
Does the Polytropic gas yield better results in a 5D framework?

H.I. Ay,1 O. Aydogdu∗,1 and M. Salti†1

1Department of Physics, Faculty of Arts and Science,

Mersin University, Mersin, TR 33343, Turkey

Abstract

In this work, we study the polytropic gas (PG) cosmology in a d-dimensional (dD) form of the flat

Friedmann-Robertson-Walker (FRW) framework. In this context, we focus on the evolution of the

corresponding energy density as a first step. Next, we use the most recent data from the Type Ia

Supernova (SN Ia), observational values of the cosmic Hubble parameter (OHD) and the updated

Planck-results to place constraints on the free parameters defined in the model. We show that the

5D form of the scenario is more compatible with the recent observations. Moreover, according to

the best values of the auxiliary parameters, we compte age of the cosmos theoretically.
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I. INTRODUCTION

In the recent decades, the striking observational data has strongly suggested the existence

of a cosmological constant or dark energy (DE). Moreover, the cosmic microwave background

(CMB) radiation[1–3], SN Ia[4, 5], gravitational clustering (GC)[7] and the Planck[6] ob-

servations indicate that the universe has been moved into a speedy expansion phase by

an exotic form of negative-pressure contents, called dark matter (DM) and the DE. The

best current observational data[6] show up that dark contents (DM plus DE) constitute

27.8 + 67.3 = 95.1 percent of the total energy in the observable cosmos. The mass energy

of the remaining part includes baryons and also non-relativistic DM.

The earliest proposal of the DE is known as the cosmological constant with associated

mass energy density

ρΛ ≈ 18.78× 10−30ΩΛh
2gcm−3, (1)

where h = H0/100/[kmsec−1Mpc−1] shows the then-favored dimensionless Hubble param-

eter, H0 implies the present value of Hubble constant and ΩΛ ≈ 0.67 indicates the di-

mensionless energy density parameter. Although, the cosmological constant with cold DM

(ΛCDM) model gives a nice interpretation for the speedy enlargement phase, it remains

sensible that making use of a time-dependent dark energy density may yield better results

(for a good review see Ref.[8] and references therein). Due to the earliest DE models are

suffering from famous cosmological constant issues such as the cosmological coincidence and

the fine-tuning puzzles, many physicists have tried to propose different ideas in order to

handle the mysterious puzzle. Actually, any inflationary proposal may be used to reach this

aim if various values for its auxiliary parameters are assumed. One of the theoretical dark

universe proposals is based on assuming a scalar field description which is coupled minimally

with gravity[9–12]. Besides, a non-minimal coupling case in scalar field proposals leads to

other theoretical candidates of the dark content in scalar-tensor theories (see Ref.[13] and

references therein). Chaplygin gas (CG)[14, 15] or the PG[16, 17] definitions emerge from

the string theory[18] and invoke matter with interesting properties. Still, the others[19–22]

explain the cosmic accelerated enlargement behavior with the help of the quantum vacuum

polarization, topological defects or the particle creation. Subsequently, it was resulted that

extra-dimensional braneworld assumptions, which interpret the speedy expansion phase by

formulating the general relativity in a 5D framework, could help us to explain the current
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observational cosmic phenomenon[23–28].

It is very important to emphasize here that the CG and the PG models indicate a unified

dark matter-energy scenario. The CG model was also developed into its generalized[29–

31], modified[32, 33], variable[34–38], variable generalized[39, 40], variable modified[41] and

extended[42–47] forms. Although various forms of the CG model have been taken into

account in order to fit the different symptoms of astronomical probes, the CG family is not

able enough to match the recent astrophysical measurements[41].

Constraining the free parameters given in a theoretical point of view of the dark universe

is one of the interesting topics in modern cosmography. Focusing on the luminosity distance

data[48, 49], X-ray gas mass fraction of galaxy clusters[50, 51], size of the baryonic acoustic

oscillation (BAO) peak[52] and the CMB measurements[53, 54] are the most often considered

methods. Recently, a new way including the observational values of the cosmic Hubble

parameter, which is connected with the differential ages of the oldest galaxies, was considered

to check some theoretical descriptions[55–62]. In this work, we extend the original PG model

to its dD form and then fit the model parameters according to the current experimental

values of the Hubble parameter.

We organize this paper as follows: in the next section, we introduce the dD form of

the PG cosmological scenario. In the third section of this study, we focus on the recent

astrophysical results to fit free parameters of the PG type unified dark universe scenario.

Subsequently, in the fourth section, we discuss cosmological properties of the model by

focusing on evolutionary natures of some well-known cosmological parameters. Note that

all numerical analyses will be done by making use of the MATHEMATICA sofware[63].

II. THE dD FORM OF THE PG MODEL

We shall start with focusing on an extra dimensional, isotropic and homogeneous space-

time model which is represented by the following type of the FRW metric[64]

ds2 = dt2 − a2(t)
[
dr2 + r2dx2

n

]
, (2)

where

dx2
n = dφ2

1 + sin2 φ1dφ
2
2 + ...+ sin2 φ1 sin

2 φ2... sin
2 φn−1dφ

2
n. (3)
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Here, n = d − 2 and a(t) stands for the number of spacetime dimensions and the cosmic

scale factor, respectively.

Equation-of-motion (EoM) is basically defined by the following form of the Einstein field

equation

Rµν −
1

2
Rgµν = 8πGTµν , (4)

where the energy-momentum tensor is represented by the expression

Tµν = (ρ+ p)UµUν − pgµν . (5)

Here, ρ and p are the energy density and pressure of the cosmic perfect fluid, respectively,

and Uµ denotes the velocity vector. We assume that the cosmic fluid is a mixture of the

ordinary baryonic matter (BM) and the PG, thence, ρ and p can be written as ρ = ρm+ ρpg

and p = ppg with pm = 0. Substituting the metric (2) into the EoM (4) results in two

independent field equations[64];

(d− 1)(d− 2)

2

ȧ2

a2
= 8πGρ, (6)

(d− 2)ä

a
+

(d− 2)(d− 3)

2

ȧ2

a2
= −8πGp, (7)

where (. = d
dt
). Moreover, the above equations yield the relation

ρ̇+ (d− 1)(ρ+ p)
ȧ

a
= 0. (8)

Considering the theoretical definition of the cosmic Hubble parameter, i.e. H ≡ ȧ
a
estimating

the expansion rate of the cosmos, we can rewrite equations (6), (7) and (8) in the following

forms
(d− 1)(d− 2)

2
H2 = 8πGρ, (9)

(d− 2)(Ḣ +H2) +
(d− 2)(d− 3)

2
H2 = −8πGp, (10)

ρ̇+ (d− 1)(ρ+ p)H = 0. (11)

One can decompose the equation (11) into two conserving relations for the energy densities

of the BM and PG as written below

ρ̇m + (d− 1)ρmH = 0, (12)

ρ̇pg + (d− 1)(ρpg + ppg)H = 0. (13)
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In this dark substances scenario, we can introduce the following fractional densities

Ωm =
ρm
ρc

, Ωpg =
ρpg
ρc

, (14)

where

ρc =
(d− 1)(d− 2)H2

0

16πG
(15)

denotes the critical density. Hence, equation (9) can be rewritten in a very nice form

Ωm + Ωpg = E, where E = H
H0

represents the dimensionless Hubble parameter.

The equation of state (EoS) describing the PG[16, 17] model is written as

ppg = βρ
1+ 1

ξ
pg , (16)

where both β and ξ are real parameters. Note that assuming the case including ξ = −1
2
with

β = −B transforms the above formulation into the form of the original CG proposal[14, 15].

Moreover, taking ξ = − 1
α+1

with β = −B reduces it to the formulation of the generalized

CG energy density[29–31].

We can rewrite the conservation laws (12) and (13) as given below

dρm
da

+
(d− 1)

a
ρm = 0, (17)

dρpg
da

+
(d− 1)

a
ρpg(1 + βρ

1
ξ
pg) = 0. (18)

Consequently, solving the above differential equations yields

ρm = ρ0ma
1−d, (19)

ρpg =
1[

ca
d−1
ξ − β

]ξ , (20)

where ρ0m and c are integration constants. It is concluded that, for β < ca
d−1
ξ , the polytropic

energy density always have positive values for any odd or even number of ξ. But, in the

case of β > ca
d−1
ξ , the energy density is positive only for even values of ξ. On the other

hand, for β = ca
d−1
ξ , we get ρpg → ∞ and the dD polytropic energy density has a finite-time

type-III[65] singularity at as =
[
β
c

] ξ
d−1 . Thus, we see that the type-III singularity takes place

at past (as < 1) for β
c
< 1, at the present time (as = 1) for β

c
= 1, and at future (as > 1)

in the case of β
c
> 1. Moreover, it is generally accepted that the cosmological and current

total energy densities are connected to each other[43], i.e. ρpre = 1.3ρcos. Consequently, the
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integration constant c can be written in terms of a0 which denotes the present value of a(t).

In the entire study, we take a0 = 1 for simplicity. So, it follows that c = −ξ
√
1.3 + β.

Taking time derivative of the relation (20) yields

ρ̇pg = c(1− d)Ha
d−1
ξ ρ

1+ 1
ξ

pg . (21)

Therefore, making use of this result in the conservation equation (13) together with the EoS

ppg = ωpgρpg leads to the following expression

ωpg = −1− c

βa
1−d
ξ − c

. (22)

We find that the dD PG proposal mimics the cosmological constant or incompressible fluid

(ωpg → −1) at early time phase (a → 0) and also it can cross the phantom line when

β
c
> a

d−1
ξ . Additionally, one can see that, for the 4D framework (d = 4), our result (22) can

be reduced to that one obtained previously by Malekjani[66]. Besides, using the conservation

equation (13) together with the fractional densities (14), we can write

ρpg = ρ0pga
(1−d)(1+ωpg), (23)

where ρ0pg indicates a constant describing the present value of the PG energy density.

III. FITTING THE MODEL PARAMETERS

As we mentioned before, one can fix the free parameters β and ξ according to the recent

cosmographic experiments by rewriting the theoretical expressions in terms of the red shift

parameter. Note that the red shift parameter z is related to a(t) by z = 1
a
− 1. Inserting

equations (19) and (23) in the Friedmann equation (9) and using the dimensionless fractional

densities given in equation (14), we find that

E(z) =
[
Ω0

m(1 + z)d−1 + Ω0
pg(1 + z)(d−1)[1+ωpg(z)]

] 1
2 (24)

where

ωpg(z) = −1− c

β(1 + z)
d−1
ξ − c

. (25)

Here, present day (z = 0) non-relativistic matter and PG energy densities are denoted by

Ω0
m and Ω0

pg, respectively, which satisfy the relation Ω0
m + Ω0

pg = 1.

In further steps of this section, we focus on the data from the SN Ia[67], OHD and the

Planck-telescope[6] results in order to fix the free parameters of the PG model.
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A. Constraints from SN Ia observations

The SN Ia observations include information about the luminosity distance. The Hubble-

free definition of the luminosity parameter is written as

dL = (1 + z)
∫ z

0

dz′

E(z′)
. (26)

Subsequently, for the SN Ia dataset, χ2 function is given by[68]

χ2
SN =

580∑
i

[µobs(zi)− µtheo(zi)]
2

σ2
i

, (27)

where the theoretical distance modulus is written as

µtheo = 5 log10 dL(zi) + µ0, (28)

with

µ0 = 42.38− 5 log10 h. (29)

Here, µobs(zi) and σi denote the observed distance modulus and the uncertainty in the

distance modulus, respectively. For the minimization of χ2
SN with respect to the set of 580

data points obtained in the SN Ia measurements[67], we have[69]

χ̃2
SN = P − Q2

R
, (30)

where

P =
580∑
i

[µobs(zi)− µtheo(zi;µ0 = 0)]2

σ2
i

, (31)

Q =
580∑
i

[µobs(zi)− µtheo(zi;µ0 = 0)]

σ2
i

, (32)

R =
580∑
i

1

σ2
i

. (33)

The best-fitting values of Ω0
m, Ω

0
pg, β, ξ and χ2

min describing the minimum value of χ2
SN

are given in TABLE I. It is important to mention here that the best value of Ω0
pg is consistent

with the recent observations. According to the Planck-satellite results[6].
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TABLE I: χ2
min value and the best-fitting values of the free model parameters obtained by using

SN Ia data in the 1σ confidence region.

Dimension χ2
min Ω0

m Ω0
pg β ξ

d = 4 570.449 0.04 0.96 -0.64 -5.3

d = 5 580.845 0.06 0.94 -0.50 2.1

B. Constraints from OHD and Planck-results

Considering the most recent OHD[70–83] given in TABLE II (here, DGA and RBAO

means the Differential Galactic Age and the Radial BAO, respectively), we further investi-

gate the validity of the constraints on the free parameters given in the dD Polytropic gas

proposal. Using equation (24), we can write

H(z) = H0

√
Ω0

m(1 + z)d−1 + Ω0
pg(1 + z)(d−1)[1+ωpg(z)]. (34)

TABLE II: The recent observable H(z) dataset[70].

z Hobs(z) σ Method, Ref. z Hobs(z) σ Method, Ref.

0.0708 69.00 ∓19.68 DGA, [71] 0.4800 97.00 ∓62.00 DGA, [78]

0.1200 68.60 ∓26.20 DGA, [71] 0.5700 92.40 ∓4.500 RBAO, [79]

0.1700 83.00 ∓8.000 DGA, [72] 0.5930 104.0 ∓13.00 DGA, [73]

0.1990 75.00 ∓5.000 DGA, [73] 0.6800 92.00 ∓8.000 DGA, [73]

0.2400 79.69 ∓2.650 RBAO, [74] 0.7300 97.30 ∓7.000 RBAO, [80]

0.2800 88.80 ∓36.60 DGA, [71] 0.7810 105.0 ∓12.00 DGA, [73]

0.3500 84.40 ∓7.000 RBAO, [75] 0.8750 125.0 ∓17.50 DGA, [73]

0.3802 83.00 ∓13.50 DGA, [73] 0.9000 117.0 ∓23.00 DGA, [72]

0.4000 95.00 ∓17.00 DGA, [72] 1.3000 168.0 ∓17.00 DGA, [81]

0.4247 87.10 ∓11.20 DGA, [76] 1.4300 177.0 ∓18.00 DGA, [81]

0.4300 86.45 ∓3.680 RBAO, [74] 1.5300 140.0 ∓14.00 DGA, [72]

0.4497 92.80 ∓12.90 DGA, [76] 1.7500 202.0 ∓40.00 DGA, [82]

0.4783 80.90 ∓9.000 DGA, [77] 1.9650 186.5 ∓50.40 DGA, [73]

2.3400 222.0 ∓7.000 RBAO, [83]
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FIG. 1 displays the evolutionary nature of the H(z) function in the 1σ confidence region

where the dots indicate the recent OHD.
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FIG. 1: H ∼ z relation with auxiliary parameters given in TABLE II for d = 4 (the upper one)

and d = 5 (the bottom one) cases in the 1σ confidence region.

While performing this analysis, we find the best-fit values of the parameters Ω0
m, Ω

0
pg, β

and ξ (see TABLE III).

TABLE III: Best values of the auxiliary parameters obtained with the help of the OHD and the

Planck-results.

Dimension Ω0
m Ω0

pg β ξ

d = 4 0.036 0.964 -0.60 -5.35

d = 5 0.055 0.945 -0.45 2.30
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C. Age of the universe

Since we can write H(z) = − ż
1+z

, one can express the age of the universe as

t0 =
1

H0

∫ ∞

0

dz

(1 + z)E(z)
. (35)

Remember that the dD PG model can mimic the cosmological constant at early time, i.e.

lima→0 ωpg = −1. So, one can consider the ΛCDM parametrization of the dD PG proposal

and write

t0 =
1

H0

∫ ∞

0

dz

(1 + z)
[
Ω0

m(1 + z)d−1 + Ω0
pg

] 1
2

. (36)

Now, let’s define Ω0
m(1 + z)d−1 = Ω0

pg sinh
2 θ. Consequently, the integral (36) can be trans-

formed into the following form

t0 =
1

(d− 1)H0

√
Ω0

pg

∫ ∞

θ0

dθ

sinh θ
, (37)

where

θ0 = ln

 1

Ω0
pg

+

√√√√1− Ω0
pg

Ω0
pg

 . (38)

Next, after solving the integral given in equation (37), we reach at the conclusion

t0 =
1

(d− 1)H0

√
Ω0

pg

ln

1 +
√
Ω0

pg

1−
√
Ω0

pg

 . (39)

In the limit Ω0
pg → 0, we get t0 =

2
(d−1)H0

. Moreover, taking d = 4 gives the same result as

obtained previously for the Einstein-de Sitter model by Farooq[84]. In FIG. 2, we plot t0 in

terms of 1
H0

versus Ω0
m and Ω0

pg, respectively, in the 5D spacetime model. We consider only

the cosmological constant limit of the model and find that the cosmic age of the universe

increases by incorporating the dark constituents. The present total age of the universe for

the 5D polytropic scenario is the same (cosmic concordance) as estimated by the flat coasting

k-matter (one-component liquid with w = −1
3
) proposal, i.e. t0 = H−1

0 [85].

It can be seen that the units of the Hubble parameter include inverse time. Thus, the

inverse of H0 has come to be known as the Hubble time[86]:

tH =
1

H0

=
9.78

h
Gyr. (40)
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FIG. 2: The cosmic age t0 in terms of 1
H0

versus Ω0
m and Ω0

pg in the 5D framework.

So, it can be written that

t0 =
tH

(d− 1)
ln

1−
√
Ω0

pg

1 +
√
Ω0

pg


√

Ω0
pg

. (41)

Now, using equation (36) with the best-fitting values given in TABLE I and TABLE III

and considering the present-day value of the then-favored dimensionless Hubble parameter

h = 0.678 ± 0.009[6], we can calculate the age of the universe in different dimensional

frameworks. In TABLE IV, we present the theoretical values we have.

TABLE IV: Age of the cosmos according to the best values of the free parameters.

t4D0 (Gyr) t5D0 (Gyr)

SN Ia 22.510∓0.3 15.585∓0.205

OHD+Planck-2015 22.665∓0.295 13.14∓0.18
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In literature, Carretta et al.[87] calculated that the value of the age of a globular cluster in

the Milky Way galaxy is approximately 9.1 Gyr < t0 < 14.9 Gyr, where as Jimenez et al.[88]

constrained the value of 11.5 Gyr < t0 < 15.5 Gyr. Making use of the white dwarf cooling

sequence method, Hansen et al.[89] estimated the age of the globular cluster Messier 4 is

approximately 12.0 Gyr< t0 < 13.4 Gyr. Furthermore, the Wilkinson Microwave Anisotropy

Probe (WMAP) observations’ estimation[3] on the cosmic age is t0 = 13.73 ∓ 0.12 Gyr.

Additionally, according to the updated Planck-telescope results[6], the age of the universe

is approximately t0 = 13.813∓ 0.038 Gyr. Although, we have taken into account a specific

limit of the PG model with an EoS parameter ω = −1, we get meaningful conclusions in the

5D framework which agrees with the recent observational results. Also, it can be concluded

that the ages of the globular clusters are larger than 9 Gyr. FIG. 2 indicates that the cosmic

age is predicted by equation (41) as a function of Ω0
m and Ω0

pg. Focusing on a vice versa

computation way, we find that if t0 must be larger than 9 Gyr then Ω0
pg > 0.922.

IV. OTHER COSMOLOGICAL FEATURES

A. EoS parameter

Considering the analysis performed for the 5D spacetime in the previous section and

using equations (25), we depict ωpg(z) relation in FIG. 3. It is seen that the 5D Polytropic

gas model cannot cross the phantom line and it behaves like the quintessence DE.

SN Ia

OHD+Planck-2015

Phantom line

0.0 0.5 1.0 1.5 2.0
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Red shift: z

E
o

S
P

a
ra

m
e

te
r:
ω

p
g

FIG. 3: Graphical analyzes ωpg(z) for the case d = 5.
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B. Deceleration parameter

In order to discuss the dD form of the PG model from a cosmological perspective, we can

also analyze the deceleration parameter given by

q = −1 +
d lnH(z)

d ln(1 + z)
=

1

2
+

3ω

2
. (42)

Using the result (22) with the above relation yields

q = −1− 3

2

c

β(1 + z)
4
ξ − c

. (43)

So, we must have

(1 + z)
4
ξ >

1

β

[
3

2c
+ c

]
. (44)

Otherwise, we have positive values of q parameter describing a decelerating spacetime. FIG.

4 gives the cosmic evolution of q. It can be concluded that the parameter q in the best-fitted

framework is quite different from that for the ΛCDM scenario. Its current value is higher

than qΛCDM
0 = −0.55[38]:

(qSNIa
0 , qOHD&Planck

0 ) = (−0.3498,−0.2566). (45)
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FIG. 4: Graphical analyzes of the q(z) function for the case d = 5.

C. Statefinders

The cosmological EoS parameter of some geometrical proposals calculated by using EoM

does no longer take a requisite place. From this point of view, a different method is essential
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to discriminate a theoretical description among various models. Sahni et. al[90] introduced

the set of statefinder parameters (r, s) which has qualitatively significant properties[70, 91–

95]. The pair is basically given by the following relations

r =
a···

aH3
, s =

r − 1

3(q − 1
2
)
. (46)

Moreover, one can rewrite the definition of r in a more convenient form as given below

r = q + 2q2 + (1 + z)q′. (47)

Making use of calculations given in the previous sections, we plot the statefinders-plane

for the 5D PG model in FIG. 6 according to best-fitting values given in TABLE I and

TABLE III. It can be seen that (r, s) pair starts from the ΛCDM fixed point (r, s) ≡ (1, 0).
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FIG. 5: Numerical analysis of the statefinders pair for the case d = 5.

D. Energy conditions

The energy conditions based on quite general physical principles may help to discuss

dynamic proposal-independent constraints on the kinematics of the cosmos[102–104] by im-

posing restrictions on ρ and p. We can transform the corresponding energy conditions into

inequalities, which are restricting the possible values of energy density and pressure of a

medium. In terms of energy density and pressure, the energy conditions are written in the

following forms[105]
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• Null energy condition (NEC): ρ+ p ≥ 0,

• Weak energy condition (WEC): ρ ≥ 0, ρ+ p ≥ 0,

• Strong energy condition (SEC): ρ+ p ≥ 0, ρ+ 3p ≥ 0,

• Dominant energy condition (DEC): ρ ≥ 0, ρ+ p ≥ 0, ρ− p ≥ 0.

Because of the above inequalities do not include any definite EoS for the content of the

cosmos, energy conditions imply proposal-independent constraints on theoretical energy

density and pressure expressions. Subsequently, on the basis of quite general principles,

the so-called energy conditions yield a significant opportunity to discuss the evolution of our

cosmos. Here, we check whether the PG scenario, representing the dominant substances of

the universe, satisfies the constraints by DEC ρpg ≥ 0, ρpg + ppg ≥ 0 and ρpg − ppg ≥ 0.

In FIG. 6, we plot the DEC for the fitted PG model and see that it satisfies those energy

conditions.
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FIG. 6: The DEC analysis of the PG unified dark matter/energy definition according to the

best-fitting values obtained by using the SN Ia observations, OHD and the Planck-satellite mea-

surements. Here, the red curves are plotted by using the SN Ia data while the blue curves are

depicted by considering the recent OHD and Planck-results. Additionally, the dashed, dotted and

solid lines represent ρpg, ρpg − ppg and ρpg + ppg, respectively. Next, we assume also that ρ0pg = 1

for the sake of simplicity.
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V. CONCLUDING REMARKS

We have mainly investigated the dynamics of the PG model describing a unified dark

matter-energy scenario from extra dimensional perspective and concluded that this theoret-

ical candidate of the dark universe may have the ability to explain the speedy expansion

phenomenon of the cosmos. While investigating the polytropic cosmology, we have per-

formed the following process. In the first stage, we have obtained an expression describing

the energy density in terms of a(t) and then calculated an analytical relation for the cosmic

Hubble parameter. Next, making use of those calculations, we have studied some physi-

cal features of the model in order to obtain some constraints for the auxiliary parameters

given in the proposal. In TABLE V, we have provided theoretical H(z) values, obtained by

making use of the SN Ia dataset, OHD and Planck-results.

TABLE V: Comparing sets of H(z) data.

z Hobs(z) HSNIa
th HOHD

th z Hobs(z) HSNIa
th HOHD

th

0.0708 69.00±19.68[71] 72.01±0.96 72.60±0.96 0.480 97.00±62.00[78] 88.78±1.18 92.71±1.23

0.1200 68.60±26.20[71] 74.64±0.99 75.70±1.01 0.570 92.40±4.500[79] 91.63±1.22 96.07±1.28

0.1700 83.00±8.000[72] 77.08±1.02 78.55±1.04 0.593 104.0±13.00[73] 92.35±1.23 96.90±1.29

0.1990 75.00±5.000[73] 78.40±1.04 80.13±1.06 0.680 92.00±8.000[73] 95.10±1.26 100.02±1.33

0.2400 79.69±2.650[74] 80.16±1.06 82.25±1.09 0.730 97.30±7.000[80] 96.70±1.28 101.8±1.35

0.2800 88.80±36.60[71] 81.78±1.09 84.21±1.12 0.781 105.0±12.00[73] 98.40±1.30 103.6±1.37

0.3500 84.40±7.000[75] 84.40±1.12 87.41±1.16 0.875 125.0±17.50[73] 101.70±1.35 107.07±1.42

0.3802 83.00±13.50[73] 85.50±1.13 88.70±1.18 0.900 117.0±23.00[72] 102.58±1.36 108.02±1.43

0.4000 95.00±17.00[72] 86.14±1.14 89.53±1.19 1.300 168.0±17.00[81] 120.40±1.59 125.66±1.67

0.4247 87.1011.20±[76] 86.97±1.15 90.54±1.20 1.430 177.0±18.00[81] 127.75±1.69 132.73±1.76

0.4300 86.45±3.680[74] 87.15±1.16 90.75±1.21 1.530 140.0±14.00[72] 133.9±1.77 138.68±1.84

0.4497 92.80±12.90[76] 87.80±1.17 91.53±1.22 1.750 202.0±40.00[82] 149.19±1.98 153.41±2.04

0.4783 80.90±9.000[77] 88.73±1.18 92.65±1.23 1.965 186.5±50.40[73] 166.29±2.21 169.9±2.26

2.340 222.0±7.000[83] 201.1±2.67 203.9±2.71

In order to check the reliability of our results, we can define a control parameter given by

ζ =
Hobs(zi)−Hth(zi)

σobs
i

. (48)
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In FIG. 7, we have depicted the control parameter according to the different values of

auxiliary parameters found by focusing on the most recent astrophysical observations. It

can be seen that most of the corresponding values are in the 1σ confidence region.
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FIG. 7: The evolution of control parameter ζ. Here, the red dots indicates the SN Ia case while

the blue ones denotes the case including OHD and Planck 2015 results.

In summary, the PG model is consistent with the recent observational measurements and

its 5D form yields better results than the 4D one.
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