.2}
\end{gather*}
$$

Using the equation (3.1), $P(x)$ can be written as:

$$
\begin{equation*}
P(x)=x^{3}+x\left[A^{m} B^{n}-\left(A^{m}+B^{n}\right)^{2}\right]+A^{m} B^{n}\left(A^{m}+B^{n}\right) \tag{3.3}
\end{equation*}
$$

We introduce the notations:

$$
\begin{array}{r}
p=\left(A^{m}+B^{n}\right)^{2}-A^{m} B^{n}=A^{2 m}+A^{m} B^{n}+B^{2 n} \\
q=A^{m} B^{n}\left(A^{m}+B^{n}\right)
\end{array}
$$

As $A^{m} \neq B^{n}$, we have $p>\left(A^{m}-B^{n}\right)^{2}>0$. Equation (3.3) becomes:

$$
P(x)=x^{3}-p x+q
$$

Using the equation (3.2), $P(x)=0$ has three different real roots : A^{m}, B^{n} and $-C^{l}$.

Now, let us resolve the equation:

$$
\begin{equation*}
P(x)=x^{3}-p x+q=0 \tag{3.4}
\end{equation*}
$$

To resolve (3.4) let:

$$
x=u+v
$$

Then $P(x)=0$ gives:
$P(x)=P(u+v)=(u+v)^{3}-p(u+v)+q=0 \Longrightarrow u^{3}+v^{3}+(u+v)(3 u v-p)+q=0$
To determine u and v, we obtain the conditions:

$$
\begin{aligned}
& u^{3}+v^{3}=-q \\
& u v=p / 3>0
\end{aligned}
$$

Then u^{3} and v^{3} are solutions of the second order equation:

$$
\begin{equation*}
X^{2}+q X+p^{3} / 27=0 \tag{3.6}
\end{equation*}
$$

Its discriminant Δ is written as :

$$
\Delta=q^{2}-4 p^{3} / 27=\frac{27 q^{2}-4 p^{3}}{27}=\frac{\bar{\Delta}}{27}
$$

Let:

$$
\begin{align*}
\bar{\Delta}=27 q^{2}-4 p^{3} & =27\left(A^{m} B^{n}\left(A^{m}+B^{n}\right)\right)^{2}-4\left[\left(A^{m}+B^{n}\right)^{2}-A^{m} B^{n}\right]^{3} \\
& =27 A^{2 m} B^{2 n}\left(A^{m}+B^{n}\right)^{2}-4\left[\left(A^{m}+B^{n}\right)^{2}-A^{m} B^{n}\right]^{3} \tag{3.7}
\end{align*}
$$

Denoting :

$$
\begin{array}{r}
\alpha=A^{m} B^{n}>0 \\
\beta=\left(A^{m}+B^{n}\right)^{2}
\end{array}
$$

we can write (3.7) as:

$$
\begin{equation*}
\bar{\Delta}=27 \alpha^{2} \beta-4(\beta-\alpha)^{3} \tag{3.8}
\end{equation*}
$$

As $\alpha \neq 0$, we can also rewrite (3.8) as :

$$
\bar{\Delta}=\alpha^{3}\left(27 \frac{\beta}{\alpha}-4\left(\frac{\beta}{\alpha}-1\right)^{3}\right)
$$

We call t the parameter :

$$
t=\frac{\beta}{\alpha}
$$

$\bar{\Delta}$ becomes :

$$
\bar{\Delta}=\alpha^{3}\left(27 t-4(t-1)^{3}\right)
$$

Let us calling :

$$
y=y(t)=27 t-4(t-1)^{3}
$$

Since $\alpha>0$, the sign of $\bar{\Delta}$ is also the sign of $y(t)$. Let us study the sign of y. We obtain $y^{\prime}(t)$:

$$
y^{\prime}(t)=y^{\prime}=3(1+2 t)(5-2 t)
$$

$y^{\prime}=0 \Longrightarrow t_{1}=-1 / 2$ and $t_{2}=5 / 2$, then the table of variations of y is given below:

t	$-\infty$	-1/2		5/2	4	$+\infty$
1+2t	-	0	+		+	
5-2t	+		+	0	-	
$\mathrm{y}^{\prime}(\mathrm{t})$	-	0	+	0	-	
$y(t)$						

Figure 1. The table of variations

The table of the variations of the function y shows that $y<0$ for $t>4$. In our case, we are interested for $t>0$. For $t=4$ we obtain $y(4)=0$ and for $t \in] 0,4\left[\Longrightarrow y>0\right.$. As we have $t=\frac{\beta}{\alpha}>4$ as $A^{m} \neq B^{n}$:

$$
\left(A^{m}-B^{n}\right)^{2}>0 \Longrightarrow \beta=\left(A^{m}+B^{n}\right)^{2}>4 \alpha=4 A^{m} B^{n}
$$

Then $y<0 \Longrightarrow \bar{\Delta}<0 \Longrightarrow \Delta<0$. Then, the equation (3.6) does not have real solutions u^{3} and v^{3}. Let us find the solutions u and v with $x=u+v$ is a positive or a negative real and $u \cdot v=p / 3$.

3.1. Expressions of the roots

Proof. The solutions of (3.6) are:

$$
\begin{aligned}
X_{1} & =\frac{-q+i \sqrt{-\Delta}}{2} \\
X_{2}=\overline{X_{1}} & =\frac{-q-i \sqrt{-\Delta}}{2}
\end{aligned}
$$

We may resolve:

$$
\begin{aligned}
& u^{3}=\frac{-q+i \sqrt{-\Delta}}{2} \\
& v^{3}=\frac{-q-i \sqrt{-\Delta}}{2}
\end{aligned}
$$

Writing X_{1} in the form:

$$
X_{1}=\rho e^{i \theta}
$$

with:

$$
\begin{array}{r}
\rho=\frac{\sqrt{q^{2}-\Delta}}{2}=\frac{p \sqrt{p}}{3 \sqrt{3}} \\
\text { and } \sin \theta=\frac{\sqrt{-\Delta}}{2 \rho}>0 \\
\cos \theta=-\frac{q}{2 \rho}<0
\end{array}
$$

Then $\theta[2 \pi] \in]+\frac{\pi}{2},+\pi[$, let:

$$
\begin{equation*}
\frac{\pi}{2}<\theta<+\pi \Rightarrow \frac{\pi}{6}<\frac{\theta}{3}<\frac{\pi}{3} \Rightarrow \frac{1}{2}<\cos \frac{\theta}{3}<\frac{\sqrt{3}}{2} \tag{3.9}
\end{equation*}
$$

and:

$$
\begin{equation*}
\frac{1}{4}<\cos ^{2} \frac{\theta}{3}<\frac{3}{4} \tag{3.10}
\end{equation*}
$$

hence the expression of X_{2} :

$$
\begin{equation*}
X_{2}=\rho e^{-i \theta} \tag{3.11}
\end{equation*}
$$

Let:

$$
\begin{array}{r}
u=r e^{i \psi} \\
\text { and } j=\frac{-1+i \sqrt{3}}{2}=e^{i \frac{2 \pi}{3}} \\
j^{2}=e^{i \frac{4 \pi}{3}}=-\frac{1+i \sqrt{3}}{2}=\bar{j} \tag{3.14}
\end{array}
$$

j is a complex cubic root of the unity $\Longleftrightarrow j^{3}=1$. Then, the solutions u and v are:

$$
\begin{array}{r}
u_{1}=r e^{i \psi_{1}}=\sqrt[3]{\rho} e^{i \frac{\theta}{3}} \\
u_{2}=r e^{i \psi_{2}}=\sqrt[3]{\rho} j e^{i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{\theta+2 \pi}{3}} \\
u_{3}=r e^{i \psi_{3}}=\sqrt[3]{\rho} j^{2} e^{i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{4 \pi}{3}} e^{+i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{\theta+4 \pi}{3}} \tag{3.17}
\end{array}
$$

and similarly:

$$
\begin{array}{r}
v_{1}=r e^{-i \psi_{1}}=\sqrt[3]{\rho} e^{-i \frac{\theta}{3}} \\
v_{2}=r e^{-i \psi_{2}}=\sqrt[3]{\rho} j^{2} e^{-i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{4 \pi}{3}} e^{-i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{4 \pi-\theta}{3}} \\
v_{3}=r e^{-i \psi_{3}}=\sqrt[3]{\rho} j e^{-i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{2 \pi-\theta}{3}} \tag{3.20}
\end{array}
$$

We may now choose u_{k} and v_{h} so that $u_{k}+v_{h}$ will be real. In this case, we have necessary :

$$
\begin{align*}
v_{1} & =\overline{u_{1}} \tag{3.21}\\
v_{2} & =\overline{u_{2}} \tag{3.22}\\
v_{3} & =\overline{u_{3}} \tag{3.23}
\end{align*}
$$

We obtain as real solutions of the equation (3.5):

$$
\begin{gather*}
x_{1}=u_{1}+v_{1}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3}>0 \tag{3.24}\\
x_{2}=u_{2}+v_{2}=2 \sqrt[3]{\rho} \cos \frac{\theta+2 \pi}{3}=-\sqrt[3]{\rho}\left(\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right)<0 \tag{3.25}\\
x_{3}=u_{3}+v_{3}=2 \sqrt[3]{\rho} \cos \frac{\theta+4 \pi}{3}=\sqrt[3]{\rho}\left(-\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right)>0 \tag{3.26}
\end{gather*}
$$

We compare the expressions of x_{1} and x_{3}, we obtain:

$$
\begin{align*}
2 \sqrt[3]{p} \cos \frac{\theta}{3} & \overbrace{>}^{?} \sqrt[3]{p}\left(-\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right) \\
3 \cos \frac{\theta}{3} & \overbrace{>}^{?} \sqrt{3} \sin \frac{\theta}{3} \tag{3.27}
\end{align*}
$$

As $\left.\frac{\theta}{3} \in\right]+\frac{\pi}{6},+\frac{\pi}{3}\left[\right.$, then $\sin \frac{\theta}{3}$ and $\cos \frac{\theta}{3}$ are >0. Taking the square of the two members of the last equation, we get:

$$
\begin{equation*}
\frac{1}{4}<\cos ^{2} \frac{\theta}{3} \tag{3.28}
\end{equation*}
$$

which is true since $\left.\frac{\theta}{3} \in\right]+\frac{\pi}{6},+\frac{\pi}{3}\left[\right.$ then $x_{1}>x_{3}$. As A^{m}, B^{n} and $-C^{l}$ are the only real solutions of (3.4), we consider, as A^{m} is supposed great than B^{n}, the expressions:

$$
\left\{\begin{array}{l}
A^{m}=x_{1}=u_{1}+v_{1}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3} \tag{3.29}\\
B^{n}=x_{3}=u_{3}+v_{3}=2 \sqrt[3]{\rho} \cos \frac{\theta+4 \pi}{3}=\sqrt[3]{\rho}\left(-\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right) \\
-C^{l}=x_{2}=u_{2}+v_{2}=2 \sqrt[3]{\rho} \cos \frac{\theta+2 \pi}{3}=-\sqrt[3]{\rho}\left(\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right)
\end{array}\right.
$$

4. Preamble of the Proof of the Main Theorem

Theorem 4.1. Let A, B, C, m, n, and l be positive integers with $m, n, l>2$. If:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{4.1}
\end{equation*}
$$

then A, B, and C have a common factor.
Proof. $A^{m}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3}$ is an integer $\Rightarrow A^{2 m}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3}$ is also an integer. But:

$$
\begin{equation*}
\sqrt[3]{\rho^{2}}=\frac{p}{3} \tag{4.2}
\end{equation*}
$$

Then:

$$
\begin{equation*}
A^{2 m}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3}=4 \frac{p}{3} \cdot \cos ^{2} \frac{\theta}{3}=p \cdot \frac{4}{3} \cdot \cos ^{2} \frac{\theta}{3} \tag{4.3}
\end{equation*}
$$

As $A^{2 m}$ is an integer and p is an integer, then $\cos ^{2} \frac{\theta}{3}$ must be written under the form:

$$
\begin{equation*}
\cos ^{2} \frac{\theta}{3}=\frac{1}{b} \quad \text { or } \quad \cos ^{2} \frac{\theta}{3}=\frac{a}{b} \tag{4.4}
\end{equation*}
$$

with $b \in \mathbb{N}^{*}$; for the last condition $a \in \mathbb{N}^{*}$ and a, b coprime.
Notations: In the following of the paper, the scalars $a, b, \ldots, z, \alpha, \beta, \ldots$, A, B, C, \ldots and Δ, Φ, \ldots represent positive integers except the parameters θ, ρ, or others cited in the text, are reals.
4.1. Case $\cos ^{2} \frac{\theta}{3}=\frac{1}{b}$

We obtain:

$$
\begin{equation*}
A^{2 m}=p \cdot \frac{4}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 \cdot p}{3 \cdot b} \tag{4.5}
\end{equation*}
$$

As $\frac{1}{4}<\cos ^{2} \frac{\theta}{3}<\frac{3}{4} \Rightarrow \frac{1}{4}<\frac{1}{b}<\frac{3}{4} \Rightarrow b<4<3 b \Rightarrow b=1,2,3$.
4.1.1. $b=1$. $b=1 \Rightarrow 4<3$ which is impossible.
4.1.2. $\left.b=2 . b=2 \Rightarrow A^{2 m}=p \cdot \frac{4}{3} \cdot \frac{1}{2}=\frac{2 . p}{3} \Rightarrow 3 \right\rvert\, p \Rightarrow p=3 p^{\prime}$ with $p^{\prime} \neq 1$ because $3 \ll p$, we obtain:

$$
\begin{gather*}
\left.A^{2 m}=\left(A^{m}\right)^{2}=\frac{2 p}{3}=2 \cdot p^{\prime} \Longrightarrow 2 \right\rvert\, p^{\prime} \Longrightarrow p^{\prime}=2^{\alpha} p_{1}^{2} \\
\text { with } 2 \nmid p_{1}, \quad \alpha+1=2 \beta \\
A^{m}=2^{\beta} p_{1} \tag{4.6}\\
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=p^{\prime}=2^{\alpha} p_{1}^{2} \tag{4.7}
\end{gather*}
$$

From the equation (4.6), it follows that $2 \mid A^{m} \Longrightarrow A=2^{i} A_{1}, i \geq 1$ and $2 \nmid A_{1}$. Then, we have $\beta=i . m=i m$. The equation (4.7) implies that $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.

Case $2 \mid B^{n}$: - If $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $2 \nmid B_{1}$. The expression of $B^{n} C^{l}$ becomes:

$$
B_{1}^{n} C^{l}=2^{2 i m-1-j n} p_{1}^{2}
$$

- If $2 i m-1-j n \geq 1,2\left|C^{l} \Longrightarrow 2\right| C$ according to $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.2) is verified.
- If $2 i m-1-j n \leq 0 \Longrightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.

Case $2 \mid C^{l}$: If $2 \mid C^{l}$: with the same method used above, we obtain the identical results.
4.1.3. $b=3$. $\left.b=3 \Rightarrow A^{2 m}=p \cdot \frac{4}{3} \cdot \frac{1}{3}=\frac{4 p}{9} \Rightarrow 9 \right\rvert\, p \Rightarrow p=9 p^{\prime}$ with $p^{\prime} \neq 1$, as $9 \ll p$ then $A^{2 m}=4 p^{\prime}$. If p^{\prime} is prime, it is impossible. We suppose that p^{\prime} is not a prime, as $m \geq 3$, it follows that $2 \mid p^{\prime}$, then $2 \mid A^{m}$. But $B^{n} C^{l}=5 p^{\prime}$ and $2 \mid\left(B^{n} C^{l}\right)$. Using the same method for the case $b=2$, we obtain the identical results.
4.2. Case $a>1, \cos ^{2} \frac{\theta}{3}=\frac{a}{b}$

We have:

$$
\begin{equation*}
\cos ^{2} \frac{\theta}{3}=\frac{a}{b} ; \quad A^{2 m}=p \cdot \frac{4}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 \cdot p \cdot a}{3 \cdot b} \tag{4.8}
\end{equation*}
$$

where a, b verify one of the two conditions:

$$
\begin{array}{|lll|}
\hline\{3 \mid a & \text { and } \quad b \mid 4 p\} & \text { or } \begin{array}{|lll}
\{3 \mid p & \text { and } & b \mid 4 p\} \\
\hline
\end{array} \mathbf{l} \tag{4.9}\\
\hline
\end{array}
$$

and using the equation (3.10), we obtain a third condition:

$$
\begin{equation*}
b<4 a<3 b \tag{4.10}
\end{equation*}
$$

For these conditions, $A^{2 m}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3}=4 \frac{p}{3} \cdot \cos ^{2} \frac{\theta}{3}$ is an integer.
Let us study the conditions given by the equation (4.9) in the following two sections.

5. Hypothesis : $\{3 \mid a$ and $b \mid 4 p\}$

We obtain :

$$
\begin{equation*}
3 \mid a \Longrightarrow \exists a^{\prime} \in \mathbb{N}^{*} / a=3 a^{\prime} \tag{5.1}
\end{equation*}
$$

5.1. Case $b=2$ and $3 \mid a$

$A^{2 m}$ is written as:

$$
\begin{equation*}
A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{a}{b}=\frac{4 p}{3} \cdot \frac{a}{2}=\frac{2 \cdot p \cdot a}{3} \tag{5.2}
\end{equation*}
$$

Using the equation (5.1), $A^{2 m}$ becomes :

$$
\begin{equation*}
A^{2 m}=\frac{2 \cdot p \cdot 3 a^{\prime}}{3}=2 \cdot p \cdot a^{\prime} \tag{5.3}
\end{equation*}
$$

but $\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{2}>1$ which is impossible, then $b \neq 2$.
5.2. Case $b=4$ and $3 \mid a$
$A^{2 m}$ is written :

$$
\begin{align*}
A^{2 m} & =\frac{4 \cdot p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot p}{3} \cdot \frac{a}{4}=\frac{p \cdot a}{3}=\frac{p \cdot 3 a^{\prime}}{3}=p \cdot a^{\prime} \tag{5.4}\\
& \text { and } \cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 \cdot a^{\prime}}{4}<\left(\frac{\sqrt{3}}{2}\right)^{2}=\frac{3}{4} \Longrightarrow a^{\prime}<1 \tag{5.5}
\end{align*}
$$

which is impossible. Then the case $b=4$ is impossible.
5.3. Case $b=p$ and $3 \mid a$

We have :

$$
\begin{equation*}
\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{p} \tag{5.6}
\end{equation*}
$$

and:

$$
\begin{array}{r}
A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{3 a^{\prime}}{p}=4 a^{\prime}=\left(A^{m}\right)^{2} \\
\exists a " / a^{\prime}=a^{\prime \prime} \\
\text { and } \quad B^{n} C^{l}=p-A^{2 m}=b-4 a^{\prime}=b-4 a^{\prime \prime} \tag{5.9}
\end{array}
$$

The calculation of $A^{m} B^{n}$ gives :

$$
\begin{align*}
& A^{m} B^{n}=p \cdot \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3}-2 a^{\prime} \\
\text { or } \quad & A^{m} B^{n}+2 a^{\prime}=p \cdot \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3} \tag{5.10}
\end{align*}
$$

The left member of (5.10) is an integer and p also, then $2 \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3}$ is written under the form :

$$
\begin{equation*}
2 \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{k_{2}} \tag{5.11}
\end{equation*}
$$

where k_{1}, k_{2} are two coprime integers and $k_{2} \mid p \Longrightarrow p=b=k_{2} . k_{3}, k_{3} \in \mathbb{N}^{*}$.
5.3.1. We suppose that $k_{3} \neq 1$. We obtain :

$$
\begin{equation*}
A^{m}\left(A^{m}+2 B^{n}\right)=k_{1} \cdot k_{3} \tag{5.12}
\end{equation*}
$$

Let μ be a prime integer with $\mu \mid k_{3}$, then $\mu \mid b$ and $\mu \mid A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow$ $\mu \mid A^{m}$ or $\mu \mid\left(A^{m}+2 B^{n}\right)$.
** A-1-1- If $\mu\left|A^{m} \Longrightarrow \mu\right| A$ and $\mu \mid A^{2 m}$, but $A^{2 m}=4 a^{\prime} \Longrightarrow \mu \mid 4 a^{\prime} \Longrightarrow$ $\left(\mu=2\right.$, but $\left.2 \mid a^{\prime}\right)$ or $\left(\mu \mid a^{\prime}\right)$. Then $\mu \mid a$ it follows the contradiction with a, b coprime.
** A-1-2- If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$ then $\mu \neq 2$ and $\mu \nmid B^{n}$. We write $\mu \mid\left(A^{m}+2 B^{n}\right)$ as:

$$
\begin{equation*}
A^{m}+2 B^{n}=\mu \cdot t^{\prime} \tag{5.13}
\end{equation*}
$$

It follows :

$$
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m}+B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n}
$$

Using the expression of p :

$$
\begin{equation*}
p=t^{\prime 2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right) \tag{5.14}
\end{equation*}
$$

As $p=b=k_{2} \cdot k_{3}$ and $\mu \mid k_{3}$ then $\mu \mid b \Longrightarrow \exists \mu^{\prime}$ and $b=\mu \mu^{\prime}$, so we can write:

$$
\begin{equation*}
\mu^{\prime} \mu=\mu\left(\mu t^{\prime 2}-2 t^{\prime} B^{n}\right)+B^{n}\left(B^{n}-A^{m}\right) \tag{5.15}
\end{equation*}
$$

From the last equation, we obtain $\mu\left|B^{n}\left(B^{n}-A^{m}\right) \Longrightarrow \mu\right| B^{n}$ or $\mu \mid$ $\left(B^{n}-A^{m}\right)$.
** A-1-2-1- If $\mu \mid B^{n}$ which is in contradiction with $\mu \nmid B^{n}$.
** A-1-2-2- If $\mu \mid\left(B^{n}-A^{m}\right)$ and using that $\mu \mid\left(A^{m}+2 B^{n}\right)$, we arrive to :

$$
\mu \left\lvert\, 3 B^{n}\left\{\begin{array}{l}
\mu \mid B^{n} \tag{5.16}\\
o r \\
\mu=3
\end{array}\right.\right.
$$

** A-1-2-2-1- If $\mu\left|B^{n} \Longrightarrow \mu\right| B$, it is the contradiction with $\mu \nmid B$ cited above.
** A-1-2-2-2- If $\mu=3$, then $3 \mid b$, but $3 \mid a$ then the contradiction with a, b coprime.
5.3.2. We assume now $k_{3}=1$. Then :

$$
\begin{align*}
A^{2 m}+2 A^{m} B^{n} & =k_{1} \tag{5.17}\\
b & =k_{2} \tag{5.18}\\
\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3} & =\frac{k_{1}}{b} \tag{5.19}
\end{align*}
$$

Taking the square of the last equation, we obtain:

$$
\begin{gathered}
\frac{4}{3} \sin ^{2} \frac{2 \theta}{3}=\frac{k_{1}^{2}}{b^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cos ^{2} \frac{\theta}{3}=\frac{k_{1}^{2}}{b^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cdot \frac{3 a^{\prime}}{b}=\frac{k_{1}^{2}}{b^{2}}
\end{gathered}
$$

Finally:

$$
\begin{equation*}
4^{2} a^{\prime}(p-a)=k_{1}^{2} \tag{5.20}
\end{equation*}
$$

but $a^{\prime}=a^{\prime 2}$, then $p-a$ is a square. Let:

$$
\begin{equation*}
\lambda^{2}=p-a=b-a=b-3 a^{2} \Longrightarrow \lambda^{2}+3 a a^{2}=b \tag{5.21}
\end{equation*}
$$

The equation (5.20) becomes:

$$
\begin{equation*}
4^{2} a^{\prime 2} \lambda^{2}=k_{1}^{2} \Longrightarrow k_{1}=4 a " \lambda \tag{5.22}
\end{equation*}
$$

taking the positive root, but $k_{1}=A^{m}\left(A^{m}+2 B^{n}\right)=2 a^{\prime \prime}\left(A^{m}+2 B^{n}\right)$, then :

$$
\begin{equation*}
A^{m}+2 B^{n}=2 \lambda \Longrightarrow \lambda=a^{\prime \prime}+B^{n} \tag{5.23}
\end{equation*}
$$

** A-2-1- As $A^{m}=2 a " \Longrightarrow 2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}$, with $i \geq 1$ and $2 \nmid A_{1}$, then $A^{m}=2 a "=2^{i m} A_{1}^{m} \Longrightarrow a^{\prime \prime}=2^{i m-1} A_{1}^{m}$, but $i m \geq 3 \Longrightarrow 4 \mid a "$. As $\lambda=a^{"}+B^{n}$, taking its square, we obtain $\lambda^{2}=a^{\prime \prime}+2 a " \cdot B^{n}+B^{2 n} \Longrightarrow$ $\lambda^{2} \equiv B^{2 n}(\bmod 4) \Longrightarrow \lambda^{2} \equiv B^{2 n} \equiv 0(\bmod 4)$ or $\lambda^{2} \equiv B^{2 n} \equiv 1(\bmod 4)$.
** A-2-1-1- We suppose that $\lambda^{2} \equiv B^{2 n} \equiv 0(\bmod 4) \Longrightarrow 4\left|\lambda^{2} \Longrightarrow 2\right|(b-a)$. But 2| a because $a=3 a^{\prime}=3 a^{" 2}=3 \times 2^{2(i m-1)} A_{1}^{2 m}$ and $i m \geq 3$. Then $2 \mid b$, it follows the contradiction with a, b coprime.
** A-2-1-2- We suppose now that $\lambda^{2} \equiv B^{2 n} \equiv 1(\bmod 4)$. As $A^{m}=2^{i m-1} A_{1}^{m}$ and $i m-1 \geq 2$, then $A^{m} \equiv 0(\bmod 4)$. As $B^{2 n} \equiv 1(\bmod 4)$, then B^{n} verifies $B^{n} \equiv 1(\bmod 4)$ or $B^{n} \equiv 3(\bmod 4)$ which gives for the two cases $B^{n} C^{l} \equiv 1(\bmod$ 4).

We have also $p=b=A^{2 m}+A^{m} B^{n}+B^{2 n}=4 a^{\prime}+B^{n} . C^{l}=4 a^{" 2}+$ $B^{n} C^{l} \Longrightarrow B^{n} C^{l}=\lambda^{2}-a^{\prime 2}=B^{n} . C^{l}$, then $\lambda, a " \in \mathbb{N}^{*}$ are solutions of the Diophantine equation :

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{5.24}
\end{equation*}
$$

with $N=B^{n} C^{l}>0$. Let $Q(N)$ be the number of the solutions of (5.24) and $\tau(N)$ is the number of suitable factorization of N, then we announce the following result concerning the solutions of the equation (5.24) (see theorem 27.3 in [2]):

- If $N \equiv 2(\bmod 4)$, then $Q(N)=0$.
- If $N \equiv 1$ or $N \equiv 3(\bmod 4)$, then $Q(N)=[\tau(N) / 2]$.
- If $N \equiv 0(\bmod 4)$, then $Q(N)=[\tau(N / 4) / 2]$.
$[x]$ is the integral part of x for which $[x] \leq x<[x]+1$.
In our case, we have $N=B^{n} . C^{l} \equiv 1(\bmod 4)$, then $Q(N)=[\tau(N) / 2]$. As $\lambda, a "$ is a couple of solutions of the Diophantine equation (5.24), then $\exists d, d^{\prime}$ positive integers with $d>d^{\prime}$ and $N=d . d^{\prime}$ so that:

$$
\begin{array}{r}
d+d^{\prime}=2 \lambda \\
d-d^{\prime}=2 a^{\prime \prime} \tag{5.26}
\end{array}
$$

** A-2-1-2-1- As $C^{l}>B^{n}$, we take $d=C^{l}$ and $d^{\prime}=B^{n}$. It follows:

$$
\begin{array}{r}
C^{l}+B^{n}=2 \lambda=A^{m}+2 B^{n} \\
C^{l}-B^{n}=2 a^{\prime \prime}=A^{m} \tag{5.28}
\end{array}
$$

Then the case $d=C^{l}$ and $d^{\prime}=B^{n}$ gives a priory no contradictions.
** A-2-1-2-2- Now, we consider the case $d=B^{n} C^{1}$ and $d^{\prime}=1$. We rewrite the equations (5.25-5.26):

$$
\begin{gather*}
B^{n} C^{l}+1=2 \lambda \tag{5.29}\\
B^{n} C^{l}-1=2 a^{\prime \prime} \tag{5.30}
\end{gather*}
$$

We obtain $1=\lambda-a$ ", but from (5.23), we have $\lambda=a "+B^{n}$, it follows $B^{n}=1$ and $C^{l}-A^{m}=1$, we know [4] that the only positive solution of the last equation is $C=3, A=2, m=3$ and $l=2<3$, then the contradiction.
** A-2-1-2-3- Now, we consider the case $d=c_{1}^{l r-1} C_{1}^{l}$ where c_{1} is a prime integer with $c_{1} \nmid C_{1}$ and $C=c_{1}^{r} C_{1}, r \geq 1$. It follows that $d^{\prime}=c_{1} \cdot B^{n}$. We rewrite the equations (5.25-5.26):

$$
\begin{gather*}
c_{1}^{l r-1} C_{1}^{l}+c_{1} \cdot B^{n}=2 \lambda \tag{5.31}\\
c_{1}^{l r-1} C_{1}^{l}-c_{1} \cdot B^{n}=2 a^{\prime \prime} \tag{5.32}
\end{gather*}
$$

As $l \geq 3$, from the last two equations above, it follows that $c_{1} \mid(2 \lambda)$ and $c_{1} \mid(2 a ")$. Then $c_{1}=2$, or $c_{1} \mid \lambda$ and $c_{1} \mid a^{\prime \prime}$.
** A-2-1-2-3-1- We suppose $c_{1}=2$. As $2 \mid A^{m}$ and $2 \mid C^{l}$ because $l \geq 3$, it follows $2 \mid B^{n}$, then $2 \mid(p=b)$. Then the contradiction with a, b coprime.
** A-2-1-2-3-2- We suppose $c_{1} \neq 2$ and $c_{1} \mid a "$ and $c_{1}\left|\lambda . c_{1}\right| a " \Longrightarrow c_{1} \mid a$ and $c_{1} \mid\left(A^{m}=2 a "\right)$. $B^{n}=C^{l}-A^{m} \Longrightarrow c_{1} \mid B^{n}$. It follows that $c_{1} \mid(p=b)$. Then the contradiction with a, b coprime.

The other cases of the expressions of d and d^{\prime} with d, d^{\prime} not coprime so that $N=B^{n} C^{l}=d . d^{\prime}$ give also contradictions.
** A-2-1-2-4- Now, let $C=c_{1}^{r} C_{1}$ with c_{1} a prime, $r \geq 1$ and $c_{1} \nmid C_{1}$, we consider the case $d=C_{1}^{l}$ and $d^{\prime}=c_{1}^{r l} B^{n}$ so that $d>d^{\prime}$. We rewrite the equations (5.25-5.26):

$$
\begin{gather*}
C_{1}^{l}+c_{1}^{r l} B^{n}=2 \lambda \tag{5.33}\\
C_{1}^{l}-c_{1}^{r l} B^{n}=2 a " \tag{5.34}
\end{gather*}
$$

We obtain $c_{1}^{r l} B^{n}=\lambda-a^{\prime \prime}=B^{n} \Longrightarrow c_{1}^{r l}=1$, then the contradiction.
** A-2-1-2-5- Now, let $C=c_{1}^{r} C_{1}$ with c_{1} a prime, $r \geq 1$ and $c_{1} \nmid C_{1}$, we consider the case $d=C_{1}^{l} B^{n}$ and $d^{\prime}=c_{1}^{r l}$ so that $d>d^{\prime}$. We rewrite the equations (5.25-5.26):

$$
\begin{gather*}
C_{1}^{l} B^{l}+c_{1}^{r l}=2 \lambda \tag{5.35}\\
C_{1}^{l} B^{l}-c_{1}^{r l}=2 a^{\prime \prime} \tag{5.36}
\end{gather*}
$$

We obtain $c_{1}^{r l}=\lambda-a "=B^{n} \Longrightarrow c_{1} \mid B^{n}$, then $c_{1} \mid A^{m}=2 a "$. If $c_{1}=2$, the contradiction with $B^{n} C^{l} \equiv 1(\bmod 4)$. Then $c_{1}\left|a " \Longrightarrow c_{1}\right| a \Longrightarrow c_{1} \mid(p=b)$, it follows a, b are not coprime, then the contradiction.

Cases like $d^{\prime}<C^{l}$ a divisor of C^{l} or $d^{\prime}<B^{l}$ a divisor of B^{n} with $d^{\prime}<d$ and $d . d^{\prime}=N=B^{n} C^{l}$ give contradictions.
** A-2-1-2-6- Now, we consider the case $d=b_{1} . C^{l}$ where b_{1} is a prime integer with $b_{1} \nmid B_{1}$ and $B=b_{1}^{r} B_{1}, r \geq 1$. It follows that $d^{\prime}=b_{1}^{n r-1} B_{1}^{n}$. We rewrite the equations (5.25-5.26):

$$
\begin{array}{r}
b_{1} C^{l}+b_{1}^{n r-1} B_{1}^{n}=2 \lambda \\
b_{1} C^{l}-b_{1}^{n r-1} B_{1}^{n}=2 a^{\prime \prime} \tag{5.38}
\end{array}
$$

As $n \geq 3$, from the last two equations above, it follows that $b_{1} \mid 2 \lambda$ and $b_{1} \mid(2 a ")$. Then $b_{1}=2$, or $b_{1} \mid \lambda$ and $b_{1} \mid a "$.
** A-2-1-2-6-1- We suppose $b_{1}=2 \Longrightarrow 2 \mid B^{n}$. As $2 \mid\left(A^{m}=2 a " \Longrightarrow 2 \mid\right.$ $a " \Longrightarrow 2 \mid a$, but $2 \mid B^{n}$ and $2 \mid A^{m}$ then $2 \mid(p=b)$. It follows the contradiction with a, b coprime.
** A-2-1-2-6-2- We suppose $b_{1} \neq 2$, then $b_{1} \mid \lambda$ and $b_{1}\left|a " \Longrightarrow b_{1}\right| A^{m}$ and $b_{1}\left|a " \Longrightarrow b_{1}\right| a$, but $b_{1} \mid B^{n}$ and $b_{1} \mid A^{m}$ then $b_{1} \mid(p=b)$. It follows the contradiction with a, b coprime.

The other cases of the expressions of d and d^{\prime} with d, d^{\prime} not coprime and $d>d^{\prime}$ so that $N=C^{l} B^{m}=d . d^{\prime}$ give also contradictions.

Finally, from the cases studied in the above paragraph A-2-1-2, we have found one suitable factorization of N that gives a priory no contradictions, it is the case $N=B^{n} . C^{l}=d . d^{\prime}$ with $d=C^{l}, d^{\prime}=B^{n}$ but $1 \ll \tau(N)$, it follows the contradiction with $Q(N)=[\tau(N) / 2] \leq 1$. We conclude that the case A-2-1-2 is to reject.

Hence, the case $k_{3}=1$ is impossible.
Let us verify the condition (4.10) given by $b<4 a<3 b$. In our case, the condition becomes :

$$
\begin{equation*}
p<3 A^{2 m}<3 p \text { with } \quad p=A^{2 m}+B^{2 n}+A^{m} B^{n} \tag{5.39}
\end{equation*}
$$

and $3 A^{2 m}<3 p \Longrightarrow A^{2 m}<p$ that is verified. If :

$$
p<3 A^{2 m} \Longrightarrow 2 A^{2 m}-A^{m} B^{n}-B^{2 n} \overbrace{>}^{?} 0
$$

Studying the sign of the polynomial $Q(Y)=2 Y^{2}-B^{n} Y-B^{2 n}$ and taking $Y=A^{m}>B^{n}$, the condition $2 A^{2 m}-A^{m} B^{n}-B^{2 n}>0$ is verified, then the condition $b<4 a<3 b$ is true.

In the following of the paper, we verify easily that the condition $b<4 a<3 b$ implies to verify that $A^{m}>B^{n}$ which is true.
5.4. Case $b \mid p \Rightarrow p=b . p^{\prime}, p^{\prime}>1, b \neq 2, b \neq 4$ and $3 \mid a$

$$
\begin{equation*}
A^{2 m}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot b \cdot p^{\prime} \cdot 3 \cdot a^{\prime}}{3 \cdot b}=4 \cdot p^{\prime} a^{\prime} \tag{5.40}
\end{equation*}
$$

We calculate $B^{n} C^{l}$:

$$
\begin{equation*}
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right) \tag{5.41}
\end{equation*}
$$

but $\sqrt[3]{\rho^{2}}=\frac{p}{3}$, using $\cos ^{2} \frac{\theta}{3}=\frac{3 \cdot a^{\prime}}{b}$, we obtain:
$B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 \cdot a^{\prime}}{b}\right)=p \cdot\left(1-\frac{4 \cdot a^{\prime}}{b}\right)=p^{\prime}\left(b-4 a^{\prime}\right)$
As $p=b \cdot p^{\prime}$, and $p^{\prime}>1$, so we have :

$$
\begin{align*}
& B^{n} C^{l}=p^{\prime}\left(b-4 a^{\prime}\right) \tag{5.43}\\
& \text { and } \quad A^{2 m}=4 . p^{\prime} . a^{\prime} \tag{5.44}
\end{align*}
$$

** B-1- We suppose that p^{\prime} is prime, then $A^{2 m}=4 a^{\prime} p^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow p^{\prime} \mid a^{\prime}$. But $B^{n} C^{l}=p^{\prime}\left(b-4 a^{\prime}\right) \Longrightarrow p^{\prime} \mid B^{n}$ or $p^{\prime} \mid C^{l}$.
** B-1-1- If $p^{\prime}\left|B^{n} \Longrightarrow p^{\prime}\right| B \Longrightarrow B=p^{\prime} B_{1}$ with $B_{1} \in \mathbb{N}^{*}$. Hence : $p^{\prime n-1} B_{1}^{n} C^{l}=b-4 a^{\prime}$. But $n>2 \Rightarrow(n-1)>1$ and $p^{\prime} \mid a^{\prime}$, then $p^{\prime} \mid b \Longrightarrow a$ and b are not coprime, then the contradiction.
** B-1-2- If $p^{\prime}\left|C^{l} \Longrightarrow p^{\prime}\right| C$. The same method used above, we obtain the same results.
** B-2- We consider that p^{\prime} is not a prime integer.
** B-2-1- p^{\prime}, a are supposed coprime: $A^{2 m}=4 a^{\prime} p^{\prime} \Longrightarrow A^{m}=2 a^{\prime \prime} \cdot p_{1}$ with $a^{\prime}=a^{\prime \prime}{ }^{2}$ and $p^{\prime}=p_{1}^{2}$, then $a^{"}, p_{1}$ are also coprime. As $A^{m}=2 a^{\prime \prime} \cdot p_{1}$ then $2 \mid a "$ or $2 \mid p_{1}$.
** B-2-1-1- $2 \mid a^{\prime \prime}$, then $2 \nmid p_{1}$. But $p^{\prime}=p_{1}^{2}$.
** B-2-1-1-1- If p_{1} is prime, it is impossible with $A^{m}=2 a " \cdot p_{1}$.
** B-2-1-1-2- We suppose that p_{1} is not prime, we can write it as $p_{1}=\omega^{m} \Longrightarrow$ $p^{\prime}=\omega^{2 m}$, then: $B^{n} C^{l}=\omega^{2 m}\left(b-4 a^{\prime}\right)$.
** B-2-1-1-2-1- If ω is prime, it is different of 2 , then $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** B-2-1-1-2-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$, then $B_{1}^{n} . C^{l}=\omega^{2 m-n j}\left(b-4 a^{\prime}\right)$.
** B-2-1-1-2-1-1-1- If $2 m-n . j=0$, we obtain $B_{1}^{n} . C^{l}=b-4 a^{\prime}$. As $C^{l}=$ $A^{m}+B^{n} \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$, and $\omega \mid\left(b-4 a^{\prime}\right)$. But $\omega \neq 2$ and ω is coprime with a^{\prime} then coprime with a, then $\omega \nmid b$. The conjecture (1.2) is verified.
** B-2-1-1-2-1-1-2- If $2 m-n j \geq 1$, in this case with the same method, we obtain $\omega\left|C^{l} \Longrightarrow \omega\right| C$ and $\omega \mid\left(b-4 a^{\prime}\right)$ and $\omega \nmid a$ and $\omega \nmid b$. The conjecture
(1.2) is verified.
** B-2-1-1-2-1-1-3- If $2 m-n j<0 \Longrightarrow \omega^{n \cdot j-2 m} B_{1}^{n} . C^{l}=b-4 a^{\prime}$. As $\omega \mid C$ using $C^{l}=A^{m}+B^{n}$ then $C=\omega^{h} . C_{1} \Longrightarrow \omega^{n . j-2 m+h . l} B_{1}^{n} . C_{1}^{l}=b-4 a^{\prime}$. If $n . j-2 m+h . l<0 \Longrightarrow \omega \mid B_{1}^{n} C_{1}^{l}$, it follows the contradiction that $\omega \nmid B_{1}$ or $\omega \nmid C_{1}$. Then if $n . j-2 m+h . l>0$ and $\omega \mid\left(b-4 a^{\prime}\right)$ with ω, a, b coprime and the conjecture (1.2) is verified.
** B-2-1-1-2-1-2- We obtain the same results if $\omega \mid C^{l}$.
** B-2-1-1-2-2- Now, $p^{\prime}=\omega^{2 m}$ and ω not prime, we write $\omega=\omega_{1}^{f} . \Omega$ with ω_{1} prime $\nmid \Omega$ and $f \geq 1$ an integer, and $\omega_{1} \mid A$. Then $B^{n} C^{l}=\omega_{1}^{2 f . m} \Omega^{2 m}(b-$ $\left.4 a^{\prime}\right) \Longrightarrow \omega_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega_{1}\right| B^{n}$ or $\omega_{1} \mid C^{l}$.
** B-2-1-1-2-2-1- If $\omega_{1}\left|B^{n} \Longrightarrow \omega_{1}\right| B \Longrightarrow B=\omega_{1}^{j} B_{1}$ with $\omega_{1} \nmid B_{1}$, then $B_{1}^{n} . C^{l}=\omega_{1}^{2 m f-n j} \Omega^{2 m}\left(b-4 a^{\prime}\right)$:
** B-2-1-1-2-2-1-1- If $2 f . m-n . j=0$, we obtain $B_{1}^{n} . C^{l}=\Omega^{2 m}\left(b-4 a^{\prime}\right)$. As $C^{l}=A^{m}+B^{n} \Longrightarrow \omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C \Longrightarrow \omega_{1} \mid\left(b-4 a^{\prime}\right)$. But $\omega_{1} \neq 2$ and ω_{1} is coprime with a^{\prime}, then coprime with a, we deduce $\omega_{1} \nmid b$. Then the conjecture (1.2) is verified.
** B-2-1-1-2-2-1-2- If $2 f . m-n . j \geq 1$, we have $\omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C \Longrightarrow \omega_{1} \mid$ $\left(b-4 a^{\prime}\right)$ and $\omega_{1} \nmid a$ and $\omega_{1} \nmid b$. The conjecture (1.2) is verified.
** B-2-1-1-2-2-1-3- If $2 f . m-n \cdot j<0 \Longrightarrow \omega_{1}^{n \cdot j-2 m \cdot f} B_{1}^{n} . C^{l}=\Omega^{2 m}\left(b-4 a^{\prime}\right)$. As $\omega_{1} \mid C$ using $C^{l}=A^{m}+B^{n}$, then $C=\omega_{1}^{h} \cdot C_{1} \Longrightarrow \omega^{n . j-2 m \cdot f+h . l} B_{1}^{n} \cdot C_{1}^{l}=$ $\Omega^{2 m}\left(b-4 a^{\prime}\right)$. If $n . j-2 m . f+h . l<0 \Longrightarrow \omega_{1} \mid B_{1}^{n} C_{1}^{l}$, it follows the contradiction with $\omega_{1} \nmid B_{1}$ and $\omega_{1} \nmid C_{1}$. Then if $n . j-2 m . f+h . l>0$ and $\omega_{1} \mid\left(b-4 a^{\prime}\right)$ with ω_{1}, a, b coprime and the conjecture (1.2) is verified.
** B-2-1-1-2-2-2- We obtain the same results if $\omega_{1} \mid C^{l}$.
** B-2-1-2- If $2 \mid p_{1}$, then $2 \mid p_{1} \Longrightarrow 2 \nmid a^{\prime} \Longrightarrow 2 \nmid a$. But $p^{\prime}=p_{1}^{2}$.
** B-2-1-2-1- If $p_{1}=2$, we obtain $A^{m}=4 a " \Longrightarrow 2 \mid a^{\prime \prime}$ as $m \geq 3$, then the contradiction with a, b coprime.
** B-2-1-2-2- We suppose that p_{1} is not prime and $2 \mid p_{1}$, as $A^{m}=2 a " p_{1}$, p_{1} is written as $p_{1}=2^{m-1} \omega^{m} \Longrightarrow p^{\prime}=2^{2 m-2} \omega^{2 m}$. It follows $B^{n} C^{l}=$ $2^{2 m-2} \omega^{2 m}\left(b-4 a^{\prime}\right) \Longrightarrow 2 \mid B^{n}$ or $2 \mid C^{l}$.
** B-2-1-2-2-1- If $2\left|B^{n} \Longrightarrow 2\right| B$, as $2 \mid A$, then $2 \mid C$. From $B^{n} C^{l}=$ $2^{2 m-2} \omega^{2 m}\left(b-4 a^{\prime}\right)$, it follows if $2\left|\left(b-4 a^{\prime}\right) \Longrightarrow 2\right| b$ but as $2 \nmid a^{\prime}$, there is
no contradiction with a, b coprime and the conjecture (1.2) is verified.
** B-2-1-2-2-2- If $2 \mid C^{l}$, using the same method as above, we obtain the identical results.
** B-2-2- p^{\prime}, a^{\prime} are supposed not coprime. Let ω be a prime integer so that $\omega \mid a^{\prime}$ and $\omega \mid p^{\prime}$.
** B-2-2-1- We suppose firstly $\omega=3$. As $A^{2 m}=4 a^{\prime} p^{\prime} \Longrightarrow 3 \mid A$, but $3\left|p^{\prime} \Longrightarrow 3\right| p$, as $p=A^{2 m}+B^{2 n}+A^{m} B^{n} \Longrightarrow 3\left|B^{2 n} \Longrightarrow 3\right| B$, then $3\left|C^{l} \Longrightarrow 3\right| C$. We write $A=3^{i} A_{1}, B=3^{j} B_{1}, C=3^{h} C_{1}$ and 3 coprime with A_{1}, B_{1} and C_{1} and $p=3^{2 i m} A_{1}^{2 m}+3^{2 n j} B_{1}^{2 n}+3^{i m+j n} A_{1}^{m} B_{1}^{n}=3^{k} . g$ with $k=\min (2 i m, 2 j n, i m+j n)$ and $3 \nmid g$. We have also $(\omega=3) \mid a$ and $(\omega=3) \mid$ p^{\prime} that gives $a=3^{\alpha} a_{1}=3 a^{\prime} \Longrightarrow a^{\prime}=3^{\alpha-1} a_{1}, 3 \nmid a_{1}$ and $p^{\prime}=3^{\mu} p_{1}, 3 \nmid p_{1}$ with $A^{2 m}=4 a^{\prime} p^{\prime}=3^{2 i m} A_{1}^{2 m}=4 \times 3^{\alpha-1+\mu} . a_{1} \cdot p_{1} \Longrightarrow \alpha+\mu-1=2 i m$. As $p=b p^{\prime}=b .3^{\mu} p_{1}=3^{\mu} . b . p_{1}$. The exponent of the term 3 of p is k, the exponent of the term 3 of the left member of the last equation is μ. If $3 \mid b$ it is a contradiction with a, b coprime. Then, we suppose that $3 \nmid b$, and the equality of the exponents: $\min (2 i m, 2 j n, i m+j n)=\mu$, recall that $\alpha+\mu-1=2 \mathrm{im}$. But $B^{n} C^{l}=p^{\prime}\left(b-4 a^{\prime}\right)$ that gives $3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu} p_{1}\left(b-4 \times 3^{(\alpha-1)} a_{1}\right)$. We have also $A^{m}+B^{n}=C^{l}$ gives $3^{i m} A_{1}^{m}+3^{j n} B_{1}^{n}=3^{h l} C_{1}^{l}$. Let $\epsilon=\min (i m, j n)$, we have $\epsilon=h l=\min (i m, j n)$. Then, we obtain the conditions:

$$
\begin{array}{r}
k=\min (2 i m, 2 j n, i m+j n)=\mu \\
\alpha+\mu-1=2 i m \\
\epsilon=h l=\min (i m, j n) \\
3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu} p_{1}\left(b-4 \times 3^{(\alpha-1)} a_{1}\right) \tag{5.48}
\end{array}
$$

** B-2-2-1-1- $\alpha=1 \Longrightarrow a=3 a_{1}=3 a^{\prime}$ and $3 \nmid a_{1}$, the equation (5.46) becomes:

$$
\mu=2 i m
$$

and the first equation (5.45) is written as:

$$
k=\min (2 i m, 2 j n, i m+j n)=2 i m
$$

- If $k=2 i m$, then $2 i m \leq 2 j n \Longrightarrow i m \leq j n \Longrightarrow h l=i m$, and (5.48) gives $\mu=2 i m=n j+h l=i m+n j \Longrightarrow i m=j n=h l$. Hence $3|A, 3| B$ and $3 \mid C$ and the conjecture (1.2) is verified.
- If $k=2 j n \Longrightarrow 2 j n=2 i m \Longrightarrow i m=j n=h l$. Hence $3|A, 3| B$ and $3 \mid C$ and the conjecture (1.2) is verified.
- If $k=i m+j n=2 i m \Longrightarrow i m=j n \Longrightarrow \epsilon=h l=i m=j n$ case that is seen above and we deduce that $3|A, 3| B$ and $3 \mid C$, and the conjecture (1.2) is verified.
** B-2-2-1-2- $\alpha>1 \Longrightarrow \alpha \geq 2$ and $a^{\prime}=3^{\alpha-1} a_{1}$.
- If $k=2 i m \Longrightarrow 2 i m=\mu$, but $\mu=2 i m+1-\alpha$ that is impossible.
- If $k=2 j n=\mu \Longrightarrow 2 j n=2 i m+1-\alpha$. We obtain $2 j n<2 i m \Longrightarrow j n<$ $i m \Longrightarrow 2 j n<i m+j n, k=2 j n$ is just the minimum of $(2 i m, 2 j n, i m+j n)$. We obtain $j n=h l<i m$ and the equation (5.48) becomes:

$$
B_{1}^{n} C_{1}^{l}=p_{1}\left(b-4 \times 3^{(\alpha-1)} a_{1}\right)
$$

The conjecture (1.2) is verified.

- If $k=i m+j n \leq 2 i m \Longrightarrow j n \leq i m$ and $k=i m+j n \leq 2 j n \Longrightarrow i m \leq$ $j n \Longrightarrow i m=j n \Longrightarrow k=i m+j n=2 i m=\mu$ but $\mu=2 i m+1-\alpha$ that is impossible.
- If $k=i m+j n<2 i m \Longrightarrow j n<i m$ and $2 j n<i m+j n=k$ that is a contradiction with $k=\min (2 i m, 2 j n, i m+j n)$.
** B-2-2-2- We suppose that $\omega \neq 3$. We write $a=\omega^{\alpha} a_{1}$ with $\omega \nmid a_{1}$ and $p^{\prime}=$ $\omega^{\mu} p_{1}$ with $\omega \nmid p_{1}$. As $A^{2 m}=4 a^{\prime} p^{\prime}=4 \omega^{\alpha+\mu} . a_{1} \cdot p_{1} \Longrightarrow \omega \mid A \Longrightarrow A=\omega^{i} A_{1}$, $\omega \nmid A_{1}$. But $B^{n} C^{l}=p^{\prime}\left(b-4 a^{\prime}\right)=\omega^{\mu} p_{1}\left(b-4 a^{\prime}\right) \Longrightarrow \omega\left|B^{n} C^{l} \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** B-2-2-2-1- $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ and $\omega \nmid B_{1}$. From $A^{m}+$ $B^{n}=C^{l} \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$. As $p=b p^{\prime}=\omega^{\mu} b p_{1}=\omega^{k}\left(\omega^{2 i m-k} A_{1}^{2 m}+\right.$ $\left.\omega^{2 j n-k} B_{1}^{2 n}+\omega^{i m+j n-k} A_{1}^{m} B_{1}^{n}\right)$ with $k=\min (2 i m, 2 j n, i m+j n)$. Then :
- If $\mu=k$, then $\omega \nmid b$ and the conjecture (1.2) is verified.
- If $k>\mu$, then $\omega \mid b$, but $\omega \mid a$ we deduce the contradiction with a, b coprime.
- If $k<\mu$, it follows from :

$$
\omega^{\mu} b p_{1}=\omega^{k}\left(\omega^{2 i m-k} A_{1}^{2 m}+\omega^{2 j n-k} B_{1}^{2 n}+\omega^{i m+j n-k} A_{1}^{m} B_{1}^{n}\right)
$$

that $\omega \mid A_{1}$ or $\omega \mid B_{1}$ that is a contradiction with the hypothesis.
** B-2-2-2-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C \Longrightarrow C=\omega^{h} C_{1}$ with $\omega \nmid C_{1}$. From $A^{m}+B^{n}=$ $C^{l} \Longrightarrow \omega\left|\left(C^{l}-A^{m}\right) \Longrightarrow \omega\right| B$. Then, we obtain the same results as B-2-2-2-1- above.
5.5. Case $b=2 p$ and $3 \mid a$

We have :
$\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{2 p} \Longrightarrow A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4 p}{3} \cdot \frac{3 a^{\prime}}{2 p}=2 a^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow 2\left|a^{\prime} \Longrightarrow 2\right| a$
Then $2 \mid a$ and $2 \mid b$ that is a contradiction with a, b coprime.
5.6. Case $b=4 p$ and $3 \mid a$

We have :

$$
\begin{array}{r}
\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{4 p} \Longrightarrow A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4 p}{3} \cdot \frac{3 a^{\prime}}{4 p}=a^{\prime}=\left(A^{m}\right)^{2}=a "^{2} \\
\text { with } \quad A^{m}=a "
\end{array}
$$

Let us calculate $A^{m} B^{n}$, we obtain:

$$
\begin{array}{r}
A^{m} B^{n}=\frac{p \sqrt{3}}{3} \cdot \sin \frac{2 \theta}{3}-\frac{2 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{p \sqrt{3}}{3} \cdot \sin \frac{2 \theta}{3}-\frac{a^{\prime}}{2} \Longrightarrow \\
A^{m} B^{n}+\frac{A^{2 m}}{2}=\frac{p \sqrt{3}}{3} \cdot \sin \frac{2 \theta}{3}
\end{array}
$$

Let:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=\frac{2 p \sqrt{3}}{3} \sin \frac{2 \theta}{3} \tag{5.49}
\end{equation*}
$$

The left member of (5.49) is an integer and p is an integer, then $\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3}$ will be written as :

$$
\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{k_{2}}
$$

where k_{1}, k_{2} are two integers coprime and $k_{2} \mid p \Longrightarrow p=k_{2} . k_{3}$.
** C-1- Firstly, we suppose that $k_{3} \neq 1$. Then :

$$
A^{2 m}+2 A^{m} B^{n}=k_{3} \cdot k_{1}
$$

Let μ be a prime integer and $\mu \mid k_{3}$, then $\mu\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu\right| A^{m}$ or $\mu \mid\left(A^{m}+2 B^{n}\right)$.
** C-1-1- If $\mu\left|\left(A^{m}=a "\right) \Longrightarrow \mu\right|\left(a^{2}=a^{\prime}\right) \Longrightarrow \mu \mid\left(3 a^{\prime}=a\right)$. As $\mu\left|k_{3} \Longrightarrow \mu\right| p \Longrightarrow \mu \mid(4 p=b)$, then the contradiction with a, b coprime.
${ }^{* *}$ C-1-2- If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$, then:

$$
\begin{equation*}
\mu \neq 2 \quad \text { and } \quad \mu \nmid B^{n} \tag{5.50}
\end{equation*}
$$

$\mu \mid\left(A^{m}+2 B^{n}\right)$, we write:

$$
A^{m}+2 B^{n}=\mu \cdot t^{\prime}
$$

Then:

$$
\begin{array}{r}
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m}+B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n} \\
\Longrightarrow p=t^{\prime 2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right)
\end{array}
$$

As $b=4 p=4 k_{2} \cdot k_{3}$ and $\mu \mid k_{3}$ then $\mu \mid b \Longrightarrow \exists \mu^{\prime}$ so that $b=\mu . \mu^{\prime}$, we obtain:

$$
\mu^{\prime} \cdot \mu=\mu\left(4 \mu t^{\prime 2}-8 t^{\prime} B^{n}\right)+4 B^{n}\left(B^{n}-A^{m}\right)
$$

The last equation implies $\mu \mid 4 B^{n}\left(B^{n}-A^{m}\right)$, but $\mu \neq 2$ then $\mu \mid B^{n}$ or $\mu \mid\left(B^{n}-A^{m}\right)$.
** C-1-1-1- If $\mu \mid B^{n} \Longrightarrow$ then the contradiction with (5.50).
** C-1-1-2- If $\mu \mid\left(B^{n}-A^{m}\right)$ and using $\mu \mid\left(A^{m}+2 B^{n}\right)$, we have :

$$
\mu \left\lvert\, 3 B^{n} \Longrightarrow\left\{\begin{array}{l}
\mu \mid B^{n} \\
o r \\
\mu=3
\end{array}\right.\right.
$$

** C-1-1-2-1- If $\mu \mid B^{n}$ then the contradiction with (5.50).
** C-1-1-2-2- If $\mu=3$, then $3 \mid b$, but $3 \mid a$ then the contradiction with a, b coprime.
** C-2- We assume now that $k_{3}=1$, then:

$$
\begin{align*}
A^{2 m}+2 A^{m} B^{n} & =k_{1} \tag{5.51}\\
p & =k_{2} \\
\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3} & =\frac{k_{1}}{p}
\end{align*}
$$

We take the square of the last equation, we obtain :

$$
\begin{gathered}
\frac{4}{3} \sin ^{2} \frac{2 \theta}{3}=\frac{k_{1}^{2}}{p^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cos ^{2} \frac{\theta}{3}=\frac{k_{1}^{2}}{p^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cdot \frac{3 a^{\prime}}{b}=\frac{k_{1}^{2}}{p^{2}}
\end{gathered}
$$

Finally:

$$
\begin{equation*}
a^{\prime}\left(4 p-3 a^{\prime}\right)=k_{1}^{2} \tag{5.52}
\end{equation*}
$$

but $a^{\prime}=a^{\prime \prime}{ }^{2}$, then $4 p-3 a^{\prime}$ is a square. Let :

$$
\lambda^{2}=4 p-3 a^{\prime}=4 p-a=b-a
$$

The equation (5.52) becomes:

$$
\begin{equation*}
a^{" 2} \lambda^{2}=k_{1}^{2} \Longrightarrow k_{1}=a " \lambda \tag{5.53}
\end{equation*}
$$

taking the positive root. Using (5.51), we have:

$$
k_{1}=A^{m}\left(A^{m}+2 B^{n}\right)=a "\left(A^{m}+2 B^{n}\right)
$$

Then :

$$
A^{m}+2 B^{n}=\lambda
$$

Now, we consider that $b-a=\lambda^{2} \Longrightarrow \lambda^{2}+3 a^{\prime \prime}=b$, then the couple (λ, a ") is a solution of the Diophantine equation:

$$
\begin{equation*}
X^{2}+3 Y^{2}=b \tag{5.54}
\end{equation*}
$$

with $X=\lambda$ and $Y=a "$. But using one theorem on the solutions of the equation given by (5.54), b is written under the form (see theorem 37.4 in [3]):

$$
b=2^{2 s} \times 3^{t} \cdot p_{1}^{t_{1}} \cdots p_{g}^{t_{g}} q_{1}^{2 s_{1}} \cdots q_{r}^{2 s_{r}}
$$

where p_{i} are prime integers so that $p_{i} \equiv 1(\bmod 6)$, the q_{j} are also prime integers so that $q_{j} \equiv 5(\bmod 6)$. Then, as $b=4 p$:

- If $t \geq 1 \Longrightarrow 3 \mid b$, but $3 \mid a$, then the contradiction with a, b coprime.
** C-2-2-1- Hence, we suppose that p is written under the form:

$$
p=p_{1}^{t_{1}} \cdots p_{g}^{t_{g}} q_{1}^{2 s_{1}} \cdots q_{r}^{2 s_{r}}
$$

with $p_{i} \equiv 1(\bmod 6)$ and $q_{j} \equiv 5(\bmod 6)$. Finally, we obtain that :

$$
\begin{equation*}
p \equiv 1(\bmod 6) \tag{5.55}
\end{equation*}
$$

We will verify if this condition does not give contradictions.
We will present the table of the value modulo 6 of $p=A^{2 m}+A^{m} B^{n}+B^{2 n}$ in function of the values of $A^{m}, B^{n}(\bmod 6)$. We obtain the table below:

Table 1. Table of $p(\bmod 6)$

A^{m}, B^{n}	0	1	2	3	4	5
0	0	$\mathbf{1}$	4	3	4	$\mathbf{1}$
1	$\mathbf{1}$	3	$\mathbf{1}$	$\mathbf{1}$	3	$\mathbf{1}$
2	4	$\mathbf{1}$	0	$\mathbf{1}$	4	3
3	3	$\mathbf{1}$	$\mathbf{1}$	3	$\mathbf{1}$	$\mathbf{1}$
4	4	3	4	$\mathbf{1}$	0	$\mathbf{1}$
5	$\mathbf{1}$	$\mathbf{1}$	3	$\mathbf{1}$	$\mathbf{1}$	3

${ }^{* *} \mathrm{C}-2-2-1-1$ - Case $A^{m} \equiv 0(\bmod 6) \Longrightarrow 2\left|\left(A^{m}=a "\right) \Longrightarrow 2\right|\left(a^{\prime}=a^{\prime \prime}{ }^{2}\right) \Longrightarrow$ $2 \mid a$, but $2 \mid b$, then the contradiction with a, b coprime. All the cases of the first line of the table 1 are to reject.
${ }^{* *} \mathrm{C}-2-2-1-2-$ Case $A^{m} \equiv 1(\bmod 6)$ and $B^{n} \equiv 0(\bmod 6)$, then $2 \mid B^{n} \Longrightarrow B^{n}=$ $2 B^{\prime}$ and p is written as $p=\left(A^{m}+B^{\prime}\right)^{2}+3 B^{\prime 2}$ with $(p, 3)=1$, if not $3 \mid p$, then $3 \mid b$, but $3 \mid a$, then the contradiction with a, b coprime. Hence, the pair $\left(A^{m}+B^{\prime}, B^{\prime}\right)$ verifies the equation:

$$
\begin{equation*}
\left(A^{m}+B^{\prime}\right)^{2}+3 B^{\prime 2}=p \tag{5.56}
\end{equation*}
$$

that we can write it as:

$$
\begin{equation*}
\left(A^{m}+B^{\prime}\right)^{2}-B^{\prime 2}=p-4 B^{2}=A^{2 m}+B^{2 n}+A^{m} B^{n}-B^{2 n}=C^{l} A^{m}=N \tag{5.57}
\end{equation*}
$$

Then $\left(A^{m}+B^{\prime}, B^{\prime}\right)$ is a solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{5.58}
\end{equation*}
$$

where $N=C^{l} A^{m} \equiv 1(\bmod 6)$. Let $Q(N)$ be the number of the solutions of (5.58) and $\tau(N)$ is the number of suitable factorization of N, then we recall the following result concerning the solutions of the equation (5.58) (see theorem 27.3 in [2]):

- If $N \equiv 2(\bmod 4)$, then $Q(N)=0$.
- If $N \equiv 1$ or $N \equiv 3(\bmod 4)$, then $Q(N)=[\tau(N) / 2]$.
- If $N \equiv 0(\bmod 4)$, then $Q(N)=[\tau(N / 4) / 2]$.

As $N=C^{l} A^{m} \equiv 1(\bmod 6) \Longrightarrow N$ is odd, the cases $Q(N)=0$ and $Q(N)=[\tau(N / 4) / 2]$ are rejected, then $N \equiv 1$ or $N \equiv 3(\bmod 4)$, it follows $Q(N)=$ [$\tau(N) / 2]$.

As $A^{m}+B^{\prime}, B^{\prime}$ is a couple of solutions of the Diophantine equation (5.58), then $\exists d, d^{\prime}$ positive integers with $d>d^{\prime}$ and $N=d . d^{\prime}$ so that:

$$
\begin{array}{r}
d+d^{\prime}=2\left(A^{m}+B^{\prime}\right) \\
d-d^{\prime}=2 B^{\prime}=B^{n} \tag{5.60}
\end{array}
$$

We will use the same method used for the paragraph above A-2-1-2-.
** C-2-2-1-2-1- As $C^{l}>A^{m}$, we take $d=C^{l}$ and $d^{\prime}=A^{m}$. It follows:

$$
\begin{array}{r}
C^{l}+A^{m}=2\left(A^{m}+B^{\prime}\right)=2 A^{m}+B^{n} \\
C^{l}-A^{m}=B^{n}=2 B^{\prime}
\end{array}
$$

Then the case $d=C^{l}$ and $d^{\prime}=A^{m}$ gives a priory no contradictions.
** C-2-2-1-2-2- Now, we consider the case $d=C^{l} A^{m}$ and $d^{\prime}=1$. We rewrite the equations (5.59-5.60):

$$
\begin{array}{r}
C^{l} A^{m}+1=2\left(A^{m}+B^{\prime}\right) \\
C^{l} A^{m}-1=2 B^{\prime} \tag{5.62}
\end{array}
$$

We obtain $1=A^{m}$, it follows $C^{l}-B^{n}=1$, we know [4] that the only positive solution of the last equation is $C=3, B=2, n=3$ and $l=2<3$, then the contradiction.
** C-2-2-1-2-3- Now, we consider the case $d=c_{1}^{l r-1} C_{1}^{l}$ where c_{1} is a prime integer with $c_{1} \nmid C_{1}$ and $C=c_{1}^{r} C_{1}, r \geq 1$. It follows that $d^{\prime}=c_{1} \cdot A^{m}$. We rewrite the equations (5.59-5.60):

$$
\begin{array}{r}
c_{1}^{l r-1} C_{1}^{l}+c_{1} \cdot A^{m}=2\left(A^{m}+B^{\prime}\right) \\
c_{1}^{l r-1} C_{1}^{l}-c_{1} \cdot A^{m}=2 B^{\prime}=B^{n} \tag{5.64}
\end{array}
$$

As $l \geq 3$, from the last two equations above, it follows that $c_{1} \mid 2\left(A^{m}+B^{\prime}\right)$ and $c_{1} \mid\left(2 B^{\prime}\right)$. Then $c_{1}=2$, or $c_{1} \mid\left(A^{m}+B^{\prime}\right)$ and $c_{1} \mid B^{\prime}$.
** C-2-2-1-2-3-1- We suppose $c_{1}=2$. As $l \geq 3$, from the equation (5.64) it follows that $2 \mid B^{n}$, then $2\left|\left(A^{m}=a^{\prime \prime}\right) \Longrightarrow 2\right|\left(a^{\prime \prime}{ }^{2}=a^{\prime}\right) \Longrightarrow 2 \mid\left(a=3 a^{\prime}\right)$, but $b=4 p$ (see 5.6), then the contradiction with a, b coprime.
** C-2-2-1-2-3-2- We suppose $c_{1} \neq 2$, then $c_{1} \mid\left(A^{m}+B^{\prime}\right)$ and $c_{1} \mid B^{\prime}$. It follows $c_{1} \mid A^{m}$ and $c_{1}\left|\left(B^{n}=2 B^{\prime}\right) \Longrightarrow c_{1}\right| p \Longrightarrow c_{1} \mid b=4 p$. From $c_{1}\left|\left(A^{m}=a^{\prime \prime}\right) \Longrightarrow c_{1}\right|\left(a^{\prime \prime}{ }^{2}=a^{\prime}\right) \Longrightarrow c_{1} \mid\left(a=3 a^{\prime}\right)$, then the contradiction with a, b coprime.

The other cases of the expressions of d and d^{\prime} with d, d^{\prime} not coprime and $d>d^{\prime}$ so that $N=C^{l} A^{m}=d . d^{\prime}$ give also contradictions.
** C-2-2-1-2-4- Now, we consider the case $d=a_{1} . C^{l}$ where a_{1} is a prime integer with $a_{1} \nmid A_{1}$ and $A=a_{1}^{r} A_{1}, r \geq 1$. It follows that $d^{\prime}=a_{1}^{m r-1} A_{1}^{m}$. We rewrite the equations (5.59-5.60):

$$
\begin{array}{r}
a_{1} C^{l}+a_{1}^{m r-1} A_{1}^{m}=2\left(A^{m}+B^{\prime}\right) \\
a_{1} C^{l}-a_{1}^{m r-1} A_{1}^{m}=2 B^{\prime}=B^{n} \tag{5.66}
\end{array}
$$

As $m \geq 3$, from the last two equations above, it follows that $a_{1} \mid 2\left(A^{m}+B^{\prime}\right)$ and $a_{1} \mid\left(2 B^{\prime}\right)$. Then $a_{1}=2$, or $a_{1} \mid\left(A^{m}+B^{\prime}\right)$ and $a_{1} \mid B^{\prime}$.
** C-2-2-1-2-4-1- We suppose $a_{1}=2 \Longrightarrow 2\left|\left(A^{m}=a^{\prime \prime}\right) \Longrightarrow a_{1}\right|\left(a^{\prime \prime 2}=\right.$ $\left.a^{\prime}\right) \Longrightarrow a_{1} \mid\left(a=3 a^{\prime}\right)$. But $b=4 p$, then the contradiction with a, b coprime.
** C-2-2-1-2-4-2- We suppose $a_{1} \neq 2$, then $a_{1} \mid\left(A^{m}+B^{\prime}\right)$ and $a_{1} \mid B^{\prime}$. It follows $a_{1} \mid A^{m}$ and $a_{1}\left|\left(B^{n}=2 B^{\prime}\right) \Longrightarrow a_{1}\right| p \Longrightarrow a_{1} \mid b=4 p$. From $a_{1}\left|\left(A^{m}=a^{\prime \prime}\right) \Longrightarrow a_{1}\right|\left(a^{\prime \prime 2}=a^{\prime}\right) \Longrightarrow a_{1} \mid\left(a=3 a^{\prime}\right)$, then the contradiction with a, b coprime.

The other cases of the expressions of d and d^{\prime} with d, d^{\prime} not coprime and $d>d^{\prime}$ so that $N=C^{l} A^{m}=d . d^{\prime}$ give also contradictions.
** C-2-2-1-2-5- Now, let $C=c_{1}^{r} C_{1}$ with c_{1} a prime, $r \geq 1$ and $c_{1} \nmid C_{1}$, we consider the case $d=C_{1}^{l}$ and $d^{\prime}=c_{1}^{r l} A^{m}$ so that $d>d^{\prime}$. We rewrite the equations (5.59-5.60):

$$
\begin{array}{r}
C_{1}^{l}+c_{1}^{r l} A^{m}=2\left(A^{m}+B^{\prime}\right) \\
C_{1}^{l}-c_{1}^{r l} A^{m}=2 B^{\prime}=B^{n} \tag{5.68}
\end{array}
$$

We obtain $c_{1}^{r l} A^{m}=A^{m} \Longrightarrow c_{1}^{r l}=1$, then the contradiction.
** C-2-2-1-2-6- Now, let $C=c_{1}^{r} C_{1}$ with c_{1} a prime, $r \geq 1$ and $c_{1} \nmid C_{1}$, we consider the case $d=C_{1}^{l} A^{m}$ and $d^{\prime}=c_{1}^{r l}$ so that $d>d^{\prime}$. We rewrite the equations (5.59-5.60):

$$
\begin{array}{r}
C_{1}^{l} A^{m}+c_{1}^{r l}=2\left(A^{m}+B^{\prime}\right) \\
C_{1}^{l} A^{m}-c_{1}^{r l}=2 B^{\prime}=B^{n} \tag{5.70}
\end{array}
$$

We obtain $c_{1}^{r l}=A^{m} \Longrightarrow c_{1} \mid A^{m}$, then $c_{1}\left|A^{m}=a^{\prime \prime} \Longrightarrow c_{1}\right|\left(a^{\prime \prime}{ }^{2}=a^{\prime}\right) \Longrightarrow$ $c_{1} \mid\left(a=3 a^{\prime}\right)$. As $c_{1} \mid C$ and $c_{1}\left|A^{m} \Longrightarrow c_{1}\right| B^{n}$, it follows $c_{1} \mid(p=b)$, then the contradiction with a, b coprime.

The other cases of the expressions of d and d^{\prime} with d, d^{\prime} coprime and $d>d^{\prime}$ so that $N=C^{l} A^{m}=d . d^{\prime}$ give also contradictions.

Finally, from the cases studied in the above paragraph C-2-2-1-2, we have found one suitable factorization of N that gives a priory no contradictions, it is the case $N=C^{l} . A^{m}$, but $1 \ll \tau(N)$, it follows the contradiction with $Q(N)=[\tau(N) / 2] \leq 1$. We conclude that the case $A^{m} \equiv 1(\bmod 6)$ and $B^{n} \equiv 0(\bmod 6)$ of the paragraph C-2-2-1-2 is to reject.
** C-2-2-1-3- Case $A^{m} \equiv 1(\bmod 6)$ and $B^{n} \equiv 2(\bmod 6)$, then B^{n} is even, see C-2-2-1-2-.
** C-2-2-1-4- Case $A^{m} \equiv 1(\bmod 6)$ and $B^{n} \equiv 3(\bmod 6)$, then $3 \mid B^{n} \Longrightarrow$ $B^{n}=3 B^{\prime}$. As $p=A^{2 m}+A^{m} B^{n}+B^{2 n} \Longrightarrow p \equiv 5(\bmod 6) \neq \equiv 1(\bmod 6)($ see (5.55)), then the contradiction and the case C-2-2-1-4- is to reject.
** C-2-2-1-5- Case $A^{m} \equiv 1(\bmod 6)$ and $B^{n} \equiv 5(\bmod 6)$, then $C^{l} \equiv 0(\bmod$ $6) \Longrightarrow 2 \mid C^{l}$, see C-2-2-1-2-.
${ }^{* *}$ C-2-2-1-6- Case $A^{m} \equiv 2(\bmod 6) \Longrightarrow 2|a " \Longrightarrow 2| a$, but $2 \mid b$, then the contradiction with a, b coprime.
** C-2-2-1-7- Case $A^{m} \equiv 3(\bmod 6)$ and $B^{n} \equiv 1(\bmod 6)$, then $C^{l} \equiv 4(\bmod$ $6) \Longrightarrow 2 \mid C^{l} \Longrightarrow C^{l}=2 C^{\prime}$, and C is even, see C-2-2-1-2-.
** C-2-2-1-8- Case $A^{m} \equiv 3(\bmod 6)$ and $B^{n} \equiv 2(\bmod 6)$, then B^{n} is even, see C-2-2-1-2-.
** C-2-2-1-9- Case $A^{m} \equiv 3(\bmod 6)$ and $B^{n} \equiv 4(\bmod 6)$, then B^{n} is even, see C-2-2-1-2-.
** C-2-2-1-10- Case $A^{m} \equiv 3(\bmod 6)$ and $B^{n} \equiv 5(\bmod 6)$, then $C^{l} \equiv 2(\bmod$ $6) \Longrightarrow 2 \mid C^{l}$, and C is even, see C-2-2-1-2-.
${ }^{* *}$ C-2-2-1-11- Case $A^{m} \equiv 4(\bmod 6) \Longrightarrow 2|a " \Longrightarrow 2| a$, but $2 \mid b$, then the contradiction with a, b coprime.
** C-2-2-1-12- Case $A^{m} \equiv 5(\bmod 6)$ and $B^{n} \equiv 0(\bmod 6)$, then B^{n} is even, see C-2-2-1-2-.
** C-2-2-1-13- Case $A^{m} \equiv 5(\bmod 6)$ and $B^{n} \equiv 1(\bmod 6)$, then $C^{l} \equiv 0(\bmod$ $6) \Longrightarrow 2 \mid C^{l}, C$ is even, see C-2-2-1-2-.
** C-2-2-1-14- Case $A^{m} \equiv 5(\bmod 6)$ and $B^{n} \equiv 3(\bmod 6)$, then $C^{l} \equiv 2(\bmod$ $6) \Longrightarrow 2 \mid C^{l} \Longrightarrow C^{l}=2 C^{\prime}, C$ is even, C-2-2-1-2-.
** C-2-2-1-15- Case $A^{m} \equiv 5(\bmod 6)$ and $B^{n} \equiv 4(\bmod 6)$, then B^{n} is even, see C-2-2-1-2-.

We have achieved the study all the cases of the table 1 giving contradictions.

Then the case $k_{3}=1$ is impossible.
5.7. Case $3 \mid a$ and $b=2 p^{\prime}, b \neq 2$ with $p^{\prime} \mid p$
$3 \mid a \Longrightarrow a=3 a^{\prime}, b=2 p^{\prime}$ with $p=k \cdot p^{\prime}$, then:

$$
A^{2 m}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot k \cdot p^{\prime} \cdot 3 \cdot a^{\prime}}{6 p^{\prime}}=2 \cdot k \cdot a^{\prime}
$$

We calculate $B^{n} C^{l}$:

$$
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)
$$

but $\sqrt[3]{\rho^{2}}=\frac{p}{3}$, then using $\cos ^{2} \frac{\theta}{3}=\frac{3 \cdot a^{\prime}}{b}$:
$B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 \cdot a^{\prime}}{b}\right)=p \cdot\left(1-\frac{4 \cdot a^{\prime}}{b}\right)=k\left(p^{\prime}-2 a^{\prime}\right)$
As $p=b \cdot p^{\prime}$, and $p^{\prime}>1$, then we have:

$$
\begin{gather*}
B^{n} C^{l}=k\left(p^{\prime}-2 a^{\prime}\right) \tag{5.71}\\
\text { and } \quad A^{2 m}=2 k . a^{\prime} \tag{5.72}
\end{gather*}
$$

** D-1- We suppose that k is prime.
** D-1-1- If $k=2$, then we have $p=2 p^{\prime}=b \Longrightarrow 2 \mid b$, but $A^{2 m}=4 a^{\prime}=$ $\left(A^{m}\right)^{2} \Longrightarrow A^{m}=2 a "$ with $a^{\prime}=a^{\prime \prime}$, then $2|a " \Longrightarrow 2|\left(a=3 a^{\prime 2}\right)$, it follows the contradiction with a, b coprime.
** D-1-2- We suppose $k \neq 2$. From $A^{2 m}=2 k \cdot a^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow k \mid a^{\prime}$ and $2 \mid a^{\prime} \Longrightarrow a^{\prime}=2 . k . a^{\prime \prime}{ }^{2} \Longrightarrow A^{m}=2 . k . a "$. Then $k\left|A^{m} \Longrightarrow k\right| A \Longrightarrow A=$ $k^{i} . A_{1}$ with $i \geq 1$ and $k \nmid A_{1} . k^{i m} A_{1}^{m}=2 k a " \Longrightarrow 2 a "=k^{i m-1} A_{1}^{m}$. From $B^{n} C^{l}=k\left(p^{\prime}-2 a^{\prime}\right) \Longrightarrow k\left|\left(B^{n} C^{l}\right) \Longrightarrow k\right| B^{n}$ or $k \mid C^{l}$.
** D-1-2-1- We suppose that $k\left|B^{n} \Longrightarrow k\right| B \Longrightarrow B=k^{j} . B_{1}$ with $j \geq 1$ and $k \nmid B_{1}$. It follows $k^{n j-1} B_{1}^{n} C^{l}=p^{\prime}-2 a^{\prime}=p^{\prime}-4 k a{ }^{\prime \prime}{ }^{2}$. As $n \geq 3 \Longrightarrow n j-1 \geq 2$, then $k \mid p^{\prime}$ but $k \neq 2 \Longrightarrow k \mid\left(2 p^{\prime}=b\right)$, but $k\left|a^{\prime} \Longrightarrow k\right|\left(3 a^{\prime}=a\right)$. It follows the contradiction with a, b coprime.
** D-1-2-2- If $k \mid C^{l}$ we obtain the identical results.
** D-2- We suppose that k is not prime. Let ω be an integer prime so that $k=\omega^{s} . k_{1}$, with $s \geq 1, \omega \nmid k_{1}$. The equations (5.71-5.72) become:

$$
\begin{gathered}
B^{n} C^{l}=\omega^{s} \cdot k_{1}\left(p^{\prime}-2 a^{\prime}\right) \\
\text { and } \quad A^{2 m}=2 \omega^{s} \cdot k_{1} \cdot a^{\prime}
\end{gathered}
$$

** D-2-1- We suppose that $\omega=2$, then we have the equations:

$$
\begin{array}{r}
A^{2 m}=2^{s+1} \cdot k_{1} \cdot a^{\prime} \\
B^{n} C^{l}=2^{s} \cdot k_{1}\left(p^{\prime}-2 a^{\prime}\right) \tag{5.74}
\end{array}
$$

** D-2-1-1- Case: $2\left|a^{\prime} \Longrightarrow 2\right| a$, but $2 \mid b$, then the contradiction with a, b coprime.
** D-2-1-2- Case: $2 \nmid a^{\prime}$. As $2 \nmid k_{1}$, the equation (5.73) gives $2 \mid A^{2 m} \Longrightarrow A=$ $2^{i} A_{1}$, with $i \geq 1$ and $2 \nmid A_{1}$. It follows that $2 i m=s+1$.
** D-2-1-2-1- We suppose that $2 \nmid\left(p^{\prime}-2 a^{\prime}\right) \Longrightarrow 2 \nmid p^{\prime}$. From the equation (5.74), we obtain that $2\left|B^{n} C^{l} \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** D-2-1-2-1-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $2 \nmid B_{1}$ and $j \geq 1$, then $B_{1}^{n} C^{l}=2^{s-j n} k_{1}\left(p^{\prime}-2 a^{\prime}\right)$:

- If $s-j n \geq 1$, then $2\left|C^{l} \Longrightarrow 2\right| C$, and no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$, and the conjecture (1.2) is verified.
- If $s-j n \leq 0$, from $B_{1}^{n} C^{l}=2^{s-j n} k_{1}\left(p^{\prime}-2 a^{\prime}\right) \Longrightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$.
** D-2-1-2-1-2- Using the same method of the proof above, we obtain the identical results if $2 \mid C^{l}$.
** D-2-1-2-2- We suppose now that $2 \mid\left(p^{\prime}-2 a^{\prime}\right) \Longrightarrow p^{\prime}-2 a^{\prime}=2^{\mu} . \Omega$, with $\mu \geq 1$ and $2 \nmid \Omega$. We recall that $2 \nmid a^{\prime}$. The equation (5.74) is written as:

$$
B^{n} C^{l}=2^{s+\mu} \cdot k_{1} \cdot \Omega
$$

This last equation implies that $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** D-2-1-2-2-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $j \geq 1$ and $2 \nmid B_{1}$. Then $B_{1}^{n} C^{l}=2^{s+\mu-j n} . k_{1} \cdot \Omega$:

- If $s+\mu-j n \geq 1$, then $2\left|C^{l} \Longrightarrow 2\right| C$, no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$, and the conjecture (1.2) is verified.
- If $s+\mu-j n \leq 0$, from $B_{1}^{n} C^{l}=2^{s+\mu-j n} k_{1} . \Omega \Longrightarrow 2 \nmid C^{l}$, then contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$.
** D-2-1-2-2-2- We obtain the identical results if $2 \mid C^{l}$.
** D-2-2- We suppose that $\omega \neq 2$. We have the the equations:

$$
\begin{array}{r}
A^{2 m}=2 \omega^{s} \cdot k_{1} \cdot a^{\prime} \\
B^{n} C^{l}=\omega^{s} \cdot k_{1} \cdot\left(p^{\prime}-2 a^{\prime}\right) \tag{5.76}
\end{array}
$$

As $\omega \neq 2$, from the equation (5.75), we have $2 \mid\left(k_{1} \cdot a^{\prime}\right)$. If $2\left|a^{\prime} \Longrightarrow 2\right| a$, but $2 \mid b$, then the contradiction with a, b coprime.
** D-2-2-1- Case: $2 \nmid a^{\prime}$ and $2 \mid k_{1} \Longrightarrow k_{1}=2^{\mu} . \Omega$ with $\mu \geq 1$ and $2 \nmid \Omega$. From the equation (5.75), we have $2\left|A^{2 m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}$ with $i \geq 1$ and $2 \nmid A_{1}$, then $2 \mathrm{im}=1+\mu$. The equation (5.76) becomes:

$$
\begin{equation*}
B^{n} C^{l}=\omega^{s} \cdot 2^{\mu} \cdot \Omega \cdot\left(p^{\prime}-2 a^{\prime}\right) \tag{5.77}
\end{equation*}
$$

From the equation (5.77), we obtain $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
${ }^{* *}$ D-2-2-1-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$, with $j \in \mathbb{N}^{*}$ and $2 \nmid B_{1}$.
** D-2-2-1-1-1- We suppose that $2 \nmid\left(p^{\prime}-2 a^{\prime}\right)$, then we have $B_{1}^{n} C^{l}=$ $\omega^{s} 2^{\mu-j n} \Omega\left(p^{\prime}-2 a^{\prime}\right)$:

- If $\mu-j n \geq 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, no contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.2) is verified.
- If $\mu-j n \leq 0 \Longrightarrow 2 \nmid C^{l}$ then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+$ $2^{j n} B_{1}^{n}$.
** D-2-2-1-1-2- We suppose that $2 \mid\left(p^{\prime}-2 a^{\prime}\right) \Longrightarrow p^{\prime}-2 a^{\prime}=2^{\alpha} . P$, with $\alpha \in \mathbb{N}^{*}$ and $2 \nmid P$. It follows that $B_{1}^{n} C^{l}=\omega^{s} 2^{\mu+\alpha-j n} \Omega . P$:
- If $\mu+\alpha-j n \geq 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.2) is verified.
- If $\mu+\alpha-j n \leq 0 \Longrightarrow 2 \nmid C^{l}$ then the contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
** D-2-2-1-2- We suppose now that $2\left|C^{n} \Longrightarrow 2\right| C$. Using the same method described above, we obtain the identical results.
5.8. Case $3 \mid a$ and $b=4 p^{\prime}, b \neq 4$ with $p^{\prime} \mid p$
$3 \mid a \Longrightarrow a=3 a^{\prime}, b=4 p^{\prime}$ with $p=k \cdot p^{\prime}, k \neq 1$ if not $b=4 p$ this case has been studied (see paragraph 5.6), then we have :

$$
A^{2 m}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot k \cdot p^{\prime} \cdot 3 \cdot a^{\prime}}{12 p^{\prime}}=k \cdot a^{\prime}
$$

We calculate $B^{n} C^{l}$:

$$
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)
$$

but $\sqrt[3]{\rho^{2}}=\frac{p}{3}$, then using $\cos ^{2} \frac{\theta}{3}=\frac{3 \cdot a^{\prime}}{b}$:
$B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 \cdot a^{\prime}}{b}\right)=p \cdot\left(1-\frac{4 \cdot a^{\prime}}{b}\right)=k\left(p^{\prime}-a^{\prime}\right)$
As $p=b . p^{\prime}$, and $p^{\prime}>1$, we have :

$$
\begin{gather*}
B^{n} C^{l}=k\left(p^{\prime}-a^{\prime}\right) \tag{5.78}\\
\text { and } \quad A^{2 m}=k . a^{\prime} \tag{5.79}
\end{gather*}
$$

${ }^{* *}$ E-1- We suppose that k is prime. From $A^{2 m}=k \cdot a^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow k \mid a^{\prime}$ and $a^{\prime}=k . a{ }^{\prime 2} \Longrightarrow A^{m}=k . a "$. Then $k\left|A^{m} \Longrightarrow k\right| A \Longrightarrow A=k^{i} . A_{1}$ with $i \geq 1$ and $k \nmid A_{1} . k^{m i} A_{1}^{m}=k a " \Longrightarrow a "=k^{m i-1} A_{1}^{m}$. From $B^{n} C^{l}=$ $k\left(p^{\prime}-a^{\prime}\right) \Longrightarrow k\left|\left(B^{n} C^{l}\right) \Longrightarrow k\right| B^{n}$ or $k \mid C^{l}$.
** E-1-1- We suppose that $k\left|B^{n} \Longrightarrow k\right| B \Longrightarrow B=k^{j}$. B_{1} with $j \geq 1$ and $k \nmid B_{1}$. Then $k^{n \cdot j-1} B_{1}^{n} C^{l}=p^{\prime}-a^{\prime}$. As $n \cdot j-1 \geq 2 \Longrightarrow k \mid\left(p^{\prime}-a^{\prime}\right)$. But $k\left|a^{\prime} \Longrightarrow k\right| a$, then $k\left|p^{\prime} \Longrightarrow k\right|\left(4 p^{\prime}=b\right)$ and we arrive to the contradiction that a, b are coprime.
** E-1-2- We suppose that $k \mid C^{l}$, using the same method with the above hypothesis $k \mid B^{n}$, we obtain the identical results.
** E-2- We suppose that k is not prime.
** E-2-1- We take $k=4 \Longrightarrow p=4 p^{\prime}=b$, it is the case 5.3 studied above.
** E-2-2- We suppose that $k \geq 6$ not prime. Let ω be a prime so that $k=\omega^{s} . k_{1}$, with $s \geq 1, \omega \nmid k_{1}$. The equations (5.78-5.79) become:

$$
\begin{align*}
& B^{n} C^{l}=\omega^{s} \cdot k_{1}\left(p^{\prime}-a^{\prime}\right) \tag{5.80}\\
& \text { and } \quad A^{2 m}=\omega^{s} \cdot k_{1} \cdot a^{\prime} \tag{5.81}
\end{align*}
$$

** E-2-2-1- We suppose that $\omega=2$.
** E-2-2-1-1- If $2\left|a^{\prime} \Longrightarrow 2\right|\left(3 a^{\prime}=a\right)$, but $2 \mid\left(4 p^{\prime}=b\right)$, then the contradiction with a, b coprime.
** E-2-2-1-2- We consider that $2 \nmid a^{\prime}$. From the equation (5.81), it follows that $2\left|A^{2 m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}$ with $2 \nmid A_{1}$ and:

$$
B^{n} C^{l}=2^{s} k_{1}\left(p^{\prime}-a^{\prime}\right)
$$

** E-2-2-1-2-1- We suppose that $2 \nmid\left(p^{\prime}-a^{\prime}\right)$, from the above expression, we have $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** E-2-2-1-2-1-1- If $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $2 \nmid B_{1}$. Then $B_{1}^{n} C^{l}=2^{2 i m-j n} k_{1}\left(p^{\prime}-a^{\prime}\right)$:

- If $2 i m-j n \geq 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, no contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.2) is verified.
- If $2 i m-j n \leq 0 \Longrightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$.
** E-2-2-1-2-1-2- If $2\left|C^{l} \Longrightarrow 2\right| C$, using the same method described above, we obtain the identical results.
** E-2-2-1-2-2- We suppose that $2 \mid\left(p^{\prime}-a^{\prime}\right)$. As $2 \nmid a^{\prime} \Longrightarrow 2 \nmid p^{\prime}, 2 \mid$ $\left(p^{\prime}-a^{\prime}\right) \Longrightarrow p^{\prime}-a^{\prime}=2^{\alpha} . P$ with $\alpha \geq 1$ and $2 \nmid P$. The equation (5.80) is written as :

$$
\begin{equation*}
B^{n} C^{l}=2^{s+\alpha} k_{1} \cdot P=2^{2 i m+\alpha} k_{1} \cdot P \tag{5.82}
\end{equation*}
$$

then $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** E-2-2-1-2-2-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$, with $2 \nmid B_{1}$. The equation (5.82) becomes $B_{1}^{n} C^{l}=2^{2 i m+\alpha-j n} k_{1} P$:

- If $2 i m+\alpha-j n \geq 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.2) is verified.
- If $2 i m+\alpha-j n \leq 0 \Longrightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid \bar{C}^{l}$.
** E-2-2-1-2-2-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C$. Using the same method described above, we obtain the identical results.
** E-2-2-2- We suppose that $\omega \neq 2$. We recall the equations:

$$
\begin{array}{r}
A^{2 m}=\omega^{s} \cdot k_{1} \cdot a^{\prime} \\
B^{n} C^{l}=\omega^{s} \cdot k_{1}\left(p^{\prime}-a^{\prime}\right) \tag{5.84}
\end{array}
$$

** E-2-2-2-1- We suppose that ω, a^{\prime} are coprime, then $\omega \nmid a^{\prime}$. From the equation (5.83), we have $\omega\left|A^{2 m} \Longrightarrow \omega\right| A \Longrightarrow A=\omega^{i} A_{1}$ with $\omega \nmid A_{1}$ and $s=2 i m$.
** E-2-2-2-1-1- We suppose that $\omega \nmid\left(p^{\prime}-a^{\prime}\right)$. From the equation (5.84) above, we have $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** E-2-2-2-1-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$. Then $B_{1}^{n} C^{l}=2^{2 i m-j n} k_{1}\left(p^{\prime}-a^{\prime}\right)$:

- If $2 i m-j n \geq 1 \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$, no contradiction with $C^{l}=$ $\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$ and the conjecture (1.2) is verified.
- If $2 i m-j n \leq 0 \Longrightarrow \omega \nmid C^{l}$, then the contradiction with $C^{l}=$ $\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n} \Longrightarrow \omega \mid C^{l}$.
** E-2-2-2-1-1-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C$, using the same method described above, we obtain the identical results.
** E-2-2-2-1-2- We suppose that $\omega \mid\left(p^{\prime}-a^{\prime}\right) \Longrightarrow \omega \nmid p^{\prime}$ as ω and a^{\prime} are coprime. $\omega \mid\left(p^{\prime}-a^{\prime}\right) \Longrightarrow p^{\prime}-a^{\prime}=\omega^{\alpha} . P$ with $\alpha \geq 1$ and $\omega \nmid P$. The equation (5.84) becomes :

$$
\begin{equation*}
B^{n} C^{l}=\omega^{s+\alpha} k_{1} \cdot P=\omega^{2 i m+\alpha} k_{1} \cdot P \tag{5.85}
\end{equation*}
$$

then $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** E-2-2-2-1-2-1- We suppose that $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$, with $\omega \nmid B_{1}$. The equation (5.85) is written as $B_{1}^{n} C^{l}=2^{2 i m+\alpha-j n} k_{1} P$:

- If $2 i m+\alpha-j n \geq 1 \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$, no contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$ and the conjecture (1.2) is verified.
- If $2 i m+\alpha-j n \leq 0 \Longrightarrow \omega \nmid C^{l}$, then the contradiction with $C^{l}=$ $\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n} \Longrightarrow \omega \mid C^{l}$.
** E-2-2-2-1-2-2- We suppose that $\omega\left|C^{l} \Longrightarrow \omega\right| C$, using the same method described above, we obtain the identical results.
** E-2-2-2-2- We suppose that ω, a^{\prime} are not coprime, then $a^{\prime}=\omega^{\beta} . a^{\prime \prime}$ with $\omega \nmid a "$. The equation (5.83) becomes:

$$
A^{2 m}=\omega^{s} k_{1} a^{\prime}=\omega^{s+\beta} k_{1} \cdot a "
$$

We have $\omega\left|A^{2 m} \Longrightarrow \omega\right| A \Longrightarrow A=\omega^{i} A_{1}$ with $\omega \nmid A_{1}$ and $s+\beta=2 \mathrm{im}$.
** E-2-2-2-2-1- We suppose that $\omega \nmid\left(p^{\prime}-a^{\prime}\right) \Longrightarrow \omega \nmid p^{\prime} \Longrightarrow \omega \nmid\left(b=4 p^{\prime}\right)$. From the equation (5.84), we obtain $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** E-2-2-2-2-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$. Then $B_{1}^{n} C^{l}=2^{s-j n} k_{1}\left(p^{\prime}-a^{\prime}\right):$

- If $s-j n \geq 1 \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$, no contradiction with $C^{l}=$ $\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$ and the conjecture (1.2) is verified.
- If $s-j n \leq 0 \Longrightarrow \omega \nmid C^{l}$, then the contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+$ $\omega^{j n} B_{1}^{n} \Longrightarrow \omega \mid C^{l}$.
** E-2-2-2-2-1-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C$, using the same method described above, we obtain the identical results.
** E-2-2-2-2-2- We suppose that $\omega\left|\left(p^{\prime}-a^{\prime}=p^{\prime}-\omega^{\beta} \cdot a^{\prime \prime}\right) \Longrightarrow \omega\right| p^{\prime} \Longrightarrow \omega \mid$ $\left(4 p^{\prime}=b\right)$, but $\omega\left|a^{\prime} \Longrightarrow \omega\right| a$. Then the contradiction with a, b coprime.

The study of the cases of 5.8 is achieved.
5.9. Case $3 \mid a$ and $b \mid 4 p$
$a=3 a^{\prime}$ and $4 p=k_{1} b$. As $A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{3 a^{\prime}}{b}=k_{1} a^{\prime}$ and $B^{n} C^{l}$:
$B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 a^{\prime}}{b}\right)=\frac{k_{1}}{4}\left(b-4 a^{\prime}\right)$

As $B^{n} C^{l}$ is an integer, we must obtain $4 \mid k_{1}$, or $4 \mid\left(b-4 a^{\prime}\right)$ or $\left(2 \mid k_{1}\right.$ and $\left.2 \mid\left(b-4 a^{\prime}\right)\right)$.
** F-1- If $k_{1}=1 \Rightarrow b=4 p$: it is the case 5.6.
** F-2- If $k_{1}=4 \Rightarrow p=b:$ it is the case 5.3.
** F-3- If $k_{1}=2$ and $2 \mid\left(b-4 a^{\prime}\right)$: in this case, we have $A^{2 m}=2 a^{\prime} \Longrightarrow 2 \mid$ $a^{\prime} \Longrightarrow 2|a .2|\left(b-4 a^{\prime}\right) \Longrightarrow 2 \mid b$ then the contradiction with a, b coprime.
** F-4- If $2 \mid k_{1}$ and $2\left|\left(b-4 a^{\prime}\right): 2\right|\left(b-4 a^{\prime}\right) \Longrightarrow b-4 a^{\prime}=2^{\alpha} \lambda, \alpha$ and $\lambda \in \mathbb{N}^{*} \geq 1$ with $2 \nmid \lambda ; 2 \mid k_{1} \Longrightarrow k_{1}=2^{t} k_{1}^{\prime}$ with $t \geq 1 \in \mathbb{N}^{*}$ with $2 \nmid k_{1}^{\prime}$ and we have:

$$
\begin{array}{r}
A^{2 m}=2^{t} k_{1}^{\prime} a^{\prime} \\
B^{n} C^{l}=2^{t+\alpha-2} k_{1}^{\prime} \lambda \tag{5.87}
\end{array}
$$

From the equation (5.86), we have $2\left|A^{2 m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}, i \geq 1$ and $2 \nmid A_{1}$.
** F-4-1- We suppose that $t=\alpha=1$, then the equations (5.86-5.87) become :

$$
\begin{gather*}
A^{2 m}=2 k_{1}^{\prime} a^{\prime} \tag{5.88}\\
B^{n} C^{l}=k_{1}^{\prime} \lambda \tag{5.89}
\end{gather*}
$$

From the equation (5.88) it follows that $2\left|a^{\prime} \Longrightarrow 2\right|\left(a=3 a^{\prime}\right)$. But $b=4 a^{\prime}+2 \lambda \Longrightarrow 2 \mid b$, then the contradiction with a, b coprime.
** F-4-2- We suppose that $t+\alpha-2 \geq 1$ and we have the expressions:

$$
\begin{array}{r}
A^{2 m}=2^{t} k_{1}^{\prime} a^{\prime} \\
B^{n} C^{l}=2^{t+\alpha-2} k_{1}^{\prime} \lambda \tag{5.91}
\end{array}
$$

** F-4-2-1- We suppose that $2\left|a^{\prime} \Longrightarrow 2\right| a$, but $b=2^{\alpha} \lambda+4 a^{\prime} \Longrightarrow 2 \mid b$, then the contradiction with a, b coprime.
** F-4-2-2- We suppose that $2 \nmid a^{\prime}$. From (5.90), we have $2\left|A^{2 m} \Longrightarrow 2\right|$ $A \Longrightarrow A=2^{i} A_{1}$ and $B^{n} C^{l}=2^{t+\alpha-2} k_{1}^{\prime} \lambda \Longrightarrow 2\left|B^{n} C^{l} \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** F-4-2-2-1- We suppose that $2 \mid B^{n}$. We have $2 \mid B \Longrightarrow B=2^{j} B_{1}, j \geq 1$ and $2 \nmid B_{1}$. The equation (5.91) becomes $B_{1}^{n} C^{l}=2^{t+\alpha-2-j n} k_{1}^{\prime} \lambda$:

- If $t+\alpha-2-j n>0 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.2) is verified.
- If $t+\alpha-2-j n<0 \Longrightarrow 2 \mid k_{1}^{\prime} \lambda$, but $2 \nmid k_{1}^{\prime}$ and $2 \nmid \lambda$. Then this case is impossible.
- If $t+\alpha-2-j n=0 \Longrightarrow B_{1}^{n} C^{l}=k_{1}^{\prime} \lambda \Longrightarrow 2 \nmid C^{l}$ then it is a contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
** F-4-2-2-2- We suppose that $2 \mid C^{l}$. We use the same method described above, we obtain the identical results.
** F-5- We suppose that $4 \mid k_{1}$ with $k_{1}>4 \Rightarrow k_{1}=4 k_{2}^{\prime}$, we have :

$$
\begin{array}{r}
A^{2 m}=4 k_{2}^{\prime} a^{\prime} \\
B^{n} C^{l}=k_{2}^{\prime}\left(b-4 a^{\prime}\right) \tag{5.93}
\end{array}
$$

** F-5-1- We suppose that k_{2}^{\prime} is prime, from (5.92), we have $k_{2}^{\prime} \mid a^{\prime}$. From (5.93), $k_{2}^{\prime}\left|\left(B^{n} C^{l}\right) \Longrightarrow k_{2}^{\prime}\right| B^{n}$ or $k_{2}^{\prime} \mid C^{l}$.
** F-5-1-1- We suppose that $k_{2}^{\prime}\left|B^{n} \Longrightarrow k_{2}^{\prime}\right| B \Longrightarrow B=k_{2}^{\prime \beta} \cdot B_{1}$ with $\beta \geq 1$ and $k_{2}^{\prime} \nmid B_{1}$. It follows that we have $k_{2}^{\prime n \beta-1} B_{1}^{n} C^{l}=b-4 a^{\prime} \Longrightarrow k_{2}^{\prime} \mid b$ then the contradiction with a, b coprime.
** F-5-1-2- We obtain identical results if we suppose that $k_{2}^{\prime} \mid C^{l}$.
** F-5-2- We suppose that k_{2}^{\prime} is not prime.
** F-5-2-1- We suppose that k_{2}^{\prime} and a^{\prime} are coprime. From (5.92), k_{2}^{\prime} can be written under the form $k_{2}^{\prime}=q_{1}^{2 j} . q_{2}^{2}$ and $q_{1} \nmid q_{2}$ and q_{1} prime. We have $A^{2 m}=4 q_{1}^{2 j} \cdot q_{2}^{2} a^{\prime} \Longrightarrow q_{1} \mid A$ and $B^{n} C^{l}=q_{1}^{2 j} \cdot q_{2}^{2}\left(b-4 a^{\prime}\right) \Longrightarrow q_{1} \mid B^{n}$ or $q_{1} \mid C^{l}$.
** F-5-2-1-1- We suppose that $q_{1}\left|B^{n} \Longrightarrow q_{1}\right| B \Longrightarrow B=q_{1}^{f} \cdot B_{1}$ with $q_{1} \nmid B_{1}$. We obtain $B_{1}^{n} C^{l}=q_{1}^{2 j-f n} q_{2}^{2}\left(b-4 a^{\prime}\right)$:

- If $2 j-f . n \geq 1 \Longrightarrow q_{1}\left|C^{l} \Longrightarrow q_{1}\right| C$ but $C^{l}=A^{m}+B^{n}$ gives also $q_{1} \mid C$ and the conjecture (1.2) is verified.
- If $2 j-f . n=0$, we have $B_{1}^{n} C^{l}=q_{2}^{2}\left(b-4 a^{\prime}\right)$, but $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, then $q_{1} \mid\left(b-4 a^{\prime}\right)$. As q_{1} and a^{\prime} are coprime, then $q_{1} \nmid b$, and the conjecture (1.2) is verified.
- If $2 j-f . n<0 \Longrightarrow q_{1} \mid\left(b-4 a^{\prime}\right) \Longrightarrow q_{1} \nmid b$ because a^{\prime} is coprime with q_{1}, and $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, and the conjecture (1.2) is verified.
** F-5-2-1-2- We obtain identical results if we suppose that $q_{1} \mid C^{l}$.
** F-5-2-2- We suppose that $k_{2}^{\prime}, a^{\prime}$ are not coprime. Let q_{1} be a prime so that $q_{1} \mid k_{2}^{\prime}$ and $q_{1} \mid a^{\prime}$. We write k_{2}^{\prime} under the form $q_{1}^{j} \cdot q_{2}$ with $j \geq 1, q_{1} \nmid q_{2}$. From $A^{2 m}=4 k_{2}^{\prime} a^{\prime} \Longrightarrow q_{1}\left|A^{2 m} \Longrightarrow q_{1}\right| A$. Then from $B^{n} C^{l}=q_{1}^{j} q_{2}\left(b-4 a^{\prime}\right)$, it follows that $q_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow q_{1}\right| B^{n}$ or $q_{1} \mid C^{l}$.
** F-5-2-2-1- We suppose that $q_{1}\left|B^{n} \Longrightarrow q_{1}\right| B \Longrightarrow B=q_{1}^{\beta} \cdot B_{1}$ with $\beta \geq 1$ and $q_{1} \nmid B_{1}$. Then, we have $q_{1}^{n \beta} B_{1}^{n} C^{l}=q_{1}^{j} q_{2}\left(b-4 a^{\prime}\right) \Longrightarrow B_{1}^{n} C^{l}=$ $q_{1}^{j-n \beta} q_{2}\left(b-4 a^{\prime}\right)$.
- If $j-n \beta \geq 1$, then $q_{1}\left|C^{l} \Longrightarrow q_{1}\right| C$, but $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, then the conjecture (1.2) is verified.
- If $j-n \beta=0$, we obtain $B_{1}^{n} C^{l}=q_{2}\left(b-4 a^{\prime}\right)$, but $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, then $q_{1}\left|\left(b-4 a^{\prime}\right) \Longrightarrow q_{1}\right| b$ because $q_{1}\left|a^{\prime} \Longrightarrow q_{1}\right| a$, then the contradiction with a, b coprime.
- If $j-n \beta<0 \Longrightarrow q_{1}\left|\left(b-4 a^{\prime}\right) \Longrightarrow q_{1}\right| b$, because $q_{1}\left|a^{\prime} \Longrightarrow q_{1}\right| a$, then the contradiction with a, b coprime.
** F-5-2-2-2- We obtain identical results if we suppose that $q_{1} \mid C^{l}$.
** F-6- If $4 \nmid\left(b-4 a^{\prime}\right)$ and $4 \nmid k_{1}$ it is impossible. We suppose that $4 \mid$ $\left(b-4 a^{\prime}\right) \Rightarrow 4 \mid b$, and $b-4 a^{\prime}=4^{t} . g, t \geq 1$ with $4 \nmid g$, then we have :

$$
\begin{array}{r}
A^{2 m}=k_{1} a^{\prime} \\
B^{n} C^{l}=k_{1} \cdot 4^{t-1} \cdot g
\end{array}
$$

** F-6-1- We suppose that k_{1} is prime. From $A^{2 m}=k_{1} a^{\prime}$ we deduce easily that $k_{1} \mid a^{\prime}$. From $B^{n} C^{l}=k_{1} .4^{t-1} . g$ we obtain that $k_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow k_{1}\right| B^{n}$ or $k_{1} \mid C^{l}$.
** F-6-1-1- We suppose that $k_{1}\left|B^{n} \Longrightarrow k_{1}\right| B \Longrightarrow B=k_{1}^{j}$. B_{1} with $j>0$ and $k_{1} \nmid B_{1}$, then $k_{1}^{n . j} B_{1}^{n} C^{l}=k_{1} .4^{t-1} . g \Longrightarrow k_{1}^{n . j-1} B_{1}^{n} C^{l}=4^{t-1} . g$. But $n \geq 3$ and $j \geq 1$, then $n . j-1 \geq 2$. We deduce as $k_{1} \neq 2$ that $k_{1}\left|g \Longrightarrow k_{1}\right|\left(b-4 a^{\prime}\right)$, but $k_{1}\left|a^{\prime} \Longrightarrow k_{1}\right| b$, then the contradiction with a, b coprime.
** F-6-1-2- We obtain identical results if we suppose that $k_{1} \mid C^{l}$.
${ }^{* *}$ F-6-2- We suppose that k_{1} is not prime $\neq 4,\left(k_{1}=4\right.$ see case $\mathrm{F}-2$, above $)$ with $4 \nmid k_{1}$.
${ }^{* *}$ F-6-2-1- If $k_{1}=2 k^{\prime}$ with k^{\prime} odd >1. Then $A^{2 m}=2 k^{\prime} a^{\prime} \Longrightarrow 2\left|a^{\prime} \Longrightarrow 2\right|$ a, as $4 \mid b$ it follows the contradiction with a, b coprime.
** F-6-2-2- We suppose that k_{1} is odd with k_{1} and a^{\prime} coprime. We write k_{1} under the form $k_{1}=q_{1}^{j} . q_{2}$ with $q_{1} \nmid q_{2}, q_{1}$ prime and $j \geq 1 . B^{n} C^{l}=$ $q_{1}^{j} \cdot q_{2} 4^{t-1} g \Longrightarrow q_{1} \mid B^{n}$ or $q_{1} \mid C^{l}$.
** F-6-2-2-1- We suppose that $q_{1}\left|B^{n} \Longrightarrow q_{1}\right| B \Longrightarrow B=q_{1}^{f} \cdot B_{1}$ with $q_{1} \nmid B_{1}$. We obtain $B_{1}^{n} C^{l}=q_{1}^{j-f . n} q_{2} 4^{t-1} g$.

- If $j-f . n \geq 1 \Longrightarrow q_{1}\left|C^{l} \Longrightarrow q_{1}\right| C$, but $C^{l}=A^{m}+B^{n}$ gives also $q_{1} \mid C$ and the conjecture (1.2) is verified.
- If $j-f . n=0$, we have $B_{1}^{n} C^{l}=q_{2} 4^{t-1} g$, but $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, then $q_{1} \mid\left(b-4 a^{\prime}\right)$. As q_{1} and a^{\prime} are coprime then $q_{1} \nmid b$ and the conjecture (1.2) is verified.
- If $j-f . n<0 \Longrightarrow q_{1} \mid\left(b-4 a^{\prime}\right) \Longrightarrow q_{1} \nmid b$ because q_{1}, a^{\prime} are primes. $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$ and the conjecture (1.2) is verified.
** F-6-2-2-2- We obtain identical results if we suppose that $q_{1} \mid C^{l}$.
** F-6-2-3- We suppose that k_{1} and a^{\prime} are not coprime. Let q_{1} be a prime so that $q_{1} \mid k_{1}$ and $q_{1} \mid a^{\prime}$. We write k_{1} under the form $q_{1}^{j} . q_{2}$ with $q_{1} \nmid q_{2}$. From $A^{2 m}=k_{1} a^{\prime} \Longrightarrow q_{1}\left|A^{2 m} \Longrightarrow q_{1}\right| A$. From $B^{n} C^{l}=q_{1}^{j} q_{2}\left(b-4 a^{\prime}\right)$, it follows that $q_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow q_{1}\right| B^{n}$ or $q_{1} \mid C^{l}$.
** F-6-2-3-1- We suppose that $q_{1}\left|B^{n} \Longrightarrow q_{1}\right| B \Longrightarrow B=q_{1}^{\beta} \cdot B_{1}$ with $\beta \geq 1$ and $q_{1} \nmid B_{1}$. Then we have $q_{1}^{n \beta} B_{1}^{n} C^{l}=q_{1}^{j} q_{2}\left(b-4 a^{\prime}\right) \Longrightarrow B_{1}^{n} C^{l}=$ $q_{1}^{j-n \beta} q_{2}\left(b-4 a^{\prime}\right):$
- If $j-n \beta \geq 1$, then $q_{1}\left|C^{l} \Longrightarrow q_{1}\right| C$, but $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, and the conjecture (1.2) is verified.
- If $j-n \beta=0$, we obtain $B_{1}^{n} C^{l}=q_{2}\left(b-4 a^{\prime}\right)$, but $q_{1} \mid A$ and $q_{1} \mid B$ then $q_{1} \mid C$ and we obtain $q_{1}\left|\left(b-4 a^{\prime}\right) \Longrightarrow q_{1}\right| b$ because $q_{1}\left|a^{\prime} \Longrightarrow q_{1}\right| a$, then the contradiction with a, b coprime.
- If $j-n \beta<0 \Longrightarrow q_{1}\left|\left(b-4 a^{\prime}\right) \Longrightarrow q_{1}\right| b$, then the contradiction with a, b coprime.
** F-6-2-3-2- We obtain identical results as above if we suppose that $q_{1} \mid C^{l}$.

6. Hypothèse: $\{3 \mid p$ and $b \mid 4 p\}$

6.1. Case $b=2$ and $3 \mid p$

$3 \mid p \Rightarrow p=3 p^{\prime}$ with $p^{\prime} \neq 1$ because $3 \ll p$, and $b=2$, we obtain:

$$
A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4 \cdot 3 p^{\prime} \cdot a}{3 b}=\frac{4 \cdot p^{\prime} \cdot a}{2}=2 \cdot p^{\prime} \cdot a
$$

As:

$$
\frac{1}{4}<\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{2}<\frac{3}{4} \Rightarrow 1<2 a<3 \Rightarrow a=1 \Longrightarrow \cos ^{2} \frac{\theta}{3}=\frac{1}{2}
$$

but this case was studied (see case 4.1.2).

6.2. Case $b=4$ and $3 \mid p$

we have $3 \mid p \Longrightarrow p=3 p^{\prime}$ with $p^{\prime} \in \mathbb{N}^{*}$, it follows :

$$
A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4.3 p^{\prime} \cdot a}{3 \times 4}=p^{\prime} \cdot a
$$

and:

$$
\frac{1}{4}<\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{4}<\frac{3}{4} \Rightarrow 1<a<3 \Rightarrow a=2
$$

as a, b are coprime, then the case $b=4$ and $3 \mid p$ is impossible.
6.3. Case: $b \neq 2, b \neq 4, b \neq 3, b \mid p$ and $3 \mid p$

As $3 \mid p$, then $p=3 p^{\prime}$ and :

$$
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{4 \times 3 p^{\prime}}{3} \frac{a}{b}=\frac{4 p^{\prime} a}{b}
$$

We consider the case: $b \mid p^{\prime} \Longrightarrow p^{\prime}=b p "$ and $p " \neq 1$ (If $p "=1$, then $p=3 b$, see paragraph 6.8 Case $k^{\prime}=1$). Finally, we obtain:

$$
A^{2 m}=\frac{4 b p " a}{b}=4 a p " ; \quad B^{n} C^{l}=p^{\prime \prime} .(3 b-4 a)
$$

** G-1- We suppose that p " is prime, then $A^{2 m}=4 a p "=\left(A^{m}\right)^{2} \Longrightarrow p " \mid a$. But $B^{n} C^{l}=p "(3 b-4 a) \Longrightarrow p " \mid B^{n}$ or $p " \mid C^{l}$.
** G-1-1- If $p "\left|B^{n} \Longrightarrow p "\right| B \Longrightarrow B=p " B_{1}$ with $B_{1} \in \mathbb{N}^{*}$. Then $p^{"{ }^{n-1}} B_{1}^{n} C^{l}=3 b-4 a$. As $n>2$, then $(n-1)>1$ and $p " \mid a$, then $p " \mid 3 b \Longrightarrow p "=3$ or $p " \mid b$.
** G-1-1-1- If $p "=3 \Longrightarrow 3 \mid a$, with a that we write as $a=3 a^{\prime 2}$, but $A^{m}=$ $6 a^{\prime} \Longrightarrow 3\left|A^{m} \Longrightarrow 3\right| A \Longrightarrow A=3 A_{1}$, then $3^{m-1} A_{1}^{m}=2 a^{\prime} \Longrightarrow 3 \mid a^{\prime} \Longrightarrow$ $a^{\prime}=3 a "$. As $p^{" n-1} B_{1}^{n} C^{l}=3^{n-1} B_{1}^{n} C^{l}=3 b-4 a \Longrightarrow 3^{n-2} B_{1}^{n} C^{l}=b-36 a{ }^{2}{ }^{2}$. As $n>2 \Longrightarrow n-2 \geq 1$, then $3 \mid b$ and the contradiction with a, b coprime.
** G-1-1-2- We suppose that $p " \mid b$, as $p " \mid a$, then the contradiction with a, b coprime.
** G-1-2- If we suppose $p^{\prime \prime} \mid C^{l}$, we obtain identical results (contradictions).
** G-2- We consider now that $p "$ is not prime.
** G-2-1- $p ", a$ coprime: $A^{2 m}=4 a p " \Longrightarrow A^{m}=2 a^{\prime} \cdot p_{1}$ with $a=a^{\prime 2}$ and $p "=p_{1}^{2}$, then a^{\prime}, p_{1} are also coprime. As $A^{m}=2 a^{\prime} . p_{1}$, then $2 \mid a^{\prime}$ or $2 \mid p_{1}$.
** G-2-1-1- We suppose that $2 \mid a^{\prime}$, then $2 \mid a^{\prime} \Longrightarrow 2 \nmid p_{1}$, but $p^{"}=p_{1}^{2}$.
** G-2-1-1-1- If p_{1} is prime, it is impossible with $A^{m}=2 a^{\prime} \cdot p_{1}$.
** G-2-1-1-2- We suppose that p_{1} is not prime so we can write $p_{1}=\omega^{m} \Longrightarrow$ $p "=\omega^{2 m}$. Then $B^{n} C^{l}=\omega^{2 m}(3 b-4 a)$.
** G-2-1-1-2-1- If ω is prime, $\omega \neq 2$, then $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** G-2-1-1-2-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$, then $B_{1}^{n} \cdot C^{l}=\omega^{2 m-n j}(3 b-4 a)$.
** G-2-1-1-2-1-1-1- If $2 m-n . j=0$, we obtain $B_{1}^{n} . C^{l}=3 b-4 a$. As $C^{l}=$ $A^{m}+B^{n} \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$, and $\omega \mid(3 b-4 a)$. But $\omega \neq 2$ and ω, a^{\prime} are
coprime, then ω, a are coprime, it follows $\omega \nmid(3 b)$, then $\omega \neq 3$ and $\omega \nmid b$, the conjecture (1.2) is verified.
** G-2-1-1-2-1-1-2- If $2 m-n j \geq 1$, using the method as above, we obtain $\omega\left|C^{l} \Longrightarrow \omega\right| C$ and $\omega \mid(3 b-4 a)$ and $\omega \nmid a$ and $\omega \neq 3$ and $\omega \nmid b$, then the conjecture (1.2) is verified.
${ }^{* *}$ G-2-1-1-2-1-1-3- If $2 m-n j<0 \Longrightarrow \omega^{n . j-2 m} B_{1}^{n} . C^{l}=3 b-4 a$. From $A^{m}+B^{n}=C^{l} \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$, then $C=\omega^{h} . C_{1}$, with $\omega \nmid C_{1}$, we obtain $\omega^{n . j-2 m+h . l} B_{1}^{n} . C_{1}^{l}=3 b-4 a$. If $n . j-2 m+h . l<0 \Longrightarrow \omega \mid B_{1}^{n} C_{1}^{l}$ then the contradiction with $\omega \nmid B_{1}$ or $\omega \nmid C_{1}$. It follows $n . j-2 m+h . l>0$ and $\omega \mid(3 b-4 a)$ with ω, a, b coprime and the conjecture is verified.
** G-2-1-1-2-1-2- Using the same method above, we obtain identical results if $\omega \mid C^{l}$.
** G-2-1-1-2-2- We suppose that $p^{\prime \prime}=\omega^{2 m}$ and ω is not prime. We write $\omega=\omega_{1}^{f} . \Omega$ with ω_{1} prime $\nmid \Omega, f \geq 1$, and $\omega_{1} \mid A$. Then $B^{n} C^{l}=\omega_{1}^{2 f . m} \Omega^{2 m}(3 b-$ $4 a) \Longrightarrow \omega_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega_{1}\right| B^{n}$ or $\omega_{1} \mid C^{l}$.
${ }^{* *}$ G-2-1-1-2-2-1- If $\omega_{1}\left|B^{n} \Longrightarrow \omega_{1}\right| B \Longrightarrow B=\omega_{1}^{j} B_{1}$ with $\omega_{1} \nmid B_{1}$, then $B_{1}^{n} . C^{l}=\omega_{1}^{2 . m-n j} \Omega^{2 m}(3 b-4 a)$:
${ }^{* *}$ G-2-1-1-2-2-1-1- If $2 f . m-n . j=0$, we obtain $B_{1}^{n} . C^{l}=\Omega^{2 m}(3 b-4 a)$. As $C^{l}=A^{m}+B^{n} \Longrightarrow \omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C$, and $\omega_{1} \mid(3 b-4 a)$. But $\omega_{1} \neq 2$ and ω_{1}, a^{\prime} are coprime, then ω, a are coprime, it follows $\omega_{1} \nmid(3 b)$, then $\omega_{1} \neq 3$ and $\omega_{1} \nmid b$, and the conjecture (1.2) is verified.
** G-2-1-1-2-2-1-2- If 2 f.m-n. $j \geq 1$, we have $\omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C$ and $\omega_{1} \mid(3 b-4 a)$ and $\omega_{1} \nmid a$ and $\omega_{1} \neq 3$ and $\omega_{1} \nmid b$, it follows that the conjecture (1.2) is verified.
** G-2-1-1-2-2-1-3- If $2 f . m-n \cdot j<0 \Longrightarrow \omega_{1}^{n \cdot j-2 m \cdot f} B_{1}^{n} \cdot C^{l}=\Omega^{2 m}(3 b-4 a)$. As $\omega_{1} \mid C$ using $C^{l}=A^{m}+B^{n}$, then $C=\omega_{1}^{h} \cdot C_{1} \Longrightarrow \omega^{n \cdot j-2 m \cdot f+h \cdot l} B_{1}^{n} \cdot C_{1}^{l}=$ $\Omega^{2 m}(3 b-4 a)$. If $n . j-2 m . f+h . l<0 \Longrightarrow \omega_{1} \mid B_{1}^{n} C_{1}^{l}$, then the contradiction with $\omega_{1} \nmid B_{1}$ and $\omega_{1} \nmid C_{1}$. Then if $n . j-2 m . f+h . l>0$ and $\omega_{1} \mid(3 b-4 a)$ with ω_{1}, a, b coprime and the conjecture (1.2) is verified.
** G-2-1-1-2-2-2- Using the same method above, we obtain identical results if $\omega_{1} \mid C^{l}$.
** G-2-1-2- We suppose that $2 \mid p_{1}$: then $2 \mid p_{1} \Longrightarrow 2 \nmid a^{\prime} \Longrightarrow 2 \nmid a$, but $p^{\prime \prime}=p_{1}^{2}$.
${ }^{* *}$ G-2-1-2-1- We suppose that $p_{1}=2$, we obtain $A^{m}=4 a^{\prime} \Longrightarrow 2 \mid a^{\prime}$, then the contradiction with a, b coprime.
** G-2-1-2-2- We suppose that p_{1} is not prime and $2 \mid p_{1}$. As $A^{m}=2 a^{\prime} p_{1}, p_{1}$ can written as $p_{1}=2^{m-1} \omega^{m} \Longrightarrow p^{\prime \prime}=2^{2 m-2} \omega^{2 m}$. Then $B^{n} C^{l}=2^{2 m-2} \omega^{2 m}(3 b-$ $4 a) \Longrightarrow 2 \mid B^{n}$ or $2 \mid C^{l}$.
** G-2-1-2-2-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B$. As $2 \mid A$, then $2 \mid C$. From $B^{n} C^{l}=2^{2 m-2} \omega^{2 m}(3 b-4 a)$ it follows that if $2|(3 b-4 a) \Longrightarrow 2| b$ but as $2 \nmid a$ there is no contradiction with a, b coprime and the conjecture (1.2) is verified.
** G-2-1-2-2-2- We suppose that $2 \mid C^{l}$, using the same method above, we obtain identical results.
** G-2-2- We suppose that $p ", a$ are not coprime: let ω be a prime integer so that $\omega \mid a$ and $\omega \mid p$ ".
** G-2-2-1- We suppose that $\omega=3$. As $A^{2 m}=4 a p " \Longrightarrow 3 \mid A$, but $3 \mid p$. As $p=A^{2 m}+B^{2 n}+A^{m} B^{n} \Longrightarrow 3\left|B^{2 n} \Longrightarrow 3\right| B$, then $3\left|C^{l} \Longrightarrow 3\right| C$. We write $A=3^{i} A_{1}, B=3^{j} B_{1}, C=3^{h} C_{1}$ with 3 coprime with A_{1}, B_{1} and C_{1} and $p=3^{2 i m} A_{1}^{2 m}+3^{2 n j} B_{1}^{2 n}+3^{i m+j n} A_{1}^{m} B_{1}^{n}=3^{k} . g$ with $k=\min (2 i m, 2 j n, i m+$ $j n)$ and $3 \nmid g$. We have also $(\omega=3) \mid a$ and $(\omega=3) \mid p "$ that gives $a=3^{\alpha} a_{1}, 3 \nmid a_{1}$ and $p "=3^{\mu} p_{1}, 3 \nmid p_{1}$ with $A^{2 m}=4 a p "=3^{2 i m} A_{1}^{2 m}=$ $4 \times 3^{\alpha+\mu} \cdot a_{1} \cdot p_{1} \Longrightarrow \alpha+\mu=2 i m$. As $p=3 p^{\prime}=3 b \cdot p^{\prime \prime}=3 b \cdot 3^{\mu} p_{1}=3^{\mu+1} \cdot b \cdot p_{1}$, the exponent of the factor 3 of p is k, the exponent of the factor 3 of the left member of the last equation is $\mu+1$ added of the exponent β of 3 of the term b, with $\beta \geq 0$, let $\min (2 i m, 2 j n, i m+j n)=\mu+1+\beta$ and we recall that $\alpha+\mu=2 i m$. But $B^{n} C^{l}=p "(3 b-4 a)$, we obtain $3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=$ $3^{\mu+1} p_{1}\left(b-4 \times 3^{(\alpha-1)} a_{1}\right)=3^{\mu+1} p_{1}\left(3^{\beta} b_{1}-4 \times 3^{(\alpha-1)} a_{1}\right), 3 \nmid b_{1}$. We have also $A^{m}+B^{n}=C^{l} \Longrightarrow 3^{i m} A_{1}^{m}+3^{j n} B_{1}^{n}=3^{h l} C_{1}^{l}$. We call $\epsilon=\min (i m, j n)$, we have $\epsilon=h l=\min (i m, j n)$. We obtain the conditions:

$$
\begin{array}{r}
k=\min (2 i m, 2 j n, i m+j n)=\mu+1+\beta \\
\alpha+\mu=2 i m \tag{6.2}\\
\epsilon=h l=\min (i m, j n) \\
3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu+1} p_{1}\left(3^{\beta} b_{1}-4 \times 3^{(\alpha-1)} a_{1}\right)
\end{array}
$$

** G-2-2-1-1- $\alpha=1 \Longrightarrow a=3 a_{1}$ and $3 \nmid a_{1}$, the equation (6.2) becomes:

$$
1+\mu=2 i m
$$

and the first equation (6.1) is written as:

$$
k=\min (2 i m, 2 j n, i m+j n)=2 i m+\beta
$$

- If $k=2 i m \Longrightarrow \beta=0$ then $3 \nmid b$. We obtain $2 i m \leq 2 j n \Longrightarrow i m \leq j n$, and $2 i m \leq i m+j n \Longrightarrow i m \leq j n$. The third equation gives $h l=i m$ and the last
equation gives $n j+h l=\mu+1=2 i m \Longrightarrow i m=n j$, then $i m=n j=h l$ and $B_{1}^{n} C_{1}^{l}=p_{1}\left(b-4 a_{1}\right)$. As a, b are coprime, the conjecture (1.2) is verified.
- If $k=2 j n$ or $k=i m+j n$, we obtain $\beta=0, i m=j n=h l$ and $B_{1}^{n} C_{1}^{l}=p_{1}\left(b-4 a_{1}\right)$. As a, b are coprime, the conjecture (1.2) is verified.
** G-2-2-1-2- $\alpha>1 \Longrightarrow \alpha \geq 2$.
- If $k=2 i m \Longrightarrow 2 i m=\mu+1+\beta$, but $\mu=2 i m-\alpha$ that gives $\alpha=1+\beta \geq 2 \Longrightarrow \beta \neq 0 \Longrightarrow 3 \mid b$, but $3 \mid a$ then the contradiction with a, b coprime.
- If $k=2 j n=\mu+1+\beta \leq 2 i m \Longrightarrow \mu+1+\beta \leq \mu+\alpha \Longrightarrow 1+\beta \leq \alpha \Longrightarrow$ $\beta \geq 1$. If $\beta \geq 1 \Longrightarrow 3 \mid b$ but $3 \mid a$, then the contradiction with a, b coprime.
- If $k=i m+j n \Longrightarrow i m+j n \leq 2 i m \Longrightarrow j n \leq i m$, and $i m+j n \leq$ $2 j n \Longrightarrow i m \leq j n$, then $i m=j n$. As $k=i m+j n=2 i m=1+\mu+\beta$ and $\alpha+\mu=2$ im, we obtain $\alpha=1+\beta \geq 2 \Longrightarrow \beta \geq 1 \Longrightarrow 3 \mid b$, then the contradiction with a, b coprime.
** G-2-2-2- We suppose that $\omega \neq 3$. We write $a=\omega^{\alpha} a_{1}$ with $\omega \nmid a_{1}$ and $p^{\prime \prime}=$ $\omega^{\mu} p_{1}$ with $\omega \nmid p_{1}$. As $A^{2 m}=4 a p "=4 \omega^{\alpha+\mu} \cdot a_{1} \cdot p_{1} \Longrightarrow \omega \mid A \Longrightarrow A=\omega^{i} A_{1}$, $\omega \nmid A_{1}$. But $B^{n} C^{l}=p "(3 b-4 a)=\omega^{\mu} p_{1}(3 b-4 a) \Longrightarrow \omega\left|B^{n} C^{l} \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** G-2-2-2-1- We suppose that $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ and $\omega \nmid B_{1}$. From $A^{m}+B^{n}=C^{l} \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$. As $p=b p^{\prime}=3 b p^{\prime \prime}=3 \omega^{\mu} b p_{1}=$ $\omega^{k}\left(\omega^{2 i m-k} A_{1}^{2 m}+\omega^{2 j n-k} B_{1}^{2 n}+\omega^{i m+j n-k} A_{1}^{m} B_{1}^{n}\right)$ with $k=\min (2 i m, 2 j n, i m+$ $j n)$. Then:
- If $k=\mu$, then $\omega \nmid b$ and the conjecture (1.2) is verified.
- If $k>\mu$, then $\omega \mid b$, but $\omega \mid a$ then the contradiction with a, b coprime.
- If $k<\mu$, it follows from:

$$
3 \omega^{\mu} b p_{1}=\omega^{k}\left(\omega^{2 i m-k} A_{1}^{2 m}+\omega^{2 j n-k} B_{1}^{2 n}+\omega^{i m+j n-k} A_{1}^{m} B_{1}^{n}\right)
$$

that $\omega \mid A_{1}$ or $\omega \mid B_{1}$ then the contradiction with $\omega \nmid A_{1}$ or $\omega \nmid B_{1}$.
** G-2-2-2-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C \Longrightarrow C=\omega^{h} C_{1}$ with $\omega \nmid C_{1}$. From $A^{m}+B^{n}=C^{l} \Longrightarrow \omega\left|\left(C^{l}-A^{m}\right) \Longrightarrow \omega\right| B$. Then, using the same method as for the case G-2-2-2-1-, we obtain identical results.
6.4. Case $b=3$ and $3 \mid p$

As $3 \mid p \Longrightarrow p=3 p^{\prime}$, We write :

$$
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{4 \times 3 p^{\prime}}{3} \frac{a}{3}=\frac{4 p^{\prime} a}{3}
$$

As $A^{2 m}$ is an integer and a, b are coprime and $\cos ^{2} \frac{\theta}{3}<1$ (see equation (3.9)), then we have necessary $3 \mid p^{\prime} \Longrightarrow p^{\prime}=3 p$ " with $p " \neq 1$, if not $p=3 p^{\prime}=3 \times 3 p^{\prime \prime}=9$, but $9 \ll\left(p=A^{2 m}+B^{2 n}+A^{m} B^{n}\right)$, the hypothesis
$p "=1$ is impossible, then $p ">1$, and we obtain:

$$
A^{2 m}=\frac{4 p^{\prime} a}{3}=\frac{4 \times 3 p^{\prime \prime} a}{3}=4 p^{\prime \prime} a ; \quad B^{n} C^{l}=p " .(9-4 a)
$$

As $\frac{1}{4}<\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{3}<\frac{3}{4} \Longrightarrow 3<4 a<9 \Longrightarrow$ as $a>1, a=2$ and we obtain:

$$
\begin{equation*}
A^{2 m}=4 p " a=8 p " ; \quad B^{n} C^{l}=\frac{3 p "(9-4 a)}{3}=p " \tag{6.3}
\end{equation*}
$$

The two last equations above imply that p " is not a prime. We can write p " as : $p^{\prime \prime}=\prod_{i \in I} p_{i}^{\alpha_{i}}$ where p_{i} are distinct primes, α_{i} elements of \mathbb{N}^{*} and $i \in I$ a finite set of indexes. We can write also $p^{\prime \prime}=p_{1}^{\alpha_{1}} . q_{1}$ with $p_{1} \nmid q_{1}$. From (6.3), we have $p_{1} \mid A$ and $p_{1}\left|B^{n} C^{l} \Longrightarrow p_{1}\right| B^{n}$ or $p_{1} \mid C^{l}$.
** H-1- We suppose that $p_{1} \mid B^{n} \Longrightarrow B=p_{1}^{\beta_{1}} . B_{1}$ with $p_{1} \nmid B_{1}$ and $\beta_{1} \geq 1$. Then, we obtain $B_{1}^{n} C^{l}=p_{1}^{\alpha_{1}-n \beta_{1}} \cdot q_{1}$ with the following cases:

- If $\alpha_{1}-n \beta_{1} \geq 1 \Longrightarrow p_{1}\left|C^{l} \Longrightarrow p_{1}\right| C$, in accord with $p_{1} \mid\left(C^{l}=\right.$ $A^{m}+B^{n}$), it follows that the conjecture (1.2) is verified.
- If $\alpha_{1}-n \beta_{1}=0 \Longrightarrow B_{1}^{n} C^{l}=q_{1} \Longrightarrow p_{1} \nmid C^{l}$, it is a contradiction with $p_{1}\left|\left(A^{m}-B^{n}\right) \Longrightarrow p_{1}\right| C^{l}$. Then this case is impossible.
- If $\alpha_{1}-n \beta_{1}<0$, we obtain $p_{1}^{n \beta_{1}-\alpha_{1}} B_{1}^{n} C^{l}=q_{1} \Longrightarrow p_{1} \mid q_{1}$, it is a contradiction with $p_{1} \nmid q_{1}$. Then this case is impossible.
** H-2- We suppose that $p_{1} \mid C^{l}$, using the same method as for the case $p_{1} \mid B^{n}$, we obtain identical results.
6.5. Case $3 \mid p$ and $b=p$

We have $\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{p}$ and:

$$
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{a}{p}=\frac{4 a}{3}
$$

As $A^{2 m}$ is an integer, it implies that $3 \mid a$, but $3|p \Longrightarrow 3| b$. As a and b are coprime, then the contradiction and the case $3 \mid p$ and $b=p$ is impossible.
6.6. Case $3 \mid p$ and $b=4 p$
$3 \mid p \Longrightarrow p=3 p^{\prime}, p^{\prime} \neq 1$ because $3 \ll p$, then $b=4 p=12 p^{\prime}$.

$$
\left.A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{a}{3} \Longrightarrow 3 \right\rvert\, a
$$

as $A^{2 m}$ is an integer. But $3|p \Longrightarrow 3|[(4 p)=b]$, then the contradiction with a, b coprime and the case $b=4 p$ is impossible.
6.7. Case $3 \mid p$ and $b=2 p$
$3 \mid p \Longrightarrow p=3 p^{\prime}, p^{\prime} \neq 1$ because $3 \ll p$, then $b=2 p=6 p^{\prime}$.

$$
\left.A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{2 a}{3} \Longrightarrow 3 \right\rvert\, a
$$

as $A^{2 m}$ is an integer. But $3|p \Longrightarrow 3|(2 p) \Longrightarrow 3 \mid b$, then the contradiction with a, b coprime and the case $b=2 p$ is impossible.

6.8. Case $3 \mid p$ and $b \neq 3$ a divisor of p

We have $b=p^{\prime} \neq 3$, and p is written as $p=k p^{\prime}$ with $3 \mid k \Longrightarrow k=3 k^{\prime}$ and :

$$
\begin{array}{r}
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{a}{b}=4 a k^{\prime} \\
B^{n} C^{l}=\frac{p}{3} \cdot\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=k^{\prime}\left(3 p^{\prime}-4 a\right)=k^{\prime}(3 b-4 a)
\end{array}
$$

** $\mathrm{I}-1-k^{\prime} \neq 1$:
** I-1-1- We suppose that k^{\prime} is prime, then $A^{2 m}=4 a k^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow k^{\prime} \mid a$. But $B^{n} C^{l}=k^{\prime}(3 b-4 a) \Longrightarrow k^{\prime} \mid B^{n}$ or $k^{\prime} \mid C^{l}$.
** I-1-1-1- If $k^{\prime}\left|B^{n} \Longrightarrow k^{\prime}\right| B \Longrightarrow B=k^{\prime} B_{1}$ with $B_{1} \in \mathbb{N}^{*}$. Then $k^{\prime n-1} B_{1}^{n} C^{l}=3 b-4 a$. As $n>2$, then $(n-1)>1$ and $k^{\prime} \mid a$, then $k^{\prime} \mid 3 b \Longrightarrow k^{\prime}=3$ or $k^{\prime} \mid b$.
** I-1-1-1-1- If $k^{\prime}=3 \Longrightarrow 3 \mid a$, with a that we can write it under the form $a=3 a^{2}$. But $A^{m}=6 a^{\prime} \Longrightarrow 3\left|A^{m} \Longrightarrow 3\right| A \Longrightarrow A=3 A_{1}$ with $A_{1} \in \mathbb{N}^{*}$. Then $3^{m-1} A_{1}^{m}=2 a^{\prime} \Longrightarrow 3 \mid a^{\prime} \Longrightarrow a^{\prime}=3 a "$. But $k^{\prime n-1} B_{1}^{n} C^{l}=3^{n-1} B_{1}^{n} C^{l}=$ $3 b-4 a \Longrightarrow 3^{n-2} B_{1}^{n} C^{l}=b-36 a^{" 2}$. As $n \geq 3 \Longrightarrow n-2 \geq 1$, then $3 \mid b$. Hence the contradiction with a, b coprime.
** I-1-1-1-2- We suppose that $k^{\prime} \mid b$, but $k^{\prime} \mid a$, then the contradiction with a, b coprime.
** I-1-1-2- We suppose that $k^{\prime} \mid C^{l}$, using the same method as for the case $k^{\prime} \mid B^{n}$, we obtain identical results.
** I-1-2- We consider that k^{\prime} is not a prime.
** I-1-2-1- We suppose that k^{\prime}, a coprime: $A^{2 m}=4 a k^{\prime} \Longrightarrow A^{m}=2 a^{\prime} \cdot p_{1}$ with $a=a^{\prime 2}$ and $k^{\prime}=p_{1}^{2}$, then a^{\prime}, p_{1} are also coprime. As $A^{m}=2 a^{\prime} . p_{1}$ then $2 \mid a^{\prime}$ or $2 \mid p_{1}$.
** I-1-2-1-1- We suppose that $2 \mid a^{\prime}$, then $2 \mid a^{\prime} \Longrightarrow 2 \nmid p_{1}$, but $k^{\prime}=p_{1}^{2}$.
${ }^{* *}$ I-1-2-1-1-1- If p_{1} is prime, it is impossible with $A^{m}=2 a^{\prime} \cdot p_{1}$.
** I-1-2-1-1-2- We suppose that p_{1} is not prime and it can be written as $p_{1}=\omega^{m} \Longrightarrow k^{\prime}=\omega^{2 m}$. Then $B^{n} C^{l}=\omega^{2 m}(3 b-4 a)$.
** I-1-2-1-1-2-1- If ω is prime $\neq 2$, then $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** I-1-2-1-1-2-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$, then $B_{1}^{n} . C^{l}=\omega^{2 m-n j}(3 b-4 a)$.

- If $2 m-n \cdot j=0$, we obtain $B_{1}^{n} . C^{l}=3 b-4 a$, as $C^{l}=A^{m}+B^{n} \Longrightarrow$ $\omega\left|C^{l} \Longrightarrow \omega\right| C$, and $\omega \mid(3 b-4 a)$. But $\omega \neq 2$ and ω, a^{\prime} are coprime, then $\omega \nmid(3 b) \Longrightarrow \omega \neq 3$ and $\omega \nmid b$. Hence, the conjecture (1.2) is verified.
- If $2 m-n j \geq 1$, using the same method, we have $\omega\left|C^{l} \Longrightarrow \omega\right| C$ and $\omega \mid(3 b-4 a)$ and $\omega \nmid a$ and $\omega \neq 3$ and $\omega \nmid b$. Then the conjecture (1.2) is verified.
- If $2 m-n j<0 \Longrightarrow \omega^{n . j-2 m} B_{1}^{n} . C^{l}=3 b-4 a$. As $C^{l}=A^{m}+$ $B^{n} \Longrightarrow \omega \mid C$ then $C=\omega^{h} . C_{1} \Longrightarrow \omega^{n . j-2 m+h . l} B_{1}^{n} . C_{1}^{l}=3 b-4 a$. If $n . j-2 m+h . l<0 \Longrightarrow \omega \mid B_{1}^{n} C_{1}^{l}$, then the contradiction with $\omega \nmid B_{1}$ or $\omega \nmid C_{1}$. If $n . j-2 m+h . l>0 \Longrightarrow \omega \mid(3 b-4 a)$ with ω, a, b coprime, it implies that the conjecture (1.2) is verified.
** I-1-2-1-1-2-1-2- We suppose that $\omega \mid C^{l}$, using the same method as for the case $\omega \mid B^{n}$, we obtain identical results.
** I-1-2-1-1-2-2- Now $k^{\prime}=\omega^{2 m}$ and ω not a prime, we write $\omega=\omega_{1}^{f} . \Omega$ with ω_{1} a prime $\nmid \Omega$ and $f \geq 1$ an integer, and $\omega_{1} \mid A$, then $B^{n} C^{l}=$ $\omega_{1}^{2 f . m} \Omega^{2 m}(3 b-4 a) \Longrightarrow \omega_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega_{1}\right| B^{n}$ or $\omega_{1} \mid C^{l}$.
** I-1-2-1-1-2-2-1- If $\omega_{1}\left|B^{n} \Longrightarrow \omega_{1}\right| B \Longrightarrow B=\omega_{1}^{j} B_{1}$ with $\omega_{1} \nmid B_{1}$, then $B_{1}^{n} . C^{l}=\omega_{1}^{2 . f m-n j} \Omega^{2 m}(3 b-4 a)$.
- If $2 f . m-n . j=0$, we obtain $B_{1}^{n} . C^{l}=\Omega^{2 m}(3 b-4 a)$. As $C^{l}=A^{m}+$ $B^{n} \Longrightarrow \omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C$, and $\omega_{1} \mid(3 b-4 a)$. But $\omega_{1} \neq 2$ and ω_{1}, a^{\prime} are coprime, then ω, a are coprime, then $\omega_{1} \nmid(3 b) \Longrightarrow \omega_{1} \neq 3$ and $\omega_{1} \nmid b$. Hence, the conjecture (1.2) is verified.
- If $2 f . m-n . j \geq 1$, we have $\omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C$ and $\omega_{1} \mid(3 b-4 a)$ and $\omega_{1} \nmid a$ and $\omega_{1} \neq 3$ and $\omega_{1} \nmid b$, then the conjecture (1.2) is verified.
- If $2 f . m-n . j<0 \Longrightarrow \omega_{1}^{n . j-2 m . f} B_{1}^{n} . C^{l}=\Omega^{2 m}(3 b-4 a)$. As $C^{l}=A^{m}+$ $B^{n} \Longrightarrow \omega_{1} \mid C$, then $C=\omega_{1}^{h} \cdot C_{1} \Longrightarrow \omega^{n . j-2 m \cdot f+h . l} B_{1}^{n} \cdot C_{1}^{l}=\Omega^{2 m}(3 b-4 a)$. If $n . j-2 m . f+h . l<0 \Longrightarrow \omega_{1} \mid B_{1}^{n} C_{1}^{l}$, then the contradiction with $\omega_{1} \nmid B_{1}$ and $\omega_{1} \nmid C_{1}$. Then if $n . j-2 m . f+h . l>0$ and $\omega_{1} \mid(3 b-4 a)$ with ω_{1}, a, b coprime, then the conjecture (1.2) is verified.
** I-1-2-1-1-2-2-2- As in the case $\omega_{1} \mid B^{n}$, we obtain identical results if $\omega_{1} \mid C^{l}$.
** I-1-2-1-2- If $2 \mid p_{1}$: then $2 \mid p_{1} \Longrightarrow 2 \nmid a^{\prime} \Longrightarrow 2 \nmid a$, but $k^{\prime}=p_{1}^{2}$.
** I-1-2-1-2-1- If $p_{1}=2$, we obtain $A^{m}=4 a^{\prime} \Longrightarrow 2 \mid a^{\prime}$, then the contradiction with $2 \nmid a^{\prime}$. Case to reject.
** I-1-2-1-2-2- We suppose that p_{1} is not prime and $2 \mid p_{1}$. As $A^{m}=2 a^{\prime} p_{1}$, p_{1} is written under the form $p_{1}=2^{m-1} \omega^{m} \Longrightarrow p_{1}^{2}=2^{2 m-2} \omega^{2 m}$. Then $B^{n} C^{l}=k^{\prime}(3 b-4 a)=2^{2 m-2} \omega^{2 m}(3 b-4 a) \Longrightarrow 2 \mid B^{n}$ or $2 \mid C^{l}$.
** I-1-2-1-2-2-1- If $2\left|B^{n} \Longrightarrow 2\right| B$, as $2|A \Longrightarrow 2| C$. From $B^{n} C^{l}=$ $2^{2 m-2} \omega^{2 m}(3 b-4 a)$ it follows that if $2|(3 b-4 a) \Longrightarrow 2| b$ but as $2 \nmid a$, there is no contradiction with a, b coprime and the conjecture (1.2) is verified.
** I-1-2-1-2-2-2- We obtain identical results as above if $2 \mid C^{l}$.
** I-1-2-2- We suppose that k^{\prime}, a are not coprime: let ω be a prime integer so that $\omega \mid a$ and $\omega \mid p_{1}^{2}$.
** I-1-2-2-1- We suppose that $\omega=3$. As $A^{2 m}=4 a k^{\prime} \Longrightarrow 3 \mid A$, but $3 \mid p$. As $p=A^{2 m}+B^{2 n}+A^{m} B^{n} \Longrightarrow 3\left|B^{2 n} \Longrightarrow 3\right| B$, then $3\left|C^{l} \Longrightarrow 3\right| C$. We write $A=3^{i} A_{1}, B=3^{j} B_{1}, C=3^{h} C_{1}$ with 3 coprime with A_{1}, B_{1} and C_{1} and $p=$ $3^{2 i m} A_{1}^{2 m}+3^{2 n j} B_{1}^{2 n}+3^{i m+j n} A_{1}^{m} B_{1}^{n}=3^{s} . g$ with $s=\min (2 i m, 2 j n, i m+j n)$ and $3 \nmid g$. We have also $(\omega=3) \mid a$ and $(\omega=3) \mid k^{\prime}$ that give $a=3^{\alpha} a_{1}, 3 \nmid a_{1}$ and $k^{\prime}=3^{\mu} p_{2}, 3 \nmid p_{2}$ with $A^{2 m}=4 a k^{\prime}=3^{2 i m} A_{1}^{2 m}=4 \times 3^{\alpha+\mu} . a_{1} \cdot p_{2} \Longrightarrow$ $\alpha+\mu=2 i m$. As $p=3 p^{\prime}=3 b . k^{\prime}=3 b .3^{\mu} p_{2}=3^{\mu+1} . b . p_{2}$. The exponent of the factor 3 of p is s, the exponent of the factor 3 of the left member of the last equation is $\mu+1$ added of the exponent β of 3 of the factor b, with $\beta \geq 0$, let $\min (2 i m, 2 j n, i m+j n)=\mu+1+\beta$, we recall that $\alpha+\mu=2 i m$. But $B^{n} C^{l}=k^{\prime}(4 b-3 a)$ that gives $3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu+1} p_{2}\left(b-4 \times 3^{(\alpha-1)} a_{1}\right)=$ $3^{\mu+1} p_{2}\left(3^{\beta} b_{1}-4 \times 3^{(\alpha-1)} a_{1}\right), 3 \nmid b_{1}$. We have also $A^{m}+B^{n}=C^{l}$ that gives $3^{i m} A_{1}^{m}+3^{j n} B_{1}^{n}=3^{h l} C_{1}^{l}$. We call $\epsilon=\min (i m, j n)$, we obtain $\epsilon=h l=$ $\min (i m, j n)$. We have then the conditions:

$$
\begin{array}{r}
s=\min (2 i m, 2 j n, i m+j n)=\mu+1+\beta \\
\alpha+\mu=2 i m \\
\epsilon=h l=\min (i m, j n) \\
3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu+1} p_{2}\left(3^{\beta} b_{1}-4 \times 3^{(\alpha-1)} a_{1}\right) \tag{6.7}
\end{array}
$$

** I-1-2-2-1-1- $\alpha=1 \Longrightarrow a=3 a_{1}$ and $3 \nmid a_{1}$, the equation (6.5) becomes:

$$
1+\mu=2 i m
$$

and the first equation (6.4) is written as :

$$
s=\min (2 i m, 2 j n, i m+j n)=2 i m+\beta
$$

- If $s=2 i m \Longrightarrow \beta=0 \Longrightarrow 3 \nmid b$. We obtain $2 i m \leq 2 j n \Longrightarrow i m \leq j n$, and $2 i m \leq i m+j n \Longrightarrow i m \leq j n$. The third equation (6.6) gives $h l=i m$. The last equation (6.7) gives $n j+h l=\mu+1=2 i m \Longrightarrow i m=j n$, then $i m=j n=h l$ and $B_{1}^{n} C_{1}^{l}=p_{2}\left(b-4 a_{1}\right)$. As a, b are coprime, the conjecture (1.2) is verified.
- If $s=2 j n$ or $s=i m+j n$, we obtain $\beta=0, i m=j n=h l$ and $B_{1}^{n} C_{1}^{l}=p_{2}\left(b-4 a_{1}\right)$. Then as a, b are coprime, the conjecture (1.2) is verified.

** $\mathrm{I}-1-2-2-1-2-\alpha>1 \Longrightarrow \alpha \geq 2$.

- If $s=2 i m \Longrightarrow 2 i m=\mu+1+\beta$, but $\mu=2 i m-\alpha$ it gives $\alpha=1+\beta \geq$ $2 \Longrightarrow \beta \neq 0 \Longrightarrow 3 \mid b$, but $3 \mid a$ then the contradiction with a, b coprime and the conjecture (1.2) is not verified.
- If $s=2 j n=\mu+1+\beta \leq 2 i m \Longrightarrow \mu+1+\beta \leq \mu+\alpha \Longrightarrow 1+\beta \leq \alpha \Longrightarrow$ $\beta=1$. If $\beta=1 \Longrightarrow 3 \mid b$ but $3 \mid a$, then the contradiction with a, b coprime and the conjecture (1.2) is not verified.
- If $s=i m+j n \Longrightarrow i m+j n \leq 2 i m \Longrightarrow j n \leq i m$, and $i m+j n \leq$ $2 j n \Longrightarrow i m \leq j n$, then $i m=j n$. As $s=i m+j n=2 i m=1+\mu+\beta$ and $\alpha+\mu=2$ im it gives $\alpha=1+\beta \geq 2 \Longrightarrow \beta \geq 1 \Longrightarrow 3 \mid b$, then the contradiction with a, b coprime and the conjecture (1.2) is not verified.
** I-1-2-2-2- We suppose that $\omega \neq 3$. We write $a=\omega^{\alpha} a_{1}$ with $\omega \nmid a_{1}$ and $k^{\prime}=$ $\omega^{\mu} p_{2}$ with $\omega \nmid p_{2}$. As $A^{2 m}=4 a k^{\prime}=4 \omega^{\alpha+\mu} . a_{1} \cdot p_{2} \Longrightarrow \omega \mid A \Longrightarrow A=\omega^{i} A_{1}$, $\omega \nmid A_{1}$. But $B^{n} C^{l}=k^{\prime}(3 b-4 a)=\omega^{\mu} p_{2}(3 b-4 a) \Longrightarrow \omega\left|B^{n} C^{l} \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** I-1-2-2-2-1- $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B^{n}=\omega^{j} B_{1}$ and $\omega \nmid B_{1}$. From $A^{m}+B^{n}=$ $C^{l} \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$. As $p=b p^{\prime}=3 b k^{\prime}=3 \omega^{\mu} b p_{2}=\omega^{s}\left(\omega^{2 i m-s} A_{1}^{2 m}+\right.$ $\left.\omega^{2 j n-s} B_{1}^{2 n}+\omega^{i m+j n-s} A_{1}^{m} B_{1}^{n}\right)$ with $s=\min (2 i m, 2 j n, i m+j n)$. Then:
- If $s=\mu$, then $\omega \nmid b$ and the conjecture (1.2) is verified.
- If $s>\mu$, then $\omega \mid b$, but $\omega \mid a$ then the contradiction with a, b coprime and the conjecture (1.2) is not verified.
- If $s<\mu$, it follows from:

$$
3 \omega^{\mu} b p_{1}=\omega^{s}\left(\omega^{2 i m-s} A_{1}^{2 m}+\omega^{2 j n-s} B_{1}^{2 n}+\omega^{i m+j n-s} A_{1}^{m} B_{1}^{n}\right)
$$

that $\omega \mid A_{1}$ or $\omega \mid B_{1}$ that is the contradiction with the hypothesis and the conjecture (1.2) is not verified.
** I-1-2-2-2-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C \Longrightarrow C=\omega^{h} C_{1}$ with $\omega \nmid C_{1}$. From $A^{m}+B^{n}=C^{l} \Longrightarrow \omega\left|\left(C^{l}-A^{m}\right) \Longrightarrow \omega\right| B$. Then we obtain identical results as the case above I-1-2-2-2-1-.
** I-2- We suppose $k^{\prime}=1$: then $k^{\prime}=1 \Longrightarrow p=3 b$, then we have $A^{2 m}=$ $4 a=\left(2 a^{\prime}\right)^{2} \Longrightarrow A^{m}=2 a^{\prime}$, then $a=a^{\prime 2}$ is even and :

$$
A^{m} B^{n}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3} \cdot \sqrt[3]{\rho}\left(\sqrt{3} \sin \frac{\theta}{3}-\cos \frac{\theta}{3}\right)=\frac{p \sqrt{3}}{3} \sin \frac{2 \theta}{3}-2 a
$$

and we have also:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=\frac{2 p \sqrt{3}}{3} \sin \frac{2 \theta}{3}=2 b \sqrt{3} \sin \frac{2 \theta}{3} \tag{6.8}
\end{equation*}
$$

The left member of the equation (6.8) is a naturel number and also b, then $2 \sqrt{3} \sin \frac{2 \theta}{3}$ can be written under the form :

$$
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{k_{2}}
$$

where k_{1}, k_{2} are two natural numbers coprime and $k_{2} \mid b \Longrightarrow b=k_{2} . k_{3}$.
** I-2-1- $k^{\prime}=1$ and $k_{3} \neq 1$: then $A^{2 m}+2 A^{m} B^{n}=k_{3} . k_{1}$. Let μ be a prime integer so that $\mu \mid k_{3}$. If $\mu=2 \Rightarrow 2 \mid b$, but $2 \mid a$, it is a contradiction with a, b coprime. We suppose that $\mu \neq 2$ and $\mu \mid k_{3}$, then $\mu\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu\right| A^{m}$ or $\mu \mid\left(A^{m}+2 B^{n}\right)$.
** I-2-1-1- $\mu \mid A^{m}$: If $\mu\left|A^{m} \Longrightarrow \mu\right| A^{2 m} \Longrightarrow \mu|4 a \Longrightarrow \mu| a$. As $\mu\left|k_{3} \Longrightarrow \mu\right| b$, the contradiction with a, b coprime.
** I-2-1-2- $\mu \mid\left(A^{m}+2 B^{n}\right)$: If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$, then $\mu \neq 2$ and $\mu \nmid B^{n} . \mu \mid\left(A^{m}+2 B^{n}\right)$, we can write $A^{m}+2 B^{n}=\mu$. t^{\prime}. It follows:

$$
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m}+B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n}
$$

Using the expression of p, we obtain:

$$
p=t^{\prime 2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right)
$$

As $p=3 b=3 k_{2} \cdot k_{3}$ and $\mu \mid k_{3}$ then $\mu \mid p \Longrightarrow p=\mu \cdot \mu^{\prime}$, then we obtain:

$$
\mu^{\prime} \cdot \mu=\mu\left(\mu t^{\prime 2}-2 t^{\prime} B^{n}\right)+B^{n}\left(B^{n}-A^{m}\right)
$$

and $\mu\left|B^{n}\left(B^{n}-A^{m}\right) \Longrightarrow \mu\right| B^{n}$ or $\mu \mid\left(B^{n}-A^{m}\right)$.
** I-2-1-2-1- $\mu \mid B^{n}$: If $\mu\left|B^{n} \Longrightarrow \mu\right| B$, that is the contradiction with I-2-1-2- above.
** I-2-1-2-2- $\mu \mid\left(B^{n}-A^{m}\right)$: If $\mu \mid\left(B^{n}-A^{m}\right)$ and using that $\mu \mid\left(A^{m}+2 B^{n}\right)$, we obtain :

$$
\mu \left\lvert\, 3 B^{n} \Longrightarrow\left\{\begin{array}{l}
\mu\left|B^{n} \Longrightarrow \mu\right| B \\
o r \\
\mu=3
\end{array}\right.\right.
$$

** I-2-1-2-2-1- $\mu \mid B^{n}$: If $\mu\left|B^{n} \Longrightarrow \mu\right| B$, that is the contradiction with I-2-1-2- above.
** I-2-1-2-2-2- $\mu=3$: If $\mu=3 \Longrightarrow 3 \mid k_{3} \Longrightarrow k_{3}=3 k_{3}^{\prime}$, and we have $b=k_{2} k_{3}=3 k_{2} k_{3}^{\prime}$, it follows $p=3 b=9 k_{2} k_{3}^{\prime}$, then $9 \mid p$, but $p=\left(A^{m}-\right.$ $\left.B^{n}\right)^{2}+3 A^{m} B^{n}$ then:

$$
9 k_{2} k_{3}^{\prime}-3 A^{m} B^{n}=\left(A^{m}-B^{n}\right)^{2}
$$

that we write as:

$$
\begin{equation*}
3\left(3 k_{2} k_{3}^{\prime}-A^{m} B^{n}\right)=\left(A^{m}-B^{n}\right)^{2} \tag{6.9}
\end{equation*}
$$

then:

$$
3\left|\left(3 k_{2} k_{3}^{\prime}-A^{m} B^{n}\right) \Longrightarrow 3\right| A^{m} B^{n} \Longrightarrow 3 \mid A^{m} \text { or } 3 \mid B^{n}
$$

** I-2-1-2-2-2-1-3| A^{m} : If $3\left|A^{m} \Longrightarrow 3\right| A$ and we have also $3 \mid A^{2 m}$, but $A^{2 m}=4 a \Longrightarrow 3|4 a \Longrightarrow 3| a$. As $b=3 k_{2} k_{3}^{\prime}$ then $3 \mid b$, but a, b are coprime, then the contradiction and $3 \nmid A$.
** I-2-1-2-2-2-2- $3 \mid B^{m}$: If $3\left|B^{n} \Longrightarrow 3\right| B$, but the equation (6.9) implies $3\left|\left(A^{m}-B^{n}\right)^{2} \Longrightarrow 3\right|\left(A^{m}-B^{n}\right) \Longrightarrow 3\left|A^{m} \Longrightarrow 3\right| A$. The last case above has given that $3 \nmid A$. Then the case $3 \mid B^{m}$ is to reject.

Finally the hypothesis $k_{3} \neq 1$ is impossible.
** I-2-2- Now, we suppose that $k_{3}=1 \Longrightarrow b=k_{2}$ and $p=3 b=3 k_{2}$, then we have:

$$
\begin{equation*}
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{b} \tag{6.10}
\end{equation*}
$$

with k_{1}, b coprime. We write (6.10) as :

$$
4 \sqrt{3} \sin \frac{\theta}{3} \cos \frac{\theta}{3}=\frac{k_{1}}{b}
$$

Taking the square of the two members and replacing $\cos ^{2} \frac{\theta}{3}$ by $\frac{a}{b}$, we obtain:

$$
3 \times 4^{2} \cdot a(b-a)=k_{1}^{2} \Longrightarrow k_{1}^{2}=3 \times 4^{2} \cdot a^{\prime 2}(b-a)
$$

it implies that:

$$
b-a=3 \alpha^{2}, \alpha \in \mathbb{N}^{*} \Longrightarrow b=a^{\prime 2}+3 \alpha^{2} \Longrightarrow k_{1}=12 a^{\prime} \alpha
$$

As:

$$
k_{1}=12 a^{\prime} \alpha=A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow 3 \alpha=a^{\prime}+B^{n}
$$

We consider now that $3 \mid(b-a)$ with $b=a^{\prime 2}+3 \alpha^{2}$. The case $\alpha=1$ gives $a^{\prime}+B^{n}=3$ that is impossible. We suppose $\alpha>1$, the pair $\left(a^{\prime}, \alpha\right)$ is a solution of the Diophantine equation:

$$
\begin{equation*}
X^{2}+3 Y^{2}=b \tag{6.11}
\end{equation*}
$$

with $X=a^{\prime}$ and $Y=\alpha$. But using a theorem on the solutions of the equation given by (6.11), b is written as (see theorem in [2]):

$$
b=2^{2 s} \times 3^{t} . p_{1}^{t_{1}} \cdots p_{g}^{t_{g}} q_{1}^{2 s_{1}} \cdots q_{r}^{2 s_{r}}
$$

where p_{i} are prime numbers verifying $p_{i} \equiv 1(\bmod 6)$, the q_{j} are also prime numbers so that $q_{j} \equiv 5(\bmod 6)$, then :

- If $s \geq 1 \Longrightarrow 2 \mid b$, as $2 \mid a$, then the contradiction with a, b coprime.
- If $t \geq 1 \Longrightarrow 3 \mid b$, but $3|(b-a) \Longrightarrow 3| a$, then the contradiction with a, b coprime.
** I-2-2-1- We suppose that b is written as :

$$
b=p_{1}^{t_{1}} \cdots p_{g}^{t_{g}} q_{1}^{2 s_{1}} \cdots q_{r}^{2 s_{r}}
$$

with $p_{i} \equiv 1(\bmod 6)$ and $q_{j} \equiv 5(\bmod 6)$. Finally, we obtain that $b \equiv 1(\bmod 6)$. We will verify then this condition.
** I-2-2-1-1- We present the table below giving the value of $A^{m}+B^{n}=C^{l}$ modulo 6 in function of the value of $A^{m}, B^{n}(\bmod 6)$. We obtain the table below after retiring the lines (respectively the colones) of $A^{m} \equiv 0(\bmod 6)$ and $A^{m} \equiv 3(\bmod 6)\left(\right.$ respectively of $B^{n} \equiv 0(\bmod 6)$ and $\left.B^{n} \equiv 3(\bmod 6)\right)$, they present cases with contradictions:

Table 2. Table of $C^{l}(\bmod 6)$

A^{m}, B^{n}	1	2	4	5
1	2	3	5	0
2	3	4	0	1
4	5	0	2	3
5	0	1	3	4

** I-2-2-1-1-1- For the case $C^{l} \equiv 0(\bmod 6)$ and $C^{l} \equiv 3(\bmod 6)$, we deduce that $3\left|C^{l} \Longrightarrow 3\right| C \Longrightarrow C=3^{h} C_{1}$, with $h \geq 1$ and $3 \nmid C_{1}$. It follows that $p-B^{n} C^{l}=3 b-3^{l h} C_{1}^{l} B^{n}=A^{2 m} \Longrightarrow 3\left|\left(A^{2 m}=4 a\right) \Longrightarrow 3\right| a \Longrightarrow 3 \mid b$, then the contradiction with a, b coprime.
** I-2-2-1-1-2- For the case $C^{l} \equiv 0(\bmod 6), C^{l} \equiv 2(\bmod 6)$ and $C^{l} \equiv 4(\bmod$ 6), we deduce that $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{h} C_{1}$, with $h \geq 1$ and $2 \nmid C_{1}$. It follows that $p=3 b=A^{2 m}+B^{n} C^{l}=4 a+2^{l h} C_{1}^{l} B^{n} \Longrightarrow 2|3 b \Longrightarrow 2| b$, then the contradiction with a, b coprime.
** I-2-2-1-1-3- We consider the cases $A^{m} \equiv 1(\bmod 6)$ and $B^{n} \equiv 4(\bmod 6)$ (respectively $\left.B^{n} \equiv 2(\bmod 6)\right)$: then $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $j \geq 1$ and $2 \nmid B_{1}$. It follows from $3 b=A^{2 m}+B^{n} C^{l}=4 a+2^{j n} B_{1}^{n} C^{l}$ that $2 \mid b$, then the contradiction with a, b coprime.
** I-2-2-1-1-4- We consider the case $A^{m} \equiv 5(\bmod 6)$ and $B^{n} \equiv 2(\bmod 6)$: then $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $j \geq 1$ and $2 \nmid B_{1}$. It follows that $3 b=A^{2 m}+B^{n} C^{l}=4 a+2^{j n} B_{1}^{n} C^{l}$, then $2 \mid b$ and we obtain the contradiction with a, b coprime.
** I-2-2-1-1-5- We consider the case $A^{m} \equiv 2(\bmod 6)$ and $B^{n} \equiv 5(\bmod 6):$ as $A^{m} \equiv 2(\bmod 6) \Longrightarrow A^{m} \equiv 2(\bmod 3)$, then A^{m} is not a square and also for B^{n}. Hence, we can write A^{m} and B^{n} as:

$$
\begin{array}{r}
A^{m}=a_{0} \cdot \mathcal{A}^{2} \\
B^{n}=b_{0} \mathcal{B}^{2}
\end{array}
$$

where a_{0} (respectively b_{0}) regroups the product of the prime numbers of A^{m} with exponent 1 (respectively of B^{n}) with not necessary $\left(a_{0}, \mathcal{A}\right)=1$ and $\left(b_{0}, \mathcal{B}\right)=1$. We have also $p=3 b=A^{2 m}+A^{m} B^{n}+B^{2 n}=\left(A^{m}-\right.$ $\left.B^{n}\right)^{2}+3 A^{m} B^{n} \Longrightarrow 3 \mid\left(b-A^{m} B^{n}\right) \Longrightarrow A^{m} B^{n} \equiv b(\bmod 3)$ but $b=a+$ $3 \alpha^{2} \Longrightarrow b \equiv a \equiv a^{\prime 2}(\bmod 3)$, then $A^{m} B^{n} \equiv a^{\prime 2}(\bmod 3)$. But $A^{m} \equiv 2(\bmod 6) \Longrightarrow$ $2 a^{\prime} \equiv 2(\bmod 6) \Longrightarrow 4 a^{\prime 2} \equiv 4(\bmod 6) \Longrightarrow a^{\prime 2} \equiv 1(\bmod 3)$. It follows that $A^{m} B^{n}$ is a square, let $A^{m} B^{n}=\mathcal{N}^{2}=\mathcal{A}^{2} \cdot \mathcal{B}^{2} . a_{0} . b_{0}$. We call $\mathcal{N}_{1}^{2}=a_{0} . b_{0}$. Let p_{1} be a prime number so that $p_{1} \mid a_{0} \Longrightarrow a_{0}=p_{1} \cdot a_{1}$ with $p_{1} \nmid a_{1} \cdot p_{1} \mid \mathcal{N}_{1}^{2} \Longrightarrow$ $p_{1} \mid \mathcal{N}_{1} \Longrightarrow \mathcal{N}_{1}=p_{1}^{t} \mathcal{N}_{1}^{\prime}$ with $t \geq 1$ and $p_{1} \nmid \mathcal{N}_{1}^{\prime}$, then $p_{1}^{2 t-1} \mathcal{N}_{1}^{\prime 2}=a_{1} \cdot b_{0}$. As $2 t \geq 2 \Longrightarrow 2 t-1 \geq 1 \Longrightarrow p_{1} \mid a_{1} \cdot b_{0}$ but $\left(p_{1}, a_{1}\right)=1$, then $p_{1} \mid b_{0} \Longrightarrow$ $p_{1}\left|B^{n} \Longrightarrow p_{1}\right| B$. But $p_{1} \mid\left(A^{m}=2 a^{\prime}\right)$, and $p_{1} \neq 2$ because $p_{1} \mid B^{n}$ and B^{n} is odd, then the contradiction. Hence, $p_{1}\left|a^{\prime} \Longrightarrow p_{1}\right| a$. If $p_{1}=3$, from $3|(b-a) \Longrightarrow 3| b$ then the contradiction with a, b coprime. Then $p_{1}>3$ a prime that divides A^{m} and B^{n}, then $p_{1}\left|(p=3 b) \Longrightarrow p_{1}\right| b$, it follows the contradiction with a, b coprime, knowing that $p=3 b \equiv 3(\bmod 6)$ and we choose the case $b \equiv 1(\bmod 6)$ of our interest.
** I-2-2-1-1-6- We consider the last case of the table above $A^{m} \equiv 4(\bmod 6)$ and $B^{n} \equiv 1(\bmod 6)$. We return to the equation (6.11) that b verifies :

$$
\begin{array}{r}
b=X^{2}+3 Y^{2} \tag{6.12}\\
\text { with } \quad X=a^{\prime} ; \quad Y=\alpha \\
\text { and } \quad 3 \alpha=a^{\prime}+B^{n}
\end{array}
$$

But $p=A^{2 m}+A^{m} B^{n}+B^{2 n}=3 b=3\left(3 \alpha^{2}+a^{\prime 2}\right) \Longrightarrow A^{2 m}+C^{l} B^{n}=3 a^{2}+9 \alpha^{2}$. As $A^{2 m}=\left(2 a^{\prime}\right)^{2}=4 a^{\prime 2}$, we obtain:

$$
9 \alpha^{2}-a^{\prime 2}=C^{l} \cdot B^{n}
$$

Then the pair $\left(3 \alpha, a^{\prime}\right) \in \mathbb{N}^{*} \times \mathbb{N}^{*}$ is a solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{6.13}
\end{equation*}
$$

where $N=C^{l} . B^{m}>0$.
Let $Q(N)$ be the number of the solutions of (6.13) and $\tau(N)$ the number of ways to write the factors of N, then we announce the following result concerning the number of the solutions of (6.13) (see theorem 27.3 in [2]):

- If $N \equiv 2(\bmod 4)$, then $Q(N)=0$.
- If $N \equiv 1$ or $N \equiv 3(\bmod 4)$, then $Q(N)=[\tau(N) / 2]$.
- If $N \equiv 0(\bmod 4)$, then $Q(N)=[\tau(N / 4) / 2]$.

As $A^{m}=2 a^{\prime}, m \geq 3 \Longrightarrow A^{m} \equiv 0(\bmod 4)$. Concerning B^{n}, for $B^{n} \equiv 0(\bmod 4)$ or $B^{n} \equiv 2(\bmod 4)$, we find that $2\left|B^{n} \Longrightarrow 2\right| \alpha \Longrightarrow 2 \mid b$, then the contradiction with a, b coprime.

For the last case $B^{n} \equiv 3(\bmod 4) \Longrightarrow C^{l} \equiv 3(\bmod 4) \Longrightarrow N=B^{n} C^{l} \equiv 1(\bmod$ 4) $\Longrightarrow Q(N)=[\tau(N) / 2]$.

As $\left(3 \alpha, a^{\prime}\right)$ is a couple of solutions of the Diophantine equation (6.13) and $3 \alpha>a^{\prime}$, then $\exists d, d^{\prime}$ positive integers with $d>d^{\prime}$ and $N=d . d^{\prime}$ so that :

$$
\begin{align*}
& d+d^{\prime}=6 \alpha \tag{6.14}\\
& d-d^{\prime}=2 a^{\prime} \tag{6.15}
\end{align*}
$$

We will use the same method used in the above paragraph A-2-1-2-
** I-2-2-1-1-6-1- As $C^{l}>B^{n}$, we take $d=C^{l}$ and $d^{\prime}=B^{n}$. It follows:

$$
\begin{array}{r}
C^{l}+B^{n}=6 \alpha=2 a^{\prime}+2 B^{n}=A^{m}+2 B^{n} \\
C^{l}-B^{n}=2 a^{\prime}=A^{m} \tag{6.17}
\end{array}
$$

Then the case $d=C^{l}$ and $d^{\prime}=B^{n}$ gives a priory no contradictions.
** I-2-2-1-1-6-2- Now, we consider the case $d=B^{n} C^{l}$ and $d^{\prime}=1$. We rewrite the equations (6.14-6.15):

$$
\begin{gather*}
B^{n} C^{l}+1=6 \alpha \tag{6.18}\\
B^{n} C^{l}-1=2 a^{\prime} \tag{6.19}
\end{gather*}
$$

We obtain $1=B^{n}$, it follows $C^{l}-A^{m}=1$, we know [4] that the only positive solution of the last equation is $C=3, A=2, m=3$ and $l=2<3$, then the contradiction.
** I-2-2-1-1-6-3- Now, we consider the case $d=c_{1}^{l r-1} C_{1}^{l}$ where c_{1} is a prime integer with $c_{1} \nmid C_{1}$ and $C=c_{1}^{r} C_{1}, r \geq 1$. It follows that $d^{\prime}=c_{1} \cdot B^{n}$. We rewrite the equations (6.14-6.15):

$$
\begin{gather*}
c_{1}^{l r-1} C_{1}^{l}+c_{1} \cdot B^{n}=6 \alpha \tag{6.20}\\
c_{1}^{l r-1} C_{1}^{l}-c_{1} \cdot B^{n}=2 a^{\prime} \tag{6.21}
\end{gather*}
$$

As $l \geq 3$, from the last two equations above, it follows that $c_{1} \mid(6 \alpha)$ and $c_{1} \mid\left(2 a^{\prime}\right)$. Then $c_{1}=2$, or $c_{1}=3$ and $3 \mid a^{\prime}$ or $c_{1} \neq 3 \mid \alpha$ and $c_{1} \mid a^{\prime}$.
** I-2-2-1-1-6-3-1- We suppose $c_{1}=2$. As $2\left|\left(A^{m}=2 a^{\prime}\right) \Rightarrow 2\right|\left(a=a^{\prime 2}\right.$ and $2 \mid C^{l}$ because $l \geq 3$, it follows $2 \mid B^{n}$, then $2 \mid(p=3 b)$. Then the contradiction with a, b coprime.
** I-2-2-1-1-6-3-2- We suppose $c_{1}=3 \Rightarrow c_{1}\left|2 a^{\prime} \Longrightarrow c_{1}\right| a^{\prime} \Longrightarrow c_{1} \mid\left(a=a^{2}\right)$. It follows that $\left(c_{1}=3\right) \mid\left(b=a^{2}+3 \alpha^{2}\right)$, then the contradiction with a, b coprime.
** I-2-2-1-1-6-3-3- We suppose $c_{1} \neq 3$ and $c_{1} \mid 3 \alpha$ and $c_{1} \mid a^{\prime}$. It follows that $c_{1} \mid a$ and $c_{1} \mid\left(b=a^{\prime 2}+3 \alpha^{2}\right.$, then the contradiction with a, b coprime.

The other cases of the expressions of d and d^{\prime} not coprime so that $N=B^{n} C^{l}=d \cdot d^{\prime}$ give also contradictions.
** I-2-2-1-1-6-4- Now, let $C=c_{1}^{r} C_{1}$ with c_{1} a prime, $r \geq 1$ and $c_{1} \nmid C_{1}$, we consider the case $d=C_{1}^{l}$ and $d^{\prime}=c_{1}^{r l} B^{n}$ so that $d>d^{\prime}$. We rewrite the equations (6.14-6.15):

$$
\begin{align*}
& C_{1}^{l}+c_{1}^{r l} B^{n}=6 \alpha \tag{6.22}\\
& C_{1}^{l}-c_{1}^{r l} B^{n}=2 a^{\prime} \tag{6.23}
\end{align*}
$$

We obtain $c_{1}^{r l} B^{n}=B^{n} \Longrightarrow c_{1}^{r l}=1$, then the contradiction.
** I-2-2-1-1-6-5- Now, let $C=c_{1}^{r} C_{1}$ with c_{1} a prime, $r \geq 1$ and $c_{1} \nmid C_{1}$, we consider the case $d=C_{1}^{l} B^{n}$ and $d^{\prime}=c_{1}^{r l}$ so that $d>d^{\prime}$. We rewrite the equations (6.14-6.15):

$$
\begin{align*}
C_{1}^{l} B^{l}+c_{1}^{r l} & =6 \alpha \tag{6.24}\\
C_{1}^{l} B^{l}-c_{1}^{r l} & =2 a^{\prime} \tag{6.25}
\end{align*}
$$

We obtain $c_{1}^{r l}=B^{n} \Longrightarrow c_{1} \mid B^{n}$, as $c_{1} \mid C$ then $c_{1} \mid A^{m}=2 a^{\prime}$. If $c_{1}=2$, the contradiction with $B^{n} C^{l} \equiv 1(\bmod 4)$. Then $c_{1}\left|a^{\prime} \Longrightarrow c_{1}\right|\left(a=a^{\prime 2}\right) \Longrightarrow c_{1} \mid$ ($p=b$), it follows a, b are not coprime, then the contradiction.

Cases like $d^{\prime}<C^{l}$ a divisor of C^{l} or $d^{\prime}<B^{l}$ a divisor of B^{n} with $d^{\prime}<d$ and $d . d^{\prime}=N=B^{n} C^{l}$ give contradictions.
** I-2-2-1-1-6-6- Now, we consider the case $d=b_{1} . C^{l}$ where b_{1} is a prime integer with $b_{1} \nmid B_{1}$ and $B=b_{1}^{r} B_{1}, r \geq 1$. It follows that $d^{\prime}=b_{1}^{n r-1} B_{1}^{n}$. We rewrite the equations (6.14-6.15):

$$
\begin{array}{r}
b_{1} C^{l}+b_{1}^{n r-1} B_{1}^{n}=6 \alpha \\
b_{1} C^{l}-b_{1}^{n r-1} B_{1}^{n}=2 a^{\prime} \tag{6.27}
\end{array}
$$

As $n \geq 3$, from the last two equations above, it follows that $b_{1} \mid 6 \alpha$ and $b_{1} \mid\left(2 a^{\prime}\right)$. Then $b_{1}=2$, or $b_{1} \mid \alpha$ and $b_{1} \mid a^{\prime}$ or $b_{1}=3$ and $3 \mid a^{\prime}$.
** I-2-2-1-1-6-6-1- We suppose $b_{1}=2 \Longrightarrow 2 \mid B^{n}$. As $2 \mid\left(A^{m}=2 a^{\prime} \Longrightarrow\right.$ $2\left|a^{\prime} \Longrightarrow 2\right| a$, but $2 \mid B^{n}$ and $2 \mid A^{m}$ then $2 \mid(p=3 b)$. It follows the contradiction with a, b coprime.
** I-2-2-1-1-6-6-2- We suppose $b_{1} \neq 2,3$, then $b_{1} \mid \alpha$ and $b_{1}\left|a^{\prime} \Longrightarrow b_{1}\right|(a=$ $\left.a^{\prime 2}\right)$, then $b_{1} \mid\left(b=3 \alpha^{2}+a^{\prime 2}\right)$, it follows the contradiction with a, b coprime.
** I-2-2-1-1-6-6-3- We suppose $b_{1}=3 \Longrightarrow 3 \mid 6 \alpha$, and $3 \mid\left(A^{m}=2 a^{\prime}\right) \Longrightarrow$ $3 \mid\left(a=a^{\prime 2}\right)$, then $3 \mid\left(b=3 \alpha^{2}+a^{\prime 2}\right)$, it follows the contradiction with a, b coprime.

The other cases of the expressions of d and d^{\prime} with d, d^{\prime} not coprime and $d>d^{\prime}$ so that $N=C^{l} B^{m}=d . d^{\prime}$ give also contradictions.

Finally, from the cases studied in the above paragraph I-2-2-1-1-6-, we have found one suitable factorization of N that gives a priory no contradictions, it is the case $N=B^{n} . C^{l}=d . d^{\prime}$ with $d=C^{l}, d^{\prime}=B^{n}$ but $1 \ll \tau(N)$, it follows the contradiction with $Q(N)=[\tau(N) / 2] \leq 1$. The last case $A^{m} \equiv 4(\bmod 6)$ and $B^{n} \equiv 1(\bmod 6)$ gives contradictions.

It follows that the condition $3 \mid(b-a)$ is a contradiction.
The study of the case 6.8 is achieved.
6.9. Case $3 \mid p$ and $b \mid 4 p$

The following cases have been soon studied:

* $3|p, b=2 \Longrightarrow b| 4 p$: case 6.1,
*3| $p, b=4 \Longrightarrow b \mid 4 p$: case 6.2,
* $3\left|p \Longrightarrow p=3 p^{\prime}, b\right| p^{\prime} \Longrightarrow p^{\prime}=b p ", p " \neq 1$: case 6.3,
* $3|p, b=3 \Longrightarrow b| 4 p$: case 6.4,
* $3\left|p \Longrightarrow p=3 p^{\prime}, b=p^{\prime} \Longrightarrow b\right| 4 p$: case 6.8.
** J-1- Particular case: $b=12$. In fact $3 \mid p \Longrightarrow p=3 p^{\prime}$ and $4 p=12 p^{\prime}$. Taking $b=12$, we have $b \mid 4 p$. But $b<4 a<3 b$, that gives $12<4 a<36 \Longrightarrow$ $3<a<9$. As $2 \mid b$ and $3 \mid b$, the possible values of a are 5 and 7 .
** J-1-1- $a=5$ and $b=12 \Longrightarrow 4 p=12 p^{\prime}=b p^{\prime}$. But $A^{2 m}=\frac{4 p}{3} \cdot \frac{a}{b}=\frac{5 b p^{\prime}}{3 b}=$ $\left.\frac{5 p^{\prime}}{3} \Longrightarrow 3 \right\rvert\, p^{\prime} \Longrightarrow p^{\prime}=3 p "$ with $p " \in \mathbb{N}^{*}$, then $p=9 p "$, we obtain the
expressions:

$$
\begin{align*}
A^{2 m} & =5 p " \tag{6.28}\\
B^{n} C^{l}=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right) & =4 p " \tag{6.29}
\end{align*}
$$

As $n, l \geq 3$, we deduce from the equation (6.29) that $2 \mid p " \Longrightarrow p^{\prime \prime}=2^{\alpha} p_{1}$ with $\alpha \geq 1$ and $2 \nmid p_{1}$. Then (6.28) becomes: $A^{2 m}=5 p^{\prime \prime}=5 \times 2^{\alpha} p_{1} \Longrightarrow 2 \mid$ $A \Longrightarrow A=2^{i} A_{1}, i \geq 1$ and $2 \nmid A_{1}$. We have also $B^{n} C^{l}=2^{\alpha+2} p_{1} \Longrightarrow 2 \mid B^{n}$ or $2 \mid C^{l}$.
** J-1-1-1- We suppose that $2 \mid B^{n} \Longrightarrow B=2^{j} B_{1}, j \geq 1$ and $2 \nmid B_{1}$. We obtain $B_{1}^{n} C^{l}=2^{\alpha+2-j n} p_{1}$:

- If $\alpha+2-j n>0 \Longrightarrow 2 \mid C^{l}$, there is no contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$ and the conjecture (1.2) is verified.
- If $\alpha+2-j n=0 \Longrightarrow B_{1}^{n} C^{l}=p_{1}$. From $C^{=} 2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$ that implies that $2 \mid p_{1}$, then the contradiction with $2 \nmid p_{1}$.
- If $\alpha+2-j n<0 \Longrightarrow 2^{j n-\alpha-2} B_{1}^{n} C^{l}=p_{1}$, it implies that $2 \mid p_{1}$, then the contradiction as above.
** J-1-1-2- We suppose that $2 \mid C^{l}$, using the same method above, we obtain the identical results.
** J-1-2- We suppose that $a=7$ and $b=12 \Longrightarrow 4 p=12 p^{\prime}=b p^{\prime}$. But $\left.A^{2 m}=\frac{4 p}{3} \cdot \frac{a}{b}=\frac{12 p^{\prime}}{3} \cdot \frac{7}{12}=\frac{7 p^{\prime}}{3} \Longrightarrow 3 \right\rvert\, p^{\prime} \Longrightarrow p=9 p \prime$, we obtain:

$$
\begin{aligned}
A^{2 m} & =7 p " \\
B^{n} C^{l}=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right) & =2 p "
\end{aligned}
$$

The last equation implies that $2 \mid B^{n} C^{l}$. Using the same method as for the case J-1-1- above, we obtain the identical results.

We study now the general case. As $3 \mid p \Rightarrow p=3 p^{\prime}$ and $b \mid 4 p \Rightarrow \exists k_{1} \in \mathbb{N}^{*}$ and $4 p=12 p^{\prime}=k_{1} b$.
** J-2- $k_{1}=1$: If $k_{1}=1$ then $b=12 p^{\prime},\left(p^{\prime} \neq 1\right.$, if not $p=3 \ll$ $\left.A^{2 m}+B^{2 n}+A^{m} B^{n}\right)$. But $\left.A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{12 p^{\prime}}{3} \frac{a}{b}=\frac{4 p^{\prime} \cdot a}{12 p^{\prime}}=\frac{a}{3} \Rightarrow 3 \right\rvert\, a$ because $A^{2 m}$ is a natural number, then the contradiction with a, b coprime.
${ }^{* *} \mathrm{~J}-3-k_{1}=3:$ If $k_{1}=3$, then $b=4 p^{\prime}$ and $A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{k_{1} \cdot a}{3}=a=$ $\left(A^{m}\right)^{2}=a^{\prime 2} \Longrightarrow A^{m}=a^{\prime}$. The term $A^{m} B^{n}$ gives $A^{m} B^{n}=\frac{p \sqrt{3}}{3} \sin \frac{2 \theta}{3}-\frac{a}{2}$, then:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=\frac{2 p \sqrt{3}}{3} \sin \frac{2 \theta}{3}=2 p^{\prime} \sqrt{3} \sin \frac{2 \theta}{3} \tag{6.30}
\end{equation*}
$$

The left member of (6.30) is an integer number and also p^{\prime}, then $2 \sqrt{3} \sin \frac{2 \theta}{3}$ can be written under the form:

$$
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{2}}{k_{3}}
$$

where k_{2}, k_{3} are two integer numbers and are coprime and $k_{3} \mid p^{\prime} \Longrightarrow p^{\prime}=$ $k_{3} . k_{4}$.
** J-3-1- $k_{4} \neq 1:$ We suppose that $k_{4} \neq 1$, then:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=k_{2} \cdot k_{4} \tag{6.31}
\end{equation*}
$$

Let μ be a prime number so that $\mu \mid k_{4}$, then $\mu\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu\right| A^{m}$ or $\mu \mid\left(A^{m}+2 B^{n}\right)$.
** J-3-1-1- $\mu \mid A^{m}:$ If $\mu\left|A^{m} \Longrightarrow \mu\right| A^{2 m} \Longrightarrow \mu \mid a$. As $\mu\left|k_{4} \Longrightarrow \mu\right| p^{\prime} \Rightarrow$ $\mu \mid\left(4 p^{\prime}=b\right)$. But a, b are coprime, then the contradiction.
** J-3-1-2- $\mu \mid\left(A^{m}+2 B^{n}\right)$: If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$, then $\mu \neq 2$ and $\mu \nmid B^{n} . \mu \mid\left(A^{m}+2 B^{n}\right)$, we can write $A^{m}+2 B^{n}=\mu$. t^{\prime}. It follows:

$$
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m}+B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n}
$$

Using the expression of p, we obtain $p=t^{2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right)$. As $p=3 p^{\prime}$ and $\mu\left|p^{\prime} \Rightarrow \mu\right|\left(3 p^{\prime}\right) \Rightarrow \mu \mid p$, we can write : $\exists \mu^{\prime}$ and $p=\mu \mu^{\prime}$, then we arrive to:

$$
\mu^{\prime} \cdot \mu=\mu\left(\mu t^{\prime 2}-2 t^{\prime} B^{n}\right)+B^{n}\left(B^{n}-A^{m}\right)
$$

and $\mu\left|B^{n}\left(B^{n}-A^{m}\right) \Longrightarrow \mu\right| B^{n}$ or $\mu \mid\left(B^{n}-A^{m}\right)$.
** J-3-1-2-1- $\mu \mid B^{n}:$ If $\mu\left|B^{n} \Longrightarrow \mu\right| B$, it is in contradiction with J-3-1-2-.
** J-3-1-2-2- $\mu \mid\left(B^{n}-A^{m}\right)$: If $\mu \mid\left(B^{n}-A^{m}\right)$ and using $\mu \mid\left(A^{m}+2 B^{n}\right)$, we obtain :

$$
\mu \left\lvert\, 3 B^{n} \Longrightarrow\left\{\begin{array}{l}
\mu \mid B^{n} \\
o r \\
\mu=3
\end{array}\right.\right.
$$

** J-3-1-2-2-1- $\mu \mid B^{n}:$ If $\mu\left|B^{n} \Longrightarrow \mu\right| B$, it is in contradiction with J-3-1-2-.
** J-3-1-2-2-2- $\mu=3$: If $\mu=3 \Longrightarrow 3 \mid k_{4} \Longrightarrow k_{4}=3 k_{4}^{\prime}$, and we have $p^{\prime}=k_{3} k_{4}=3 k_{3} k_{4}^{\prime}$, it follows that $p=3 p^{\prime}=9 k_{3} k_{4}^{\prime}$, then $9 \mid p$, but $p=$ $\left(A^{m}-B^{n}\right)^{2}+3 A^{m} B^{n}$, then we obtain:

$$
9 k_{3} k_{4}^{\prime}-3 A^{m} B^{n}=\left(A^{m}-B^{n}\right)^{2}
$$

that we write : $3\left(3 k_{3} k_{4}^{\prime}-A^{m} B^{n}\right)=\left(A^{m}-B^{n}\right)^{2}$, then : $3 \mid\left(3 k_{3} k_{4}^{\prime}-A^{m} B^{n}\right) \Longrightarrow$ $3\left|A^{m} B^{n} \Longrightarrow 3\right| A^{m}$ or $3 \mid B^{n}$.
** J-3-1-2-2-2-1- $3 \mid A^{m}:$ If $3\left|A^{m} \Longrightarrow 3\right| A^{2 m} \Rightarrow 3 \mid a$, but $3\left|p^{\prime} \Rightarrow 3\right|$ $\left(4 p^{\prime}\right) \Rightarrow 3 \mid b$, then the contradiction with a, b coprime and $3 \nmid A$.
** J-3-1-2-2-2-2- $3 \mid B^{n}$: If $3 \mid B^{n}$ but $A^{m}=\mu t^{\prime}-2 B^{n}=3 t^{\prime}-2 B^{n} \Longrightarrow 3 \mid$ A^{m}, it is in contradiction with $3 \nmid A$.

Then the hypothesis $k_{4} \neq 1$ is impossible.
${ }^{* *} \mathrm{~J}-3-2-k_{4}=1$: We suppose now that $k_{4}=1 \Longrightarrow p^{\prime}=k_{3} k_{4}=k_{3}$. Then we have:

$$
\begin{equation*}
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{2}}{p^{\prime}} \tag{6.32}
\end{equation*}
$$

with k_{2}, p^{\prime} coprime, we write (6.32) as :

$$
4 \sqrt{3} \sin \frac{\theta}{3} \cos \frac{\theta}{3}=\frac{k_{2}}{p^{\prime}}
$$

Taking the square of the two members and replacing $\cos ^{2} \frac{\theta}{3}$ by $\frac{a}{b}$ and $b=4 p^{\prime}$, we obtain:

$$
3 \cdot a(b-a)=k_{2}^{2}
$$

As $A^{2 m}=a=a^{\prime 2}$, it implies that:

$$
3 \mid(b-a), \quad \text { and } \quad b-a=b-a^{\prime 2}=3 \alpha^{2}
$$

As $k_{2}=A^{m}\left(A^{m}+2 B^{n}\right)$ following the equation (6.31) and that $3\left|k_{2} \Longrightarrow 3\right|$ $A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow 3 \mid A^{m}$ or $3 \mid\left(A^{m}+2 B^{n}\right)$.
** J-3-2-1-3| A^{m} : If $3\left|A^{m} \Longrightarrow 3\right| A^{2 m} \Longrightarrow 3 \mid a$, but $3|(b-a) \Longrightarrow 3| b$, then the contradiction with a, b coprime.
** J-3-2-2-3| $\left(A^{m}+2 B^{n}\right) \Longrightarrow 3 \nmid A^{m}$ and $3 \nmid B^{n}$. As $k_{2}^{2}=9 a \alpha^{2}=9 a^{\prime 2} \alpha^{2} \Longrightarrow$ $k_{2}=3 a^{\prime} \alpha=A^{m}\left(A^{m}+2 B^{n}\right)$, then :

$$
\begin{equation*}
3 \alpha=A^{m}+2 B^{n} \tag{6.33}
\end{equation*}
$$

As b can be written under the form $b=a^{2}+3 \alpha^{2}$, then the pair $\left(a^{\prime}, \alpha\right)$ is a solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}+3 y^{2}=b \tag{6.34}
\end{equation*}
$$

As $b=4 p^{\prime}$, then :
** J-3-2-2-1- If x, y are even, then $2\left|a^{\prime} \Longrightarrow 2\right| a$, it is a contradiction with a, b coprime.
** J-3-2-2-2- If x, y are odd, then a^{\prime}, α are odd, it implies $A^{m}=a^{\prime} \equiv 1(\bmod 4)$ or $A^{m} \equiv 3(\bmod 4)$. If u, v verify (6.34), then $b=u^{2}+3 v^{2}$, with $u \neq a^{\prime}$ and $v \neq \alpha$, then u, v do not verify (6.33): $3 v \neq u+2 B^{n}$, if not, $u=$ $3 v-2 B^{n} \Longrightarrow b=\left(3 v-2 B^{n}\right)^{2}+3 v^{2}=a^{\prime 2}+3 \alpha^{2}$, the resolution of the obtained equation of second degree in v gives the positive root $v_{1}=\alpha$, then $u=3 v-2 B^{n}=3 \alpha-2 B^{n}=a^{\prime}$, then the uniqueness of the representation of b by the equation (6.34).
** J-3-2-2-2-1- We suppose that $A^{m} \equiv 1(\bmod 4)$ and $B^{n} \equiv 0(\bmod 4)$, then B^{n} is even and $B^{n}=2 B^{\prime}$. The expression of p becomes:

$$
\begin{gathered}
p=a^{\prime 2}+2 a^{\prime} B^{\prime}+4 B^{\prime 2}=\left(a^{\prime}+B^{\prime}\right)^{2}+3 B^{\prime 2}=3 p^{\prime} \Longrightarrow 3 \mid\left(a^{\prime}+B^{\prime}\right) \Longrightarrow a^{\prime}+B^{\prime}=3 B^{\prime \prime} \\
p^{\prime}=B^{\prime 2}+3 B^{\prime \prime 2} \Longrightarrow b=4 p^{\prime}=\left(2 B^{\prime}\right)^{2}+3\left(2 B^{\prime \prime}\right)^{2}=a^{\prime 2}+3 \alpha^{2}
\end{gathered}
$$

as b has an unique representation, it follows $2 B^{\prime}=B^{n}=a^{\prime}=A^{m}$, then the contradiction with $A^{m}>B^{n}$.
** J-3-2-2-2-2- We suppose that $A^{m} \equiv 1(\bmod 4)$ and $B^{n} \equiv 1(\bmod 4)$, then C^{l} is even and $C^{l}=2 C^{\prime}$. The expression of p becomes:

$$
\begin{gathered}
p=C^{2 l}-C^{l} B^{n}+B^{2 n}=4 C^{2}-2 C^{\prime} B^{n}+B^{2 n}=\left(C^{\prime}-B^{n}\right)^{2}+3 C^{\prime 2}=3 p^{\prime} \\
\Longrightarrow 3 \mid\left(C^{\prime}-B^{n}\right) \Longrightarrow C^{\prime}-B^{n}=3 C^{\prime \prime} \\
p^{\prime}=C^{\prime 2}+3 C^{\prime \prime} 2 \Longrightarrow b=4 p^{\prime}=\left(2 C^{\prime}\right)^{2}+3\left(2 C^{\prime \prime}\right)^{2}=a^{\prime 2}+3 \alpha^{2}
\end{gathered}
$$

as b has an unique representation, it follows $2 C^{\prime}=C^{l}=a^{\prime}=A^{m}$, then the contradiction.
** J-3-2-2-2-3- We suppose that $A^{m} \equiv 1(\bmod 4)$ and $B^{n} \equiv 2(\bmod 4)$, then B^{n} is even, see J-3-2-2-2-1-.
** J-3-2-2-2-4- We suppose that $A^{m} \equiv 1(\bmod 4)$ and $B^{n} \equiv 3(\bmod 4)$, then C^{l} is even, see J-3-2-2-2-2-.
** J-3-2-2-2-5- We suppose that $A^{m} \equiv 3(\bmod 4)$ and $B^{n} \equiv 0(\bmod 4)$, then B^{n} is even, see J-3-2-2-2-1-.
** J-3-2-2-2-6- We suppose that $A^{m} \equiv 3(\bmod 4)$ and $B^{n} \equiv 1(\bmod 4)$, then C^{l} is even, see J-3-2-2-2-2-.
** J-3-2-2-2-7- We suppose that $A^{m} \equiv 3(\bmod 4)$ and $B^{n} \equiv 2(\bmod 4)$, then B^{n} is even, see J-3-2-2-2-1-.
** J-3-2-2-2-8- We suppose that $A^{m} \equiv 3(\bmod 4)$ and $B^{n} \equiv 3(\bmod 4)$, then C^{l} is even, see J-3-2-2-2-2-.

We have achieved the study of the case J-3-2-2- . It gives contradictions.
** J-4- We suppose that $k_{1} \neq 3$ and $3 \mid k_{1} \Longrightarrow k_{1}=3 k_{1}^{\prime}$ with $k_{1}^{\prime} \neq 1$, then $4 p=12 p^{\prime}=k_{1} b=3 k_{1}^{\prime} b \Rightarrow 4 p^{\prime}=k_{1}^{\prime} b . A^{2 m}$ can be written as $A^{2 m}=$ $\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{3 k_{1}^{\prime} b}{3} \frac{a}{b}=k_{1}^{\prime} a$ and $B^{n} C^{l}=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{k_{1}^{\prime}}{4}(3 b-4 a)$. As $B^{n} C^{l}$ is an integer number, we must have $4 \mid(3 b-4 a)$ or $4 \mid k_{1}^{\prime}$ or $\left[2 \mid k_{1}^{\prime}\right.$ and $\left.2 \mid(3 b-4 a)\right]$.
** J-4-1- We suppose that $4 \mid(3 b-4 a)$.
** J-4-1-1- We suppose that $3 b-4 a=4 \Longrightarrow 4|b \Longrightarrow 2| b$. Then, we have:

$$
\begin{aligned}
& A^{2 m}=k_{1}^{\prime} a \\
& B^{n} C^{l}=k_{1}^{\prime}
\end{aligned}
$$

** J-4-1-1-1- If k_{1}^{\prime} is prime, from $B^{n} C^{l}=k_{1}^{\prime}$, it is impossible.
** J-4-1-1-2- We suppose that $k_{1}^{\prime}>1$ is not prime. Let ω be a prime number so that $\omega \mid k_{1}^{\prime}$.
** J-4-1-1-2-1- We suppose that $k_{1}^{\prime}=\omega^{s}$, with $s \geq 6$. Then we have :

$$
\begin{align*}
& A^{2 m}=\omega^{s} \cdot a \tag{6.35}\\
& B^{n} C^{l}=\omega^{s} \tag{6.36}
\end{align*}
$$

** J-4-1-1-2-1-1- We suppose that $\omega=2$. If a, k_{1}^{\prime} are not coprime, then $2 \mid a$, as $2 \mid b$, it is the contradiction with a, b coprime.
** J-4-1-1-2-1-2- We suppose $\omega=2$ and a, k_{1}^{\prime} are coprime, then $2 \nmid a$. From (6.36), we deduce that $B=C=2$ and $n+l=s$, and $A^{2 m}=2^{s} . a$, but $A^{m}=2^{l}-2^{n} \Longrightarrow A^{2 m}=\left(2^{l}-2^{n}\right)^{2}=2^{2 l}+2^{2 n}-2\left(2^{l+n}\right)=2^{2 l}+2^{2 n}-2 \times 2^{s}=$ $2^{s} . a \Longrightarrow 2^{2 l}+2^{2 n}=2^{s}(a+2)$. If $l=n$, we obtain $a=0$ then the contradiction. If $l \neq n$, as $A^{m}=2^{l}-2^{n}>0 \Longrightarrow n<l \Longrightarrow 2 n<s$, then $2^{2 n}\left(1+2^{2 l-2 n}-\right.$ $\left.2^{s+1-2 n}\right)=2^{n} 2^{l} . a$. We call $l=n+n_{1} \Longrightarrow 1+2^{2 l-2 n}-2^{s+1-2 n}=2^{n_{1}} . a$, but the left member is odd and the right member is even, then the contradiction. Then the case $\omega=2$ is impossible.
** J-4-1-1-2-1-3- We suppose that $k_{1}^{\prime}=\omega^{s}$ with $\omega \neq 2$:
** J-4-1-1-2-1-3-1- Suppose that a, k_{1}^{\prime} are not coprime, then $\omega \mid a \Longrightarrow a=$ $\omega^{t} . a_{1}$ and $t \nmid a_{1}$. Then, we have:

$$
\begin{array}{r}
A^{2 m}=\omega^{s+t} \cdot a_{1} \\
B^{n} C^{l}=\omega^{s} \tag{6.38}
\end{array}
$$

From (6.38), we deduce that $B^{n}=\omega^{n}, C^{n}=\omega^{l}, s=n+l$ and $A^{m}=\omega^{l}-\omega^{n}>$ $0 \Longrightarrow l>n$. We have also $A^{2 m}=\omega^{s+t} \cdot a_{1}=\left(\omega^{l}-\omega^{n}\right)^{2}=\omega^{2 l}+\omega^{2 n}-2 \times \omega^{s}$. As $\omega \neq 2 \Longrightarrow \omega$ is odd, then $A^{2 m}=\omega^{s+t} . a_{1}=\left(\omega^{l}-\omega^{n}\right)^{2}$ is even, then $2\left|a_{1} \Longrightarrow 2\right| a$, it is in contradiction with a, b coprime, then this case is impossible.
** J-4-1-1-2-1-3-2- Suppose that a, k_{1}^{\prime} are coprime, with :

$$
\begin{gather*}
A^{2 m}=\omega^{s} . a \tag{6.39}\\
B^{n} C^{l}=\omega^{s} \tag{6.40}
\end{gather*}
$$

From (6.40), we deduce that $B^{n}=\omega^{n}, C^{l}=\omega^{l}$ and $s=n+l$. As $\omega \neq 2 \Longrightarrow \omega$ is odd and $A^{2 m}=\omega^{s} . a=\left(\omega^{l}-\omega^{n}\right)^{2}$ is even, then $2 \mid a$. It follows the contradiction with a, b coprime and this case is impossible.
** J-4-1-1-2-2- We suppose that $k_{1}^{\prime}=\omega^{s} . k_{2}$, with $s \geq 6, \omega \nmid k_{2}$. We have :

$$
\begin{array}{r}
A^{2 m}=\omega^{s} \cdot k_{2} \cdot a \\
B^{n} C^{l}=\omega^{s} \cdot k_{2}
\end{array}
$$

** J-4-1-1-2-2-1- If k_{2} is prime, from the last equation above, $\omega=k_{2}$, it is in contradiction with $\omega \nmid k_{2}$. Then this case is impossible.
** J-4-1-1-2-2-2- We suppose that $k_{1}^{\prime}=\omega^{s} . k_{2}$, with $s \geq 6, \omega \nmid k_{2}$ and k_{2} not a prime. Then, we have:

$$
\begin{align*}
& A^{2 m}=\omega^{s} \cdot k_{2} \cdot a \\
& B^{n} C^{l}=\omega^{s} \cdot k_{2} \tag{6.41}
\end{align*}
$$

** J-4-1-1-2-2-2-1- We suppose that ω, a are coprime, then $\omega \nmid a$. As $A^{2 m}=$ $\omega^{s} . k_{2} . a \Longrightarrow \omega \mid A \Longrightarrow A=\omega^{i} . A_{1}$ with $i \geq 1$ and $\omega \nmid A_{1}$, then $s=2 i . m$. From (6.41), we have $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** J-4-1-1-2-2-2-1-1- We suppose that $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} . B_{1}$ with $j \geq 1$ and $\omega \nmid B_{1}$. then :

$$
B_{1}^{n} C^{l}=\omega^{2 i m-j n} k_{2}
$$

- If $2 i m-j n>0, \omega\left|C^{l} \Longrightarrow \omega\right| C$, no contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+$ $\omega^{j n} B_{1}^{n}$ and the conjecture (1.2) is verified.
- If $2 i m-j n=0 \Longrightarrow B_{1}^{n} C^{l}=k_{2}$, as $\omega \nmid k_{2} \Longrightarrow \omega \nmid C^{l}$, then the contradiction with $\omega \mid\left(C^{l}=A^{m}+B^{n}\right)$.
- If $2 i m-j n<0 \Longrightarrow \omega^{j n-2 i m} B_{1}^{n} C^{l}=k_{2} \Longrightarrow \omega \mid k_{2}$, then the contradiction with $\omega \nmid k_{2}$.
** J-4-1-1-2-2-2-1-2- We suppose that $\omega \mid C^{l}$. Using the same method used above, we obtain identical results.
** J-4-1-1-2-2-2-2- We suppose that a, ω are not coprime, then $\omega \mid a \Longrightarrow a=$ $\omega^{t} . a_{1}$ and $\omega \nmid a_{1}$. So we have :

$$
\begin{array}{r}
A^{2 m}=\omega^{s+t} \cdot k_{2} \cdot a_{1} \\
B^{n} C^{l}=\omega^{s} \cdot k_{2} \tag{6.43}
\end{array}
$$

As $A^{2 m}=\omega^{s+t} \cdot k_{2} \cdot a_{1} \Longrightarrow \omega \mid A \Longrightarrow A=\omega^{i} A_{1}$ with $i \geq 1$ and $\omega \nmid A_{1}$, then $s+t=2$ im. From (6.43), we have $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** J-4-1-1-2-2-2-2-1- We suppose that $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $j \geq 1$ and $\omega \nmid B_{1}$. then:

$$
B_{1}^{n} C^{l}=\omega^{2 i m-t-j n} k_{2}
$$

- If $2 i m-t-j n>0, \omega\left|C^{l} \Longrightarrow \omega\right| C$, no contradiction with $C^{l}=$ $\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$ and the conjecture (1.2) is verified.
- If $2 i m-t-j n=0 \Longrightarrow B_{1}^{n} C^{l}=k_{2}$, As $\omega \nmid k_{2} \Longrightarrow \omega \nmid C^{l}$, then the contradiction with $\omega \mid\left(C^{l}=A^{m}+B^{n}\right)$.
- If $2 i m-t-j n<0 \Longrightarrow \omega^{j n+t-2 i m} B_{1}^{n} C^{l}=k_{2} \Longrightarrow \omega \mid k_{2}$, then the contradiction with $\omega \nmid k_{2}$.
** J-4-1-1-2-2-2-2-2- We suppose that $\omega \mid C^{l}$. Using the same method used above, we obtain identical results.
** J-4-1-2- $3 b-4 a \neq 4$ and $4 \mid(3 b-4 a) \Longrightarrow 3 b-4 a=4^{s} \Omega$ with $s \geq 1$ and $4 \nmid \Omega$. We obtain:

$$
\begin{array}{r}
A^{2 m}=k_{1}^{\prime} a \\
B^{n} C^{l}=4^{s-1} k_{1}^{\prime} \Omega \tag{6.45}
\end{array}
$$

** J-4-1-2-1- We suppose that $k_{1}^{\prime}=2$. From (6.44), we deduce that $2 \mid a$. As $4|(3 b-4 a) \Longrightarrow 2| b$, then the contradiction with a, b coprime and this case is impossible.
** J-4-1-2-2- We suppose that $k_{1}^{\prime}=3$. From (6.44) we deduce that $3^{3} \mid A^{2 m}$. From (6.45), it follows that $3^{3} \mid B^{n}$ or $3^{3} \mid C^{l}$. In the last two cases, we obtain $3^{3} \mid p$. But $4 p=3 k_{1}^{\prime} b=9 b \Longrightarrow 3 \mid b$, then the contradiction with a, b coprime. Then this case is impossible.
** J-4-1-2-3- We suppose that k_{1}^{\prime} is prime ≥ 5 :
** J-4-1-2-3-1- Suppose that k_{1}^{\prime} and a are coprime. The equation (6.44) gives $\left(A^{m}\right)^{2}=k_{1}^{\prime} \cdot a$, that is impossible with $k_{1}^{\prime} \nmid a$. Then this case is impossible.
** J-4-1-2-3-2- Suppose that k_{1}^{\prime} and a are not coprime. Let $k_{1}^{\prime} \mid a \Longrightarrow a=$ $k_{1}^{\prime \alpha} a_{1}$ with $\alpha \geq 1$ and $k_{1}^{\prime} \nmid a_{1}$. The equation (6.44) is written as :

$$
A^{2 m}=k_{1}^{\prime} a=k_{1}^{\prime \alpha+1} a_{1}
$$

The last equation gives $k_{1}^{\prime}\left|A^{2 m} \Longrightarrow k_{1}^{\prime}\right| A \Longrightarrow A=k_{1}^{\prime i} . A_{1}$, with $k_{1}^{\prime} \nmid A_{1}$. If $2 i . m \neq(\alpha+1)$, it is impossible. We suppose that $2 i . m=\alpha+1$, then $k_{1}^{\prime} \mid A^{m}$. We return to the equation (6.45). If k_{1}^{\prime} and Ω are coprime, it is impossible. We suppose that k_{1}^{\prime} and Ω are not coprime, then $k_{1}^{\prime} \mid \Omega$ and the exponent of k_{1}^{\prime} in Ω is so the equation (6.45) is satisfying. We deduce easily that $k_{1}^{\prime} \mid B^{n}$. Then $k_{1}^{\prime 2} \mid\left(p=A^{2 m}+B^{2 n}+A^{m} B^{n}\right)$, but $4 p=3 k_{1}^{\prime} b \Longrightarrow k_{1}^{\prime} \mid b$, then the contradiction with a, b coprime.
** J-4-1-2-4- We suppose that $k_{1}^{\prime} \geq 4$ is not a prime.
** J-4-1-2-4-1- We suppose that $k_{1}^{\prime}=4$, we obtain then $A^{2 m}=4 a$ and $B^{n} C^{l}=3 b-4 a=3 p^{\prime}-4 a$. This case was studied in the paragraph 6.8, case ** I-2-.
** J-4-1-2-4-2- We suppose that $k_{1}^{\prime}>4$ is not a prime.
** J-4-1-2-4-2-1- We suppose that a, k_{1}^{\prime} are coprime. From the expression $A^{2 m}=k_{1}^{\prime} \cdot a$, we deduce that $a=a_{1}^{2}$ and $k_{1}^{\prime}=k_{1}{ }_{1}^{2}$. It gives :

$$
\begin{array}{r}
A^{m}=a_{1} \cdot k_{1} \\
B^{n} C^{l}=4^{s-1} k^{\prime,}{ }_{1}^{2} . \Omega
\end{array}
$$

Let ω be a prime so that $\omega \mid k_{1}{ }_{1}$ and $k "_{1}=\omega^{t} . k "_{2}$ with $\omega \nmid k{ }^{\prime \prime}{ }_{2}$. The last two equations become :

$$
\begin{array}{r}
A^{m}=a_{1} \cdot \omega^{t} \cdot k_{2} \\
B^{n} C^{l}=4^{s-1} \omega^{2 t} \cdot k_{2}{ }_{2}^{2} \cdot \Omega \tag{6.47}
\end{array}
$$

From (6.46), $\omega\left|A^{m} \Longrightarrow \omega\right| A \Longrightarrow A=\omega^{i} . A_{1}$ with $\omega \nmid A_{1}$ and $i m=t$. From (6.47), we obtain $\omega\left|B^{n} C^{l} \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** J-4-1-2-4-2-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} . B_{1}$ with $\omega \nmid B_{1}$. From (6.46), we have $B_{1}^{n} C^{l}=\omega^{2 t-j . n} 4^{s-1} . k{ }_{2}{ }_{2}^{2} . \Omega$.
** J-4-1-2-4-2-1-1-1- If $\omega=2$ and $2 \nmid \Omega$, we have $B_{1}^{n} C^{l}=2^{2 t+2 s-j . n-2} k{ }^{\prime \prime}{ }_{2} . \Omega$:

- If $2 t+2 s-j n-2 \leq 0$ then $2 \nmid C^{l}$, then the contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$.
- If $2 t+2 s-j n-2 \geq 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$ and the conjecture (1.2) is verified.
** J-4-1-2-4-2-1-1-2- If $\omega=2$ and if $2 \mid \Omega \Longrightarrow \Omega=2 . \Omega_{1}$ because $4 \nmid \Omega$, we have $B_{1}^{n} C^{l}=2^{2 t+2 s+1-j \cdot n-2} k{ }_{2}^{2} \Omega_{1}$:
- If $2 t+2 s-j n-3 \leq 0$ then $2 \nmid C^{l}$, then the contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$.
- If $2 t+2 s-j n-3 \geq 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$ and the conjecture (1.2) is verified.
** J-4-1-2-4-2-1-1-3- If $\omega \neq 2$, we have $B_{1}^{n} C^{l}=\omega^{2 t-j . n} 4^{s-1} . k^{\prime \prime}{ }_{2} . \Omega$:
-If $2 t-j n \leq 0 \Longrightarrow \omega \nmid C^{l}$ it is in contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+$ $\omega^{j n} B_{1}^{n}$.
-If $2 t-j n \geq 1 \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$ and the conjecture (1.2) is verified.
** J-4-1-2-4-2-1-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C \Longrightarrow C=\omega^{h} . C_{1}$, with $\omega \nmid C_{1}$. Using the same method as in the case J-4-1-2-4-2-1-1 above, we obtain identical results.
** J-4-1-2-4-2-2- We suppose that a, k_{1}^{\prime} are not coprime. Let ω be a prime so that $\omega \mid a$ and $\omega \mid k_{1}^{\prime}$. We write:

$$
\begin{array}{r}
a=\omega^{\alpha} \cdot a_{1} \\
k_{1}^{\prime}=\omega^{\mu} \cdot k^{\prime \prime}{ }_{1}
\end{array}
$$

with $a_{1}, k{ }_{1}$ coprime. The expression of $A^{2 m}$ becomes $A^{2 m}=\omega^{\alpha+\mu} \cdot a_{1} \cdot k^{\prime \prime}{ }_{1}$. The term $B^{n} C^{l}$ becomes:

$$
\begin{equation*}
B^{n} C^{l}=4^{s-1} \cdot \omega^{\mu} \cdot k_{1} \cdot \Omega \tag{6.48}
\end{equation*}
$$

** J-4-1-2-4-2-2-1- If $\omega=2 \Longrightarrow 2 \mid a$, but $2 \mid b$, then the contradiction with a, b coprime, this case is impossible.
** J-4-1-2-4-2-2-2- If $\omega \geq 3$, we have $\omega \mid a$. If $\omega \mid b$ then the contradiction with a, b coprime. We suppose that $\omega \nmid b$. From the expression of $A^{2 m}$, we obtain $\omega\left|A^{2 m} \Longrightarrow \omega\right| A \Longrightarrow A=\omega^{i} . A_{1}$ with $\omega \nmid A_{1}, i \geq 1$ and $2 i . m=\alpha+\mu$. From (6.48), we deduce that $\omega \mid B^{n}$ or $\omega \mid C^{l}$.
** J-4-1-2-4-2-2-2-1- We suppose that $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$ and $j \geq 1$. Then, $B_{1}^{n} C^{l}=4^{s-1} \omega^{\mu-j n} . k{ }_{1} . \Omega$:

* $\omega \nmid \Omega$:
- If $\mu-j n \geq 1$, we have $\omega\left|C^{l} \Longrightarrow \omega\right| C$, there is no contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$ and the conjecture (1.2) is verified.
- If $\mu-j n \leq 0$, then $\omega \nmid C^{l}$ and it is a contradiction with $C^{l}=$ $\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$. Then this case is impossible.
${ }^{*} \omega \mid \Omega$: we write $\Omega=\omega^{\beta} . \Omega_{1}$ with $\beta \geq 1$ and $\omega \nmid \Omega_{1}$. As $3 b-4 a=4^{s} . \Omega=$ $4^{s} \cdot \omega^{\beta} \cdot \Omega_{1} \Longrightarrow 3 b=4 a+4^{s} \cdot \omega^{\beta} \cdot \Omega_{1}=4 \omega^{\alpha} \cdot a_{1}+4^{s} \cdot \omega^{\beta} \cdot \Omega_{1} \Longrightarrow 3 b=4 \omega\left(\omega^{\alpha-1} \cdot a_{1}+\right.$ $\left.4^{s-1} \cdot \omega^{\beta-1} \cdot \Omega_{1}\right)$. If $\omega=3$ and $\beta=1$, we obtain $b=4\left(3^{\alpha-1} a_{1}+4^{s-1} \Omega_{1}\right)$ and $B_{1}^{n} C^{l}=4^{s-1} 3^{\mu+1-j n} . k^{\prime \prime}{ }_{1} \Omega_{1}$.
- If $\mu-j n+1 \geq 1$, then $3 \mid C^{l}$ and the conjecture (1.2) is verified.
- If $\mu-j n+1 \leq 0$, then $3 \nmid C^{l}$ and it is the contradiction with $C^{l}=3^{i m} A_{1}^{m}+3^{j n} B_{1}^{n}$.

Now, if $\beta \geq 2$ and $\alpha=i m \geq 3$, we obtain $3 b=4 \omega^{2}\left(\omega^{\alpha-2} a_{1}+4^{s-1} \omega^{\beta-2} \Omega_{1}\right)$. If $\omega=3$ or not, then $\omega \mid b$, but $\omega \mid a$, then the contradiction with a, b coprime.
** J-4-1-2-4-2-2-2-2- We suppose that $\omega\left|C^{l} \Longrightarrow \omega\right| C \Longrightarrow C=\omega^{h} C_{1}$ with $\omega \nmid C_{1}$ and $h \geq 1$. Then, $B^{n} C_{1}^{l}=4^{s-1} \omega^{\mu-h l} . k{ }^{\prime \prime}{ }_{1} . \Omega$. Using the same method as above, we obtain identical results.
** J-4-2- We suppose that $4 \mid k_{1}^{\prime}$.
** J-4-2-1- $k_{1}^{\prime}=4 \Longrightarrow 4 p=3 k_{1}^{\prime} b=12 b \Longrightarrow p=3 b=3 p^{\prime}$, this case has been studied (see case I-2- paragraph 6.8).
** J-4-2-2- $k_{1}^{\prime}>4$ with $4 \mid k_{1}^{\prime} \Longrightarrow k_{1}^{\prime}=4^{s} k^{\prime \prime}{ }_{1}$ and $s \geq 1,4 \nmid k{ }^{\prime \prime}{ }_{1}$. Then, we obtain:

$$
\begin{array}{r}
A^{2 m}=4^{s} k{ }^{\prime \prime}{ }_{1} a=2^{2 s} k^{"}{ }_{1} a \\
B^{n} C^{l}=4^{s-1} k^{\prime \prime}{ }_{1}(3 b-4 a)=2^{2 s-2} k^{\prime \prime}{ }_{1}(3 b-4 a)
\end{array}
$$

** J-4-2-2-1- We suppose that $s=1$ and $k_{1}^{\prime}=4 k^{\prime \prime}{ }_{1}$ with $k{ }_{1}>1$, so $p=3 p^{\prime}$ and $p^{\prime}=k{ }^{\prime \prime}{ }_{1} b$, this is the case 6.3 already studied.
** J-4-2-2-2- We suppose that $s>1$, then $k_{1}^{\prime}=4^{s} k{ }^{\prime \prime}{ }_{1} \Longrightarrow 4 p=3 \times 4^{s} k^{\prime \prime}{ }_{1} b$ and we obtain:

$$
\begin{array}{r}
A^{2 m}=4^{s} k^{\prime \prime}{ }_{1} a \\
B^{n} C^{l}=4^{s-1} k^{\prime \prime}{ }_{1}(3 b-4 a) \tag{6.50}
\end{array}
$$

** J-4-2-2-2-1- We suppose that $2 \nmid\left(k{ }_{1} . a\right) \Longrightarrow 2 \nmid k{ }^{\prime}{ }_{1}$ and $2 \nmid a$. As $\left(A^{m}\right)^{2}=\left(2^{s}\right)^{2} \cdot\left(k^{\prime \prime}{ }_{1} \cdot a\right)$, we call $d^{2}=k^{\prime \prime}{ }_{1} \cdot a$, then $A^{m}=2^{s} . d \Longrightarrow 2 \mid A^{m} \Longrightarrow$ $2 \mid A \Longrightarrow A=2^{i} A_{1}$ with $2 \nmid A_{1}$ and $i \geq 1$, then: $2^{i m} A_{1}^{m}=2^{s} . d \Longrightarrow s=i m$.

From the equation (6.50), we have $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** J-4-2-2-2-1-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} . B_{1}$, with $j \geq 1$ and $2 \nmid B_{1}$. The equation (6.50) becomes:

$$
B_{1}^{n} C^{l}=2^{2 s-j n-2} k^{\prime \prime}{ }_{1}(3 b-4 a)=2^{2 i m-j n-2} k_{1}{ }_{1}(3 b-4 a)
$$

* We suppose that $2 \nmid(3 b-4 a)$:
- If $2 i m-j n-2 \geq 1$, then $2 \mid C^{l}$, there is no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.2) is verified.
- If $2 i m-j n-2 \leq 0$, then $2 \nmid C^{l}$, then the contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
* We suppose that $2^{\mu} \mid(3 b-4 a), \mu \geq 1$:
- If $2 i m+\mu-j n-2 \geq 1$, then $2 \mid C^{l}$, no contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.2) is verified.
- If $2 i m+\mu-j n-2 \leq 0$, then $2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
** J-4-2-2-2-1-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{h} . C_{1}$, with $h \geq 1$ and $2 \nmid C_{1}$. With the same method used above, we obtain identical results.
** J-4-2-2-2-2- We suppose that $2 \mid\left(k{ }_{1} . a\right)$:
** J-4-2-2-2-2-1- We suppose that $k{ }^{\prime \prime}{ }_{1}$ and a are coprime:
** J-4-2-2-2-2-1-1- We suppose that $2 \nmid a$ and $2 \mid k "_{1} \Longrightarrow k "_{1}=2^{2 \mu} . k{ }_{2}{ }_{2}$ and $a=a_{1}^{2}$, then the equations (6.49-6.50) become:

$$
\begin{array}{r}
A^{2 m}=4^{s} \cdot 2^{2 \mu} k{ }_{2}{ }_{2}^{2} a_{1}^{2} \Longrightarrow A^{m}=2^{s+\mu} \cdot k "{ }_{2} \cdot a_{1} \\
B^{n} C^{l}=4^{s-1} 2^{2 \mu} k^{\prime \prime}{ }_{2}^{2}(3 b-4 a)=2^{2 s+2 \mu-2} k^{\prime \prime}{ }_{2}^{2}(3 b-4 a) \tag{6.52}
\end{array}
$$

The equation (6.51) gives $2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} . A_{1}$ with $2 \nmid A_{1}, i \geq 1$ and $i m=s+\mu$. From the equation (6.52), we have $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** J-4-2-2-2-2-1-1-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} . B_{1}, 2 \nmid B_{1}$ and $j \geq 1$, then $B_{1}^{n} C^{l}=2^{2 s+2 \mu-j n-2} k{ }_{2}^{2}(3 b-4 a)$:

* We suppose that $2 \nmid(3 b-4 a)$:
- If $2 i m+2 \mu-j n-2 \geq 1 \Rightarrow 2 \mid C^{l}$, then there is no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.2) is verified.
- If $2 i m+2 \mu-j n-2 \leq 0 \Rightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
* We suppose that $2^{\alpha} \mid(3 b-4 a), \alpha \geq 1$ so that a, b remain coprime:
- If $2 i m+2 \mu+\alpha-j n-2 \geq 1 \Rightarrow 2 \mid C^{l}$, then no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.2) is verified.
- If $2 i m+2 \mu+\alpha-j n-2 \leq 0 \Rightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
** J-4-2-2-2-2-1-1-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{h} . C_{1}$, with $h \geq 1$ and $2 \nmid C_{1}$. With the same method used above, we obtain identical results.
** J-4-2-2-2-2-1-2- We suppose that $2 \nmid k{ }_{1}$ and $2 \mid a \Longrightarrow a=2^{2 \mu} . a_{1}^{2}$ and $k{ }^{\prime \prime}=k{ }_{2}{ }_{2}$, then the equations (6.49-6.50) become:

$$
\begin{gather*}
A^{2 m}=4^{s} \cdot 2^{2 \mu} a_{1}^{2} k{ }_{2}^{\prime 2} \Longrightarrow A^{m}=2^{s+\mu} \cdot a_{1} \cdot k{ }_{2} \tag{6.53}\\
B^{n} C^{l}=4^{s-1} k_{2}^{\prime 2}(3 b-4 a)=2^{2 s-2} k_{2}^{\prime 2}(3 b-4 a) \tag{6.54}
\end{gather*}
$$

The equation (6.53) gives $2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i}$. A_{1} with $2 \nmid A_{1}, i \geq 1$ and $i m=s+\mu$. From the equation (6.54), we have $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** J-4-2-2-2-2-1-2-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} . B_{1}, 2 \nmid B_{1}$ and $j \geq 1$. Then we obtain $B_{1}^{n} C^{l}=2^{2 s-j n-2} k_{2}^{\prime 2}(3 b-4 a)$:

* We suppose that $2 \nmid(3 b-4 a) \Longrightarrow 2 \nmid b$:
- If $2 i m-j n-2 \geq 1 \Rightarrow 2 \mid C^{l}$, then no contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.2) is verified.
- If $2 i m-j n-2 \leq 0 \Rightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
* We suppose that $2^{\alpha} \mid(3 b-4 a), \alpha \geq 1$, in this case a, b are not coprime, then the contradiction.
** J-4-2-2-2-2-1-2-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{h} . C_{1}$, with $h \geq 1$ and $2 \nmid C_{1}$. With the same method used above, we obtain identical results.
** J-4-2-2-2-2-2- We suppose that $k{ }_{1}$ and a are not coprime $2 \mid a$ and $2 \mid k{ }_{1}$. Let $a=2^{t} . a_{1}$ and $k{ }^{\prime \prime}{ }_{1}=2^{\mu} k "_{2}$ and $2 \nmid a_{1}$ and $2 \nmid k{ }_{2}$. From (6.49), we have $\mu+t=2 \lambda$ and $a_{1} \cdot k^{\prime \prime}{ }_{2}=\omega^{2}$. The equations (6.49-6.50) become:

$$
\begin{array}{r}
A^{2 m}=4^{s} k{ }^{\prime \prime}{ }_{1} a=2^{2 s} \cdot 2^{\mu} k{ }^{\prime \prime}{ }_{2} \cdot 2^{t} \cdot a_{1}=2^{2 s+2 \lambda} \cdot \omega^{2} \Longrightarrow A^{m}=2^{s+\lambda} \cdot \omega \\
B^{n} C^{l}=4^{s-1} 2^{\mu} k^{\prime \prime}{ }_{2}(3 b-4 a)=2^{2 s+\mu-2} k^{\prime \prime}{ }_{2}(3 b-4 a) \tag{6.56}
\end{array}
$$

From (6.55) we have $2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}, i \geq 1$ and $2 \nmid A_{1}$. From (6.56), $2 s+\mu-2 \geq 1$, we deduce that $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** J-4-2-2-2-2-2-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} . B_{1}, 2 \nmid B_{1}$ and $j \geq 1$. Then we obtain $B_{1}^{n} C^{l}=2^{2 s+\mu-j n-2} k^{" 2}(3 b-4 a)$:

* We suppose that $2 \nmid(3 b-4 a)$:
- If $2 s+\mu-j n-2 \geq 1 \Rightarrow 2 \mid C^{l}$, then no contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.2) is verified.
- If $2 s+\mu-j n-2 \leq 0 \Rightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
* We suppose that $2^{\alpha} \mid(3 b-4 a)$, for one value $\alpha \geq 1$. As $2 \mid a$, then $2^{\alpha}|(3 b-4 a) \Longrightarrow 2|(3 b-4 a) \Longrightarrow 2|(3 b) \Longrightarrow 2| b$, then the contradiction with a, b coprime.
** J-4-2-2-2-2-2-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{h} . C_{1}$, with $h \geq 1$ and $2 \nmid C_{1}$. With the same method used above, we obtain identical results.
** J-4-3- $2 \mid k_{1}^{\prime}$ and $2 \mid(3 b-4 a)$: then we obtain $2 \mid k_{1}^{\prime} \Longrightarrow k_{1}^{\prime}=2^{t} . k_{1}{ }_{1}$ with $t \geq 1$ and $2 \nmid k{ }^{\prime \prime}{ }_{1}, 2 \mid(3 b-4 a) \Longrightarrow 3 b-4 a=2^{\mu}$. d with $\mu \geq 1$ and $2 \nmid d$. We have also $2 \mid b$. If $2 \mid a$, it is a contradition with a, b coprime.

We suppose, in the following, that $2 \nmid a$. The equations (6.49-6.50) become:

$$
\begin{array}{r}
A^{2 m}=2^{t} \cdot k{ }_{1} \cdot a=\left(A^{m}\right)^{2} \\
B^{n} C^{l}=2^{t-1} k_{1}{ }_{1} \cdot 2^{\mu-1} d=2^{t+\mu-2} k^{\prime \prime}{ }_{1} \cdot d \tag{6.58}
\end{array}
$$

From (6.57), we deduce that the exponent t is even, let $t=2 \lambda$. Then we call $\omega^{2}=k^{"}{ }_{1} . a$, it gives $A^{m}=2^{\lambda} . \omega \Longrightarrow 2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} . A_{1}$ with $i \geq 1$ and $2 \nmid A_{1}$. From (6.58), we have $2 \lambda+\mu-2 \geq 1$, then $2 \mid\left(B^{n} C^{l}\right) \Longrightarrow$ $2 \mid B^{n}$ or $2 \mid C^{l}$:
** J-4-3-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$, with $j \geq 1$ and $2 \nmid B_{1}$. Then we obtain $B_{1}^{n} C^{l}=2^{2 \lambda+\mu-j n-2} . k^{\prime \prime}{ }_{1} . d$.

- If $2 \lambda+\mu-j n-2 \geq 1 \Rightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, there is no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.2) is verified.
- If $2 s+t+\mu-j n-2 \leq 0 \Rightarrow 2 \nmid C$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
** J-4-3-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C$. With the same method used above, we obtain identical results.

The Main Theorem is proved.

7. Examples and Conclusion

7.1. Numerical Examples

7.1.1. Example 1: We consider the example : $6^{3}+3^{3}=3^{5}$ with $A^{m}=$ $6^{3}, B^{n}=3^{3}$ and $C^{l}=3^{5}$. With the notations used in the paper, we obtain:

$$
\begin{align*}
p=3^{6} \times 73, \quad q=8 \times 3^{11}, & \bar{\Delta}=4 \times 3^{18}\left(3^{7} \times 4^{2}-73^{3}\right)<0 \\
\rho=\frac{3^{8} \times 73 \sqrt{73}}{\sqrt{3}}, & \cos \theta=-\frac{4 \times 3^{3} \times \sqrt{3}}{73 \sqrt{73}} \tag{7.1}
\end{align*}
$$

As $A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3} \Longrightarrow \cos ^{2} \frac{\theta}{3}=\frac{3 A^{2 m}}{4 p}=\frac{3 \times 2^{4}}{73}=\frac{a}{b} \Longrightarrow a=3 \times 2^{4}, b=$ 73; then we obtain:

$$
\begin{equation*}
\cos \frac{\theta}{3}=\frac{4 \sqrt{3}}{\sqrt{73}}, \quad p=3^{6} . b \tag{7.2}
\end{equation*}
$$

We verify easily the equation (7.1) to calculate $\cos \theta$ using (7.2). For this example, we can use the two conditions from (4.9) as $3|a, b| 4 p$ and $3 \mid p$. The cases 5.4 and 6.3 are respectively used. For the case 5.4 , it is the case B-2-2-1- that was used and the conjecture (1.2) is verified. Concerning the case 6.3 , it is the case G-2-2-1- that was used and the conjecture (1.2) is verified.
7.1.2. Example 2: The second example is: $7^{4}+7^{3}=14^{3}$. We take $A^{m}=$ $7^{4}, B^{n}=7^{3}$ and $C^{l}=14^{3}$. We obtain $p=57 \times 7^{6}=3 \times 19 \times 7^{6}, \quad q=$ $8 \times 7^{10}, \quad \bar{\Delta}=27 q^{2}-4 p^{3}=27 \times 4 \times 7^{18}\left(16 \times 49-19^{3}\right)=-27 \times 4 \times 7^{18} \times 6075<$ $0, \quad \rho=19 \times 7^{9} \times \sqrt{19}, \quad \cos \theta=-\frac{4 \times 7}{19 \sqrt{19}}$. As $A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3} \Longrightarrow \cos ^{2} \frac{\theta}{3}=$ $\frac{3 A^{2 m}}{4 p}=\frac{7^{2}}{4 \times 19}=\frac{a}{b} \Longrightarrow a=7^{2}, b=4 \times 19$, then $\cos \frac{\theta}{3}=\frac{7}{2 \sqrt{19}}$ and we have the two principal conditions $3 \mid p$ and $b \mid(4 p)$. The calculation of $\cos \theta$ from the expression of $\cos \frac{\theta}{3}$ is confirmed by the value below:

$$
\cos \theta=\cos 3(\theta / 3)=4 \cos ^{3} \frac{\theta}{3}-3 \cos \frac{\theta}{3}=4\left(\frac{7}{2 \sqrt{19}}\right)^{3}-3 \frac{7}{2 \sqrt{19}}=-\frac{4 \times 7}{19 \sqrt{19}}
$$

Then, we obtain $3\left|p \Rightarrow p=3 p^{\prime}, b\right|(4 p)$ with $b \neq 2,4$ then $12 p^{\prime}=$ $k_{1} b=3 \times 7^{6} b$. It concerns the paragraph 6.9 of the second hypothesis. As $k_{1}=3 \times 7^{6}=3 k_{1}^{\prime}$ with $k_{1}^{\prime}=7^{6} \neq 1$. It is the case J-4-1-2-4-2-2- with the condition $4 \mid(3 b-4 a)$. So we verify :

$$
3 b-4 a=3 \times 4 \times 19-4 \times 7^{2}=32 \Longrightarrow 4 \mid(3 b-4 a)
$$

with $A^{2 m}=7^{8}=7^{6} \times 7^{2}=k_{1}^{\prime} \cdot a$ and k_{1}^{\prime} not a prime, with a and k_{1}^{\prime} not coprime with $\omega=7 \nmid \Omega(=2)$. We find that the conjecture (1.2) is verified with a common factor equal to 7 (prime and divisor of $k_{1}^{\prime}=7^{6}$).
7.1.3. Example 3: The third example is: $19^{4}+38^{3}=57^{3}$ with $A^{m}=19^{4}$, $B^{n}=38^{3}$ and $C^{l}=57^{3}$. We obtain $p=19^{6} \times 577, \quad q=8 \times 27 \times$ $19^{10}, \quad \bar{\Delta}=27 q^{2}-4 p^{3}=4 \times 19^{18}\left(27^{3} \times 16 \times 19^{2}-577^{3}\right)<0, \quad \rho=$ $\frac{19^{9} \times 577 \sqrt{577}}{3 \sqrt{3}}, \quad \cos \theta=-\frac{4 \times 3^{4} \times 19 \sqrt{3}}{577 \sqrt{577}}$. As $A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3} \Longrightarrow \cos ^{2} \frac{\theta}{3}=$ $\frac{3 A^{2 m}}{4 p}=\frac{3 \times 19^{2}}{4 \times 577}=\frac{a}{b} \Longrightarrow a=3 \times 19^{2}, b=4 \times 577$, then $\cos \frac{\theta}{3}=\frac{19 \sqrt{3}}{2 \sqrt{577}}$ and we have the first hypothesis $3 \mid a$ and $b \mid(4 p)$. Here again, the calculation of $\cos \theta$ from the expression of $\cos \frac{\theta}{3}$ is confirmed by the value below:
$\cos \theta=\cos 3(\theta / 3)=4 \cos ^{3} \frac{\theta}{3}-3 \cos \frac{\theta}{3}=4\left(\frac{19 \sqrt{3}}{2 \sqrt{577}}\right)^{3}-3 \frac{19 \sqrt{3}}{2 \sqrt{577}}=-\frac{4 \times 3^{4} \times 19 \sqrt{3}}{577 \sqrt{577}}$
Then, we obtain $3\left|a \Rightarrow a=3 a^{\prime}=3 \times 19^{2}, b\right|(4 p)$ with $b \neq 2,4$ and $b=4 p^{\prime}$ with $p=k p^{\prime}$ soit $p^{\prime}=577$ and $k=19^{6}$. This concerns the paragraph 5.8 of the first hypothesis. It is the case E-2-2-2-2-1- with $\omega=19, a^{\prime}, \omega$ not coprime and $\omega=19 \nmid\left(p^{\prime}-a^{\prime}\right)=\left(577-19^{2}\right)$ with $s-j n=6-1 \times 3=3 \geq 1$, and the conjecture (1.2) is verified.

7.2. Conclusion

The method used to give the proof of the conjecture of Beal has discussed many possibles cases, using elementary number theory and the results of some theorems about Diophantine equations. We have confirmed the method by three numerical examples. In conclusion, we can announce the theorem:

Theorem 7.1. Let A, B, C, m, n, and l be positive natural numbers with $m, n, l>$ 2. If :

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{7.3}
\end{equation*}
$$

then A, B, and C have a common factor.

Statements and Declarations:

- The author declares no conflicts of interest.
- No funds, grants, or other support was received.
- The author declares he has no financial interests.
- ORCID - ID:0000-0002-9633-3330.

References

1. Maildin D.R. 1977. A Generalization of Fermat's Last Theorem: The Beal Conjecture and Prize Problem. Notice of $A M S$, Vol. 44, $n^{\circ} 11$, (pp 1436-1437), https://www.ams.org/notices/199711/beal.pdf.
2. Stewart B.M. 1964. Theory of Numbers, Second edition. The Macmillan Compagny, New-York, (pp 196-197).
3. Bolker E.D. 1970. Elementary Number Theory: An Algebraic Approach. W.A. Benjamin, Inc., New-York, (pp 121-122).
4. Mihăilescu P. 2004. Primary cyclotomic units and a proof of Catalan's Conjecture, Journal für die Reine und Angewandte Mathematik, vol. 2004, no. 572, pp. 167-195. https://doi.org/10.1515/crll.2004.048

Abdelmajid Ben Hadj Salem
Résidence Bousten 8, Av. Mosquée Raoudha, 1181 Raoudha Soukra
Tunisia
e-mail: abenhadjsalem@gmail.com

