Periodic sequences of progressions of the same type

Y.Ieno

Abstract. A few progressions of the same type and their periodic sequences.
Keywords. periodic sequence, progression, prime nubmer, Fermat's little theorem

0 . Introduction.

We define some progressions of the same type, and study their periodic sequences to find the rule related to them.

1. Periodicity of a progression(1).

Now we define a progression as follows.
Let $\mathrm{k}(>1)$ and n be also a positive integer, then

$$
\begin{array}{rlrl}
a_{\mathrm{n}, \mathrm{k}} & =1 & & (\text { when } \mathrm{n}=1) \\
& =\left(a_{\mathrm{n}-1, \mathrm{k}}+\mathrm{n}\right)^{\mathrm{k}-1}(\bmod \mathrm{k}) & (\text { when } \mathrm{n}>1)
\end{array}
$$

One by one we survey the shortest periods of the progressions of this kind, for some cases of k .
(e.q.) When $\mathrm{k}=2$, then $\left\{a_{\mathrm{n}, 2}\right\}=\{1,1,0,0,1,1,0,0,1,1, \ldots\}$.

This progression seems periodic and its shortest period is assumed 4.
When $\mathrm{k}=3$, then $\left\{a_{\mathrm{n}, 3}\right\}=\{1,0,0,1,0,0,1,0,0,1, \ldots\}$.
This progression seems periodic and its shortest period is assumed 3 . When $\mathrm{k}=4$, then $\left\{a_{\mathrm{n}, 4}\right\}=\{1,3,0,0,1,3,0,0,1,3,0, \ldots\}$.
This progression seems periodic and its shortest period is assumed 4. Periodicity of progressions is easily found for now (See Table 1).

Table 1: (A.S.P. means the assumed shortest period.)

$\mathrm{k} \backslash \mathrm{n}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	A.S.P.
2	1	1	0	0	1	1	0	0	1	1	0	0	1	1	4
3	1	0	0	1	0	0	1	0	0	1	0	0	1	0	3
4	1	3	0	0	1	3	0	0	1	3	0	0	1	3	4
5	1	1	1	0	0	1	1	1	0	0	1	1	1	0	5
6	1	3	0	4	3	3	4	0	3	1	0	0	6	1	12
7	1	1	1	1	1	0	0	1	1	1	1	1	0	0	7
8	1	3	0	0	5	3	0	0	1	3	0	0	5	3	8
9	1	0	0	7	0	0	4	0	0	1	0	0	7	0	9

Theorem 1
Let l be a positive integer. If $a_{\mathrm{n}, \mathrm{k}}=a_{\mathrm{n}+1, \mathrm{k}}$ and $\mathrm{k} \mid \mathrm{l}$ (i.e. l is divisible by k.) for the above-mentioned progression $\left\{a_{\mathrm{n}, \mathrm{k}}\right\}$, then $\left\{a_{\mathrm{n}, \mathrm{k}}\right\}$ has a period equal to l.

Proof.
We will prove deductively, that if $a_{\mathrm{n}+\mathrm{m}, \mathrm{k}}=a_{\mathrm{n}+\mathrm{m}+\mathrm{l}, \mathrm{k}}$ then $a_{\mathrm{n}+\mathrm{m}+1, \mathrm{k}}=a_{\mathrm{n}+\mathrm{m}+\mathrm{l}+1, \mathrm{k}}$ where m is a non-negative integer.

When $\mathrm{m}=0$ evidently $a_{\mathrm{n}, \mathrm{k}}=a_{\mathrm{n}+1, \mathrm{k}}$.
Furthermore if $a_{\mathrm{n}+\mathrm{m}, \mathrm{k}}=a_{\mathrm{n}+\mathrm{m}+\mathrm{l}, \mathrm{k}}$ then $a_{\mathrm{n}+\mathrm{m}+1, \mathrm{k}} \equiv\left(a_{\mathrm{n}+\mathrm{m}, \mathrm{k}}+\mathrm{n}+\mathrm{m}+1\right)^{\mathrm{k}-1}$ $(\bmod \mathrm{k}) \equiv\left(a_{\mathrm{n}+\mathrm{m}+1, \mathrm{k}}+\mathrm{n}+\mathrm{m}+\mathrm{l}+1\right)^{\mathrm{k}-1}(\bmod \mathrm{k})=a_{\mathrm{n}+\mathrm{m}+\mathrm{l}+1, \mathrm{k}}$, for $\mathrm{l} \equiv 0(\bmod \mathrm{k})$.

This completes Theorem 1.

Theorem 2
Suppose k is a prime number larger than 2.
If $\mathrm{n} \equiv 0$ or $\mathrm{n} \equiv \mathrm{k}-1(\bmod \mathrm{k})$ then $a_{\mathrm{n}, \mathrm{k}}=0$, otherwise $a_{\mathrm{n}, \mathrm{k}}=1$.

Proof.

When $\mathrm{k}=3$ then $a_{1,3}=1, a_{2,3}=\left(a_{1,3}+2\right)^{2}(\bmod 3)=0, a_{3,3}=\left(a_{2,3}+3\right)^{2}(\bmod$ $3)=9(\bmod 3)=0, a_{4,3}=\left(a_{3,3}+4\right)^{2}(\bmod 3)=1(\bmod 3)=1$.

Therefore $a_{1,3}=1=a_{4,3}$, so 3 is a period of this progression.
This completes Theorem 2 for $\mathrm{k}=3$.
When k is larger than 3 then, applying Fermat's little theorem[1], $a_{1, \mathrm{k}}=1$, $a_{2, \mathrm{k}}=\left(a_{1, \mathrm{k}}+2\right)^{\mathrm{k}-1}(\bmod \mathrm{k})=3^{\mathrm{k}-1}(\bmod \mathrm{k})=1, a_{3, \mathrm{k}}=\left(a_{2, \mathrm{k}}+3\right)^{\mathrm{k}-1}(\bmod \mathrm{k})=4^{\mathrm{k}-1}$ $(\bmod \mathrm{k})=1, \ldots, a_{\mathrm{k}-1, \mathrm{k}}=\left(a_{\mathrm{k}-2, \mathrm{k}}+\mathrm{k}-1\right)^{2}(\bmod \mathrm{k})=0(\bmod \mathrm{k})=0, \ldots$, $a_{\mathrm{k}, \mathrm{k}}=\left(a_{\mathrm{k}-1, \mathrm{k}}+\mathrm{k}\right)^{2}(\bmod \mathrm{k})=0(\bmod \mathrm{k})=0$.

Also $a_{\mathrm{k}+1, \mathrm{k}}=\left(a_{\mathrm{k}, \mathrm{k}}+\mathrm{k}+1\right)^{2}(\bmod \mathrm{k})=1(\bmod \mathrm{k})=1$, so k is a period of this progression.

This completes Theorem 2 for k is larger than 3.
2. Periodicity of a progression(2).

Now we define another progression as follows.
Let $\mathrm{k}(>1)$ and n be also a positive integer, then

$$
\begin{array}{rlrl}
b_{\mathrm{n}, \mathrm{k}} & =1 & & (\text { when } \mathrm{n}=1) \\
& =\left(b_{\mathrm{n}-1, \mathrm{k}}-\mathrm{n}\right)^{\mathrm{k}-1}(\bmod \mathrm{k}) & (\text { when } \mathrm{n}>1)
\end{array}
$$

Periodicity of progressions is easily found for now (See Table 2).

Table 2: (A.S.P. means the assumed shortest period.)

$\mathrm{k} \backslash \mathrm{n}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	A.S.P.
2	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	4
3	1	1	1	0	1	1	0	1	1	0	1	1	0	1	1	$3\left(^{*}\right)$
4	1	3	0	0	3	1	0	0	3	1	0	0	3	1	0	$4\left(^{*}\right)$
5	1	1	1	1	1	0	1	1	1	1	0	1	1	1	1	$5\left(^{*}\right)$
6	1	5	2	4	5	5	4	2	5	1	2	2	1	5	2	12
7	1	1	1	1	1	1	1	0	1	1	1	1	1	1	0	$7\left(^{*}\right)$

On Table 2, * indicates that the period for each k does not start from the first term.

Theorem 3
Let l be a positive integer. If $b_{\mathrm{n}, \mathrm{k}}=b_{\mathrm{n}+\mathrm{l}, \mathrm{k}}$ and $\mathrm{k} \mid \mathrm{l}$ (i.e. l is divisible by k .) for the above-mentioned progression $\left\{b_{\mathrm{n}, \mathrm{k}}\right\}$, then $\left\{b_{\mathrm{n}, \mathrm{k}}\right\}$ has a period equal to 1.

Proof.
We will prove deductively, that if $b_{\mathrm{n}+\mathrm{m}, \mathrm{k}}=b_{\mathrm{n}+\mathrm{m}+\mathrm{l}, \mathrm{k}}$ then $b_{\mathrm{n}+\mathrm{m}+1, \mathrm{k}}=b_{\mathrm{n}+\mathrm{m}+\mathrm{l}+1, \mathrm{k}}$ where m is a non-negative integer.

When $\mathrm{m}=0$ evidently $b_{\mathrm{n}, \mathrm{k}}=b_{\mathrm{n}+1, \mathrm{k}}$.
Furthermore if $b_{\mathrm{n}+\mathrm{m}, \mathrm{k}}=b_{\mathrm{n}+\mathrm{m}+1, \mathrm{k}}$ then $b_{\mathrm{n}+\mathrm{m}+1, \mathrm{k}} \equiv\left(b_{\mathrm{n}+\mathrm{m}, \mathrm{k}}-\mathrm{n}-\mathrm{m}-1\right)^{\mathrm{k}-1}$ $(\bmod \mathrm{k}) \equiv\left(b_{\mathrm{n}+\mathrm{m}+\mathrm{l}, \mathrm{k}}-\mathrm{n}-\mathrm{m}-\mathrm{l}+1\right)^{\mathrm{k}-1}(\bmod \mathrm{k})=b_{\mathrm{n}+\mathrm{m}+\mathrm{l}+1, \mathrm{k}}$, for $\mathrm{l} \equiv 0(\bmod \mathrm{k})$.

This completes Theorem 3, similarly as Theorem 1.
3. Periodicity of a progression(3).

Now we define another progression again and again as follows.
Let $\mathrm{k}(>1)$ and n be also a positive integer, then

$$
\begin{array}{rlrl}
c_{\mathrm{n}, \mathrm{k}} & =1 & & (\text { when } \mathrm{n}=1) \\
& =\left(c_{\mathrm{n}-1, \mathrm{k}}+(-1)^{\mathrm{n}} \mathrm{n}\right)^{\mathrm{k}-1}(\bmod \mathrm{k}) & (\text { when } \mathrm{n}>1)
\end{array}
$$

Periodicity of progressions is easily found for now (See Table 3).

Table 3: (A.S.P. means the assumed shortest period.)

$\mathrm{k} \backslash \mathrm{n}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	A.S.P.
2	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	4
3	1	0	0	1	1	0	1	1	1	1	1	0	1	1	1	1	$6\left(^{*}\right)$
4	1	3	0	0	3	1	0	0	3	1	0	0	3	1	0	0	$4\left(^{*}\right)$
5	1	1	1	0	0	1	1	1	1	1	0	1	1	0	0	1	$10\left(^{*}\right)$
6	1	3	0	4	5	5	4	0	3	1	2	2	1	3	0	4	12
7	1	1	1	1	1	0	0	1	1	1	1	1	1	1	0	1	$14\left(^{*}\right)$

On Table 3, * indicates that the period for each k does not start from the first term.

Theorem 4
Let l be a positive integer. If $b_{\mathrm{n}, \mathrm{k}}=b_{\mathrm{n}+\mathrm{l}, \mathrm{k}}$ and $\mathrm{k} \mid \mathrm{l}$ (i.e. l is divisible by k .) for the above-mentioned progression $\left\{b_{\mathrm{n}, \mathrm{k}}\right\}$, then $\left\{b_{\mathrm{n}, \mathrm{k}}\right\}$ has a period equal to 1.

Proof.
We will prove deductively, that if $b_{\mathrm{n}+\mathrm{m}, \mathrm{k}}=b_{\mathrm{n}+\mathrm{m}+\mathrm{l}, \mathrm{k}}$ then $b_{\mathrm{n}+\mathrm{m}+1, \mathrm{k}}=b_{\mathrm{n}+\mathrm{m}+\mathrm{l}+1, \mathrm{k}}$ where m is a non-negative integer.

When $\mathrm{m}=0$ evidently $b_{\mathrm{n}, \mathrm{k}}=b_{\mathrm{n}+1, \mathrm{k}}$.
Furthermore if $b_{\mathrm{n}+\mathrm{m}, \mathrm{k}}=b_{\mathrm{n}+\mathrm{m}+1, \mathrm{k}}$ then $b_{\mathrm{n}+\mathrm{m}+1, \mathrm{k}} \equiv\left(b_{\mathrm{n}+\mathrm{m}, \mathrm{k}}-\mathrm{n}-\mathrm{m}-1\right)^{\mathrm{k}-1}$ $(\bmod \mathrm{k}) \equiv\left(b_{\mathrm{n}+\mathrm{m}+1, \mathrm{k}}-\mathrm{n}-\mathrm{m}-\mathrm{l}+1\right)^{\mathrm{k}-1}(\bmod \mathrm{k})=b_{\mathrm{n}+\mathrm{m}+\mathrm{l}+1, \mathrm{k}}$, for $\mathrm{l} \equiv 0(\bmod \mathrm{k})$.

This completes Theorem 4, similarly as Theorem 1.
references
[1] Patrick St-Amant, International Journal of Algebra, Vol.4, 2010, no.17-20, 959-994

