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Abstract

In the present work, we mainly discuss the variable polytropic gas (VPG henceforth) proposal,

which is describing a self-gravitating gaseous sphere and can be considered as a crude approximation

for realistic stellar definitions, from a caloric perspective. In order to reach this aim, we start

with reconstructing the VPG model by making use of thermodynamics. And then, the auxiliary

parameters written in the proposal are fitted by focusing on updated experimental dataset published

in literature. We also discuss the model in view of the statistical perspective and conclude that

the caloric VPG model (cVPG henceforth) is in good agreement with the recent astrophysical

observations. With the help of the statistical discussions, we see that the cVPG model is suitable for

the statistical cosmology and can be used to make useful predictions for the future of the universe

via the machine learning (ML henceforth) methods like the linear regression (LR henceforth)

algorithm. Moreover, according to the results, we also perform a rough estimation for the lifetime

of the universe and conclude that the cosmos will be torn apart after 51Gyr which means our

universe has spent 21 percent of its lifetime.
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I. INTRODUCTION

Identifying dark sectors of the universe, at least the part containing dark energy (DE

henceforth) and dark matter (DM henceforth), is one of the challenging issues of modern

theoretical physics[1]. Among them, the dark energy sector is considered as the generator

of the current speedy expansion epoch[2–11]. There are plenty of proposals introduced for

getting an expression for the nature of the major part of cosmos: cosmological constant[12],

modified gravity theories[13, 14], scalar fields[15–19], braneworld models[20, 21], energy

densities[22–31, 41, 42], assuming extra dimensions[43–45] and so on. For a convenient

brief about theoretical proposals, one can check Ref.[46] and references therein. Among

these models, the Hobbit[29], the CG[30] family (including its generalized[31], variable[32],

modified[33], variable modified[34], variable generalized[35] and extended versions[36–40])

and the PG[41, 42] have a very significant feature: these proposals automatically remove

the cosmic coincidence puzzle due to expressing the dark cosmos with a single fluid.

Data science is the investigation of producing and making use of sophisticated algorithms

and cutting-edge numerical investigation methods to extract information from data[47]. For

instance, fitting free parameters defined a theoretical proposal is one of the important issues

in contemporary physics. The most often used method in modern cosmology is to analyze

the luminosity distance data sets for a specific family of cosmic objects[48–51]. Recently, a

new technique including observational Hubble constant values (OHV henceforth), which is

also called cosmic chronometer data, has come forward to check some astrophysical tests[52–

57]. On the other hand, scientists across different disciplines are focusing on using artificial

intelligence (AI henceforth) to make their jobs much easier. For instance, the AI can be

used to identify whether a tumor is benign or malignant in medicine[58], to predict future

market prices in economy[59] or to forecast weather conditions in meteorology[60], etcetera.

The main idea behind such use of the AI is the ML algorithm. As a matter of fact, the ML

is a subset of the AI and includes advanced methods that enable computers to figure things

out from the data. One of the fundamental algorithms is the LR which provides a base to

build on and figure out other ML algorithms. This technique is mostly applied to forecast

and find out cause-effect relationship between variables. In the present work, we apply the

LR algorithm to the cVPC cosmology in order to discuss its reliability and show that the

model is in good agreement with the recent astrophysical data sets and can be used to make
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meaningful predictions for the future of our cosmos. To reach this aim, we (i) reconstruct

the VPC proposal[61] via thermodynamics, (ii) perform a constraining analysis including

the most recent OHV in order to find best values of the free parameters written in the cVPG

model, (iii) discuss the model from a statistical perspective and (iv) apply the LR algorithm

to the cVPG model.

The layout of the paper is as follows. In the next section, we construct the cVPG proposal.

Next, in the third section, we perform a data analysis to fit the auxiliary parameters given

in the model. In the fourth section, we study the model from a statistical perspective in

order to check its statistical reliability and whether the cVPG proposal can take a role in

the ML field. In the fifth section, we apply the LR algorithm to the cVPG proposal. In the

sixth section, according to the best fitting values of the auxiliary parameters given in the

model, we perform a rough estimation for the lifetime of the cosmos. The final section is

devoted to closing remarks.

All numerical calculations and analyzes are performed by using the Mathematica[62] and

the Pyton[63] softwares.

II. CONSTRUCTING THE THEORETICAL MODEL

We start with assuming the universe is described by the flat Friedmann-Robertson-Walker

(FRW henceforth) type line-element. Due to the recent cosmological observations[2–11, 64]

have strongly indicated a spatially flat geometry of the universe, we use the line-element

ds2 = dt2 − a2(t)
∑3

i=1(dxi)
2 where the time-dependent function a(t) is the cosmic scale

factor.

On the other hand, the VPG model is given[61] by the equation-of-state (EoS henceforth)

p = βa−nρ1+
1
ξ , where β, n and the polytropic index ξ denote real constants. In the present

work, we suppose that the cosmos is filled with a perfect fluid, which is described by the

energy-momentum tensor Tµν = (ρt + pt)uµuν − gµνpt where uµ, ρt = ρ+ ρbm, pt = p+ pbm

and gµν represent the four-velocity vector, total energy density, total pressure and the metric

tensor, respectively. Note that the subscript bm stands for the baryonic matter, which is

represented by the EoS parameter ωbm = 0.

Consequently, from the continuity equation T µν
;ν = 0, we can write

ρ̇bm + 3Hρbm = 0, (1)
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ρ̇+ 3H(ρ+ p) = 0, (2)

where H = ȧ
a
is the Hubble expansion parameter and the dot indicates a derivative with

respect to the cosmic time t. From equation (1), it is found that ρbm =
ρ0bm
a3

where ρ0bm is an

integration constant and represents present value of the energy density of baryonic matter.

With the help of thermodynamics, we have the following expression

p = −
(
∂U

∂V

)
S

= βa−nρ1+
1
ξ (3)

where U = ρV , V = a3 and S represent the energy, volume and the entropy, respectively.

Therefore, performing the corresponding integration gives the following relation

U− 1
ξ = c(S)− 3β

3 + nξ
a−

3+nξ
ξ , (4)

where c(S) denotes an integration constant which may depend on the entropy only or be a

universal constant. Subsequently, we find

ρ =

[
(nξ + 3)V

n
3

3β

]ξ 1 +
(
V

ν

)n
3
+ 1

ξ


−ξ

, (5)

p = (−1)1−ξ(βV )nξ/3
(
nξ + 3

3

)ξ+1
1 +

(
V

ν

)n
3
+ 1

ξ


−(1+ξ)

, (6)

where ν has the dimension of volume and it is given by

ν =

{
−(nξ + 3)c

3β

}− 3ξ
nξ+3

. (7)

For the pressureless case, let Vc represents the critical volume of the system. Thus, we

may write Vc = (−1)
3ξ

nξ+3ν. Subsequently, it can be written that

ρ =

[
(nξ + 3)V

n
3

3β

]ξ 1−
(
V

Vc

)n
3
+ 1

ξ


−ξ

. (8)

Next, for the corresponding heat capacity, one should check whether the condition CV > 0

is satisfied in the constant volume case. It is generally written that

CV = T

(
∂S

∂T

)
V

=

(
∂U

∂T

)
V

= V

(
∂ρ

∂T

)
V

. (9)

Moreover, making use of the expression T =
(
∂U
∂S

)
V
, the temperature of the VPG can be

calculated as a function of entropy and volume. Thus, it is found that

T = −ξ

[
c− 3β

nξ + 3
V −nξ+3

3ξ

]−(ξ+1) (
∂c

∂S

)
V

. (10)
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It can be seen that the cVPG remains at zero temperature for any value of pressure and vol-

ume of the fluid if the integration constant c is a universal constant. This makes the stability

of the cVPG proposal questionable. From this point of view, for an extensive discussion,

we assume that
(

∂c
∂S

)
V

̸= 0 which means the temperature of the cVPG varies during its

speedy expansion. From fundamental physical assumptions, it is generally known that the

function c(S) must yield positive value of temperature. Previously, Santos et al.[71] used the

Jacobian identity to get a definition for the c(S) function in a cosmological scenario includ-

ing the modified CG. Later, Panigrahi and Chatterjee[35] and Askin et al.[72] performed

similar investigations for the generalized CG and the original PG models, respectively. So,

after performing a dimensional analysis, we see from equation (4) that [U ] = [c]−ξ. Due to

[U ] = [S][T ], one can write that [c] = [S]−
1
ξ [T ]−

1
ξ . It is easy to conclude that we cannot

get an analytic expression of the function c(S) from this result. From this point of view, an

empirical description of c(S) can be assumed. Hence, the function c(S) should depend on

entropy only c = T
− 1

ξ
c S− 1

ξ where Tc is a constant parameter having the dimension of tem-

perature. Thus, one can reach the following expressions for the temperature and entropy of

the system

T = Tc(−1)ξ+1
[
V

Vc

]− (nξ+3)(ξ+1)
3ξ

1− [
V

Vc

]nξ+3
3ξ

−(ξ+1)

, (11)

S = (−1)−ξV
nξ+3

3

[
3β

nξ + 3

]−ξ [
T−ξ

Tc

] 1
ξ+1

1− (
T

Tc

) 1
ξ+1

ξ . (12)

Here, it is seen that, for the third law of thermodynamics (T = 0 and S = 0), we should

have V = Vc and T = Tc. Now, making use of equation (12), one can reach the following

expression for the heat capacity

CV =
(−1)1−ξξ

ξ + 1
V

nξ+3
3

[
nξ + 3

3β

]ξ [
T−ξ

Tc

] 1
ξ+1

1− (
T

Tc

) 1
ξ+1

1+ξ

. (13)

We can see that CV > 0 if ξ and n are negative even numbers and 0 < T < Tc. So, it can

be said that Tc represents the maximum value of temperature.

We can now proceed our investigation to get expressions for the energy density, pressure

and the EoS parameter of the VPG as a function of temperature. So, we find the following

expressions

ρ = (−β)−ξV
nξ
3

[
nξ + 3

3

]ξ 1− (
T

Tc

) 1
ξ+1

ξ , (14)
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p = (−1)1−ξV
nξ
3

βξ

[
nξ + 3

3

]ξ+1
1− (

T

Tc

) 1
ξ+1

ξ+1

, (15)

ω = −nξ + 3

3

1− (
T

Tc

) 1
ξ+1

 . (16)

In the early inflation phase when temperature is very high (note that T = 1032 K at the

Planck phase), i.e. T → Tc, we get ω ∼ 0 indicating a dust dominated universe. Besides,

in the late-time speedy expansion phase when the temperature is very low, i.e. T → 0, it

is found that ω ∼ −1 − nξ
3
. If nξ > 0, we get ω > −1 which means the case represents a

quintessence type evolution and the big rip fate of the universe is avoided. Next, if nξ < 0,

we have ω < −1 describing a phantom type DE. It is known that taking n = 0 reduces the

VPG model into the original PG model[61]. So, for the late-time speedy expansion phase,

we get ω = −1 which means this specific case (n = 0) points to the ΛCDM model.

Moreover, in order to analyze the cVPG cosmologically in a different way, we can also

focus on the deceleration parameter. Making use of the relation q = − ä
aH2 with the result

(16) yields

q =
1

2
+

3ω

2
= −1− nξ

2
+

nξ + 3

2

(
T

Tc

) 1
ξ+1

. (17)

In order to describe an accelerating universe, we need to have negative q values. In the next

section, we fit the model parameters according to recent observations. After that, we can

analyze the deceleration parameter numerically in order to test the consistency of the cVPG

model.

III. DATA ANALYSIS

We may write the Friedman equation (FE henceforth) as H2 = 8πG
3
(ρbm + ρdm + ρde).

Here, one can assume the following useful dimensionless fractional densities

Ωbm =
ρbm
ρc

, Ωdm =
ρdm
ρc

, Ωde =
ρde
ρc

. (18)

Here the critical density is given by ρc =
3H2

0

8πG
where H0 shows the present value of the cosmic

Hubble parameter. Planck-results[10, 11] have indicated thatH0 = 67.8+0.9
−0.9 KmSec−1Mpc−1.

From this point of view, the FE can be rewritten in a simple elegant form

3∑
i=1

Ωi = E, (19)
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with Ωi = (Ωbm,Ωdm,Ωde) and the dimensionless Hubble parameter E = H
H0

. According to

the Planck-results[10, 11], we have Ω0
bm + Ω0

dm + Ω0
de = 0.049 + 0.278 + 0.673. Also, we can

define Ω0
bm =

ρ0bm
ρc

, Ω0
vpg =

Ω0
vpg

ρc
, Ω0

dm =
ρ0dm
ρc

and Ω0
de =

ρ0de
ρc
. Subsequently, one can write that

Ω0
bm

Ω0
dm + Ω0

de

=
Ω0

bm

Ω0
vpg

=
ρ0bm
ρ0vpg

. (20)

Moreover, it is generally known that the present energy density is related[66] to the cos-

mological density by ρ0 = 1.31ρcos, where ρ0 = ρ0bm + ρ0vpg, which means one should

assume ρ0 = 1.31 when a0 = 1. With the help of equation (20), one can obtain that

(ρ0bm, ρ
0
vpg) = (0.05, 1.26).

Additionally, the integration constant written in the equation (4) can be given in terms

of the free parameter of the model by making use of the above results. Hence, we get

c = (1.26)−
1
ξ +

3β

nξ + 3
. (21)

Focusing on the FE, we can write the cosmic Hubble parameter in the following form

H = H0

√√√√√1− Ω0
vpg

V
+

Ω0
vpg

ρ0vpg

[
(nξ + 3)V

n
3

3β

]ξ 1−
(
V

Vc

)n
3
+ 1

ξ


−ξ

. (22)

Besides, one can also rewrite the above relation as a function of the cosmic red-shift param-

eter z. Remember that the z ∼ a relation is given by z + 1 = 1
a
with a0 = 1. Hence, it is

obtained that

H(z) = H0

√√√√0.049(1 + z)3 + 0.754

{
3β(1 + z)n

nξ + 3
−
[
(1.26)−

1
ξ +

3β

nξ + 3

]
(1 + z)−

3
ξ

}−ξ

. (23)

In order to fit the free parameters of the model, we can use the set of recent OHV[73–86]

given in Table I[61] and Planck-results[10, 11]. On this purpose, one can minimize χ2, which

can be defined as χ2 =
∑27

i [Hobs(zi)−Htheo(zi)]
2σ−2

i , in order to reach best-fitting values of

the auxiliary parameters. Here, Hobs, Htheo and σi show observational value of the Hubble

parameter, theoretical value of the Hubble parameter and the corresponding uncertainty,

respectively. Consequently, the best-fitting values of auxiliary parameters are calculated as

(ξ, β, n) = (−10,−0.8,−2) (24)

with

χ2 = 15.5184. (25)
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TABLE I: The recent observable H(z) dataset.

z Hobs(z) σ Ref. z Hobs(z) σ Ref. z Hobs(z) σ Ref.

0.0708 69.00 ∓19.68 [74] 0.4247 87.10 ∓11.20 [79] 0.7810 105.0 ∓12.00 [76]

0.1200 68.60 ∓26.20 [74] 0.4300 86.45 ∓3.680 [77] 0.8750 125.0 ∓17.50 [76]

0.1700 83.00 ∓8.000 [75] 0.4497 92.80 ∓12.90 [79] 0.9000 117.0 ∓23.00 [75]

0.1990 75.00 ∓5.000 [76] 0.4783 80.90 ∓9.000 [80] 1.3000 168.0 ∓17.00 [84]

0.2400 79.69 ∓2.650 [77] 0.4800 97.00 ∓62.00 [81] 1.4300 177.0 ∓18.00 [84]

0.2800 88.80 ∓36.60 [74] 0.5700 92.40 ∓4.500 [82] 1.5300 140.0 ∓14.00 [75]

0.3500 84.40 ∓7.000 [78] 0.5930 104.0 ∓13.00 [76] 1.7500 202.0 ∓40.00 [85]

0.3802 83.00 ∓13.50 [76] 0.6800 92.00 ∓8.000 [76] 1.9650 186.5 ∓50.40 [76]

0.4000 95.00 ∓17.00 [75] 0.7300 97.30 ∓7.000 [83] 2.3400 222.0 ∓7.000 [86]

In FIG. 1, we depict the evolutionary nature of the cosmic Hubble parameter according to

the cVPG model in the 1σ confidence region. Note that, in FIG. 1, the green dots represent

the recent observable values.
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FIG. 1: H ∼ z relation for OHV dataset according to the cVPG model in the 1σ confidence region.
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On the other hand, with the help of best fitting values of the auxiliary parameters given

in the model, we can now plot the heat capacity in order the check the stability condition of

the model. It can be seen from FIG. 2 that the cVPG model is always stable due to positive

values of the heat capacity.

FIG. 2: The evolutionary nature of heat capacity with best fitting values of the free parameters.

Here, we assumed that Tc = 1032K.

Additionally, we need to test the consistency of the model cosmologically in order to

demonstrate its reliability. Focusing on the expression (17) with the help of best fitting

values of the model parameters given in equation (24), we plot q ∼ T relation in FIG. 3.
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FIG. 3: The graphical analysis of q ∼ T relation with the help of best fitting values of the free

parameters. Here, we assumed that Tc = 1032K.

It is seen from FIG. 3 that the deceleration parameter takes negative values. So, the
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model is reliable and can yield cosmologically meaningful results.

IV. STATISTICAL ANALYSIS

We can investigate the corresponding correlation between values of Hobs and Htheo with

the help of correlation parameter Υ. This coefficient is taken into account in statistics to

determine how strong the corresponding relationship is. Hence, in order to achieve this goal,

the following expressions can be used:

Kx =

√√√√Σ27
n=1

(
Hobs(zn)−Hobs

)2
n− 1

, (26)

Ky =

√√√√Σ27
n=1

(
Htheo(zn)−H theo

)2
n− 1

, (27)

where Hobs and H theo represent mean values

Hobs = Σ27
n=1

Hobs(zn)

27
, H theo = Σ27

n=1

Htheo(zn)

27
. (28)

With the help of the above expressions, the correlation coefficient is written as

Υ =
Σ27

n=1

(
Hobs(zn)−Hobs

) (
Htheo(zn)−H theo

)
(n− 1)KxKy

. (29)

Note that the values of Υ should always interpolate in the interval [−1,+1]. The case Υ = +1

(Υ = −1) implies the points are on a perfect straight line with positive (negative) slope.

The zero value case indicates that there is no relationship at all. Additionally, the absolute

value |Υ| represents strength of the relationship: the larger the absolute value of correlation

coefficient, the stronger the linear relationship. For the cVPG model, we calculate that

r = 0.967657 which means there is a strong positive relationship between Hobs and Htheo.

In literature, the two most used scaling techniques are the normalization and the stan-

dardization. The normalization method typically shows re-scaling the corresponding values

of a quantity into a range of [0, 1]. On the other hand, the standardization typically means

re-scaling the corresponding dataset to have a standard deviation of 1 and a mean of 0. We

deal with the word normalization informally in statistics, and therefore the term normal-

ized data can have multiple meanings. In most situations, while normalizing a dataset, we

generally eliminate the units of measurement. This assumption enables us to compare data
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from different places more easily. Re-scaling a dataset to have values between 0 and 1 is

usually called feature scaling. One possible expression to achieve this goal is

ΞNorm =
xi − xmin

xmax − xmin

. (30)

As a matter of fact, the terms normalization and standardization are sometimes taken

into account interchangeably, but it should be known that they usually refer to different

things. The standardization is usually called as z-score, and points of a dataset can be

standardized with the following expression

ΞStand =
xi − x

σs

, (31)

where σs is the standard deviation. Making use of the z-score method is very common

in statistical investigations. The method allows to compare different sets of data and to

determine probabilities for a dataset by considering standardized tables, which is called

z-tables.

In FIGs. 4 and 5, using Hobs and Htheo values, we compared our theoretical results with

the recent observations from the statistical perspective. It is concluded from FIGs. 4 and

5 that Hobs and Htheo data sets are in a good agreement. Thus, we can use our theoretical

results also in the ML techniques like the LR in order to make predictions for the future of

our universe.
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FIG. 4: The graphical analyses of ΞNorm for Hobs and Htheo values with the help of best fitting

values of the free parameters. Here, the orange dots represent observational values while the blue

ones show theoretical values.
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values of the free parameters. Here, the orange dots represent observational values while the blue

ones show theoretical values.

V. THE LR ANALYSIS

Now, let’s focus on the role of LR in cVPG cosmology. In the LR algorithm, it is known

that, for a function y(x), we have

yi = b0 + b1xi, (32)

where

b0 = y − b1x, (33)

b1 =

∑n
i=1 xiyi −

∑n

i=1
xi

∑n

i=1
yi

n∑n
i=1 x

2
i −

(
∑n

i=1
xi)2

n

, (34)

x =
n∑

i=1

xi

n
, (35)

y =
n∑

i=1

yi
n
. (36)

Here, we focus on the H(z) function (23) to investigate the role of ML in the cVPG

cosmology. First of all, we use best fitting values of the free parameters given in the relation

(23) and calculate corresponding H(z) values (see the third column in Table II) in order to

let the computer learn how the function H(z) depends on the red shift parameter z. Making

use of the Python software, we let the computer select random 9 rows given in the third

column of Table II and estimate the other 18 rows after learning the evolution of H(z).
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TABLE II: Numerical values for the H(z) function and the deviation percentages.

z Hobs(z) Htheo(z) Hest(z)
Htheo
Hobs

Hest
Hobs

Dto Deo

0.0708 69.000[74] 69.950 69.955 1.013768 1.013841 0.013768 0.013841

0.1200 68.600[74] 71.820 71.824 1.046939 1.046997 0.046939 0.046997

0.1700 83.000[75] 67.850 73.965 0.817470 0.891145 0.182530 0.108855

0.1990 75.000[76] 75.310 75.305 1.004133 1.004067 0.004133 0.004067

0.2400 79.690[77] 77.310 77.312 0.970134 0.970159 0.029866 0.029841

0.2800 88.800[74] 77.010 79.384 0.867230 0.893964 0.132770 0.106036

0.3500 84.400[78] 83.250 83.255 0.986374 0.986434 0.013626 0.013566

0.3802 83.000[76] 85.010 85.012 1.024217 1.024241 0.024217 0.024241

0.4000 95.000[75] 86.190 86.191 0.907263 0.907274 0.092737 0.092726

0.4247 87.100[79] 87.690 87.689 1.006774 1.006762 0.006774 0.006762

0.4300 86.450[77] 88.020 88.015 1.018161 1.018103 0.018161 0.018103

0.4497 92.800[79] 91.150 89.237 0.982220 0.961606 0.017780 0.038394

0.4783 80.900[80] 91.040 91.044 1.125340 1.125389 0.125340 0.125389

0.4800 97.000[81] 93.670 91.153 0.965670 0.939722 0.034330 0.060278

0.5700 92.400[82] 101.17 97.083 1.094913 1.050682 0.094913 0.050682

0.5930 104.00[76] 98.650 98.653 0.948558 0.948587 0.051442 0.051414

0.6800 92.000[76] 104.78 104.78 1.138913 1.138913 0.138913 0.138913

0.7300 97.300[83] 114.50 108.42 1.176773 1.114286 0.176773 0.114286

0.7810 105.00[76] 112.23 112.23 1.068857 1.068857 0.068857 0.068857

0.8750 125.00[76] 126.58 119.47 1.012640 0.955760 0.012640 0.044240

0.9000 117.00[75] 121.44 121.44 1.037949 1.037949 0.037949 0.037949

1.3000 168.00[84] 155.36 155.36 0.924762 0.924762 0.075238 0.075238

1.4300 177.00[84] 167.26 167.26 0.944972 0.944972 0.055028 0.055028

1.5300 140.00[75] 181.15 176.68 1.293929 1.262000 0.293929 0.262000

1.7500 202.00[85] 199.48 198.19 0.987525 0.981139 0.012475 0.018861

1.9650 186.50[76] 220.18 220.18 1.180590 1.180590 0.140590 0.180590

2.3400 222.00[86] 260.70 260.70 1.174324 1.174324 0.174324 0.174324

13



In Table II, we also provide the estimated values of the cosmic Hubble parameter and

the deviation percentages Dto (between Htheo and Hobs) and Deo (between Hest and Hobs).

The corresponding mean values of the deviation percentages are(
Dto, Deo

)
= (0.078372, 0.072647) . (37)
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FIG. 6: Plots of H(z) datasets with the help of best fitting values of the free parameters. Here, the

blue circles represent observed values, the orange squares are the theoretical values and the green

rhombuses shows the estimated values.
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FIG. 7: Comparing Htheo
Hobs

∼ z (the orange squares) and Hest
Hobs

∼ z (the blue circles) relations with

the help of best fitting values of the free parameters.

In FIGs. 6 and 7, in order to compare Hobs, Htheo and Hest values, we plot H(z) data sets

and the ratios Htheo

Hobs
and Hest

Hobs
. One can see from FIG. 7 that the corresponding values of the
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ratios are concentrated around 1. It is significant to emphasize here that the ML algorithm

estimated meaningful values (as a matter of fact better than the theoretical ones) with the

help of the cVPG proposal. Thus, one can say that the model is suitable to make interesting

predictions for the cosmos.

Moreover, the R-squared statistic helps us to measure the goodness-of-fit of a trend. As

a matter of fact, it implies how significantly the slope of a fitted-line differs from zero. The

approach is mainly based on partitioning the Total Sum of Squares (TSS henceforth) into the

Error Sum of Squares (ESS henceforth) and Regression Sum of Squares (RSS henceforth)[87,

88]. In the R-squared analysis, we have the following expressions[88]

TSS =
∑
i

(yi − y)2, (38)

ESS =
∑
i

(yi − ŷi)
2, (39)

RSS =
∑
i

(ŷi − y)2, (40)

R2 = 1− ESS

TSS
=

RSS

TSS
, (41)

where 0 ≤ R2 ≤ 1 and yi and ŷi represent the observed and the estimated variables for the

independent variable xi, respectively. In can be said that the case R2 = 1 shows there is

no deviation between the actual observed dataset and the estimated values. For the cVPG

proposal, we calculated that R2 = 0.88, which clearly indicates that the model provides a

very good fit for the recent observable dataset.

VI. ESTIMATING LIFETIME OF THE COSMOS

Based on the various evolutionary characteristics of the cosmic Hubble parameter, the

final fate of our cosmos can be divided into the three main categories: the big rip, little rip

and the pseudo rip[89]. If H(t) → ∞ when t → constant, the big rip will occur at a certain

time. If H(t) → ∞ when t → ∞, the little rip fate will happen. Note that this case has no

singularities in the future. The pseudo rip case is identified with H(t) → constant. With

the growth of cosmic time a → ∞ (or 1 + z → 0) and the help of best fitting values of the

free parameters, it is found that

H(a) =
ȧ

a
= H0

√√√√Ω0
vpg

ρ0vpg

(
nξ + 3

3β

)ξ

anξ. (42)
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Therefore, the above result indicates the little rip fate of our universe. By solving this

equation, one can find the following relation

a =

1− nξH0

2

√√√√Ω0
vpg

ρ0vpg

(
nξ + 3

3β

)ξ

(t− t0)


− 2

nξ

, (43)

where t0 represents the present value of time. Substituting the above result in the general

expression of the cosmic Hubble parameter, it can be calculated that

H =
2

2

H0

√
Ω0
vpg

ρ0vpg
(nξ+3

3β )
ξ
− nξ(t− t0)

. (44)

So, when t → 2
nξH0

[
Ω0

vpg

ρ0vpg

(
nξ+3
3β

)ξ]− 1
2

+ t0, we have H(t) → ∞ which means the cosmos will

have a little rip after t − t0 = 2
nξH0

[
Ω0

vpg

ρ0vpg

(
nξ+3
3β

)ξ]− 1
2

. Therefore, the lifetime of our cosmos

can be determined by free parameters of the model. Now, let us perform a rough estimation.

So, it is concluded that the universe will be torn apart after 51Gyr. It is generally accepted

that 13.8Gyr is the current age of the universe, so one can say that the cosmos has spent 21

percent of its life.

VII. CLOSING REMARKS

Here, we have investigated the cVPG model of a self-gravitating gaseous sphere from

theoretical, numerical and statistical perspectives. We have shown that the theoretical

proposal is thermodynamically stable and in good agreement with the recent astrophysical

observations when assuming suitable values of the free parameters given in the model. The

best-fitted form of the theoretical cVPG model in the 1σ confidence region is

p = −0.8a2ρ0.9. (45)

On the other hand, we have focused on the ML mechanism in cVPG cosmology. Why

the ML algorithm in astronomy and cosmology? There are three significant reasons. One of

them is the automation. Size of a observational dataset indicates that manual intervention

is possible only in a highly exceptional circumstance. From this point of view, such analyses

need to be automated. The second reason is the acceleration. An ML algorithm can generate

shortcuts to expensive simulations. The third one is the superhuman performance. Trained
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algorithms can sometimes outperform the ability of designed algorithms. The statistical

analyses of the model have indicated that the suggested theoretical model can be used also

to propose meaningful predictions for the fate of our cosmos and the future experiments via

the ML algorithm, which is helping systems to gain the ability learning from augmented

data. With the help of this model, we have applied the LR algorithm to the model and

let the computer estimate H(z) values. It has been concluded that the ML algorithm

produces meaningful H(z) dataset which means it can improve the theoretical predictions.

Subsequently, we have performed a rough estimation for the lifetime of our cosmos and seen

that the universe has spent 21 percent of its life which means it will be torn apart after

51Gyr.
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