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Abstract

The present note addresses a paper by DiNunno & Matzner, in which
the authors claim that 1) the volume of a J = Q = 0 black hole as mea-
sured in "Schwarzschild coordinates" vanishes and 2) the volume itself is
coordinate-dependent. We refute these statements as elementary concep-
tual mistakes, which originate from a basic misunderstanding of general
covariance in the context of the gauge theory of General Relativity.

In face of the widespread misconceptions regarding the geometric structure
of black holes (and quite likely that of other exotic objects such as wormholes),
as exempli�ed by a fairly recent work by DiNunno & Matzner[1], I purport to
analyze in more careful terms the rather elementary problem of calculating areas
and volumes in the context of General Relativity (GR), in a manner that may be
readily understood by even undergraduates with some very basic knowledge of
calculus and di¤erential geometry. We focus our attention on the one-parameter
family of Kerr-Newman vacuum solutions given by J = Q = 0, whose interior
regions are commonly (but, as we shall brie�y see, inaccurately) referred to as
"Schwarzschild black holes".
The starting point of the discussion is the statement that a spacetime (M;gKug)

is equipped with the (4-)metric �eld

gKug = �
�
1� rS

R (r)

�
c2dt2+

�
1� rS

R (r)

��1
dR (r) 2+R2 (r)

�
d�2 + sin2 �d'2

�
(1)

The �rst thing to be stressed for our purposes is this: it doesn�t matter where
this �eld came from. All that matters is that we are given a metric, and that�s
all that we�re going to need. Next we remark that, even though this expres-
sion for the metric gKug is often referred to as being in Schwarzschild "coor-
dinates", it should be stressed that the coordinate basis (ct; r; �; ') is nothing
other than the ordinary (Cartesian time+)spherical coordinates which are very
familiar to any physics undergraduate. Finally, we need to pick a speci�c form
of R (r) in order to be able to calculate anything, and at this point physics
makes a brief cameo. Historically, at the dawn of GR, two di¤erent expressions
were proposed[2],[3]: independently of each other, Hilbert and Droste stipu-
lated simply R = RHD := r, while Schwarzschild used in his original solution
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R = RS :=
�
r3 + r3S

� 1
3 ; from the last expression, we can immediately see that

Schwarzschild placed the origin of his spacetime at the event horizon (which in
this case can be speci�ed simply by R = rS ,t =some constant), so that, clearly,
his solution does not admit black holes (i.e., a region interior to the event hori-
zon). As another aside, we might as well mention that, since Schwarzschild�s
exterior solution is a vacuum everywhere and everywhen, but it contains re-
gions of nonvanishing Riemann curvature[4], it is obviously unphysical - unless
we consign an appropriate amount of gravity-causing stress-energy-momentum
to the event horizon itself, since the solution is not de�ned there. But we em-
phasize, once more, that this argument is a physical digression dependent upon
the gauge-theoretical conventions of GR as well as the interpretation that it as-
signs to geometrical entities such as connections, curvatures, torsions, etc. For
the purpose of de�ning a certain region in a (metric) spacetime, and proceed to
calculate related quantities such as areas and volumes, it is utterly irrelevant to
know whether curvature is or can be interpreted as gravitational �eld strength,
or whatever; all that matters is �xing what the metric is, and what the region
is.
With all that in mind, let us proceed to compute the area of a "Schwarz-

schild" black hole (or, more accurately, of its event horizon), as given by the
Hilbert-Droste (HD) solution. It is fairly obvious, from our description of the
event horizon, that we may obtain the expression for a restricted 2-metric of
our surface by replacing dt = dr = 0,r = rS in the HD solution - namely,
g(2) = r2S

�
d�2 + sin2 �d'2

�
� r2SgS2 . Since the invariant volume-element of the

surface is simply
q��g(2)��d�d', we �nd with no di¢ culty that

AS :=

Z �

0

Z 2�

0

r2S sin �d�d' = 4�r
2
S (2)

So, we conclude the black hole area is just that of ordinary S2 in units of
rS , which is easy to swallow. Now, for the traumatic part: the 3-metric of
the volume is obtained from the substitution of dt = 0 in the HD solution,
yielding g(3) =

�
1� rS

r

��1
dr2 + r2

�
d�2 + sin2 �d'2

�
- but there�s a catch now:

for 0 < r < rS , we see that 1 � rS
r < 0; because of this, the black hole has an

e¤ective inde�nite spatial 1 + 2 metric with signature [�;+;+], which means
its volume-element must be de�ned as

q
�
��g(3)��drd�d', just like it is done in

special relativity[5]. That said, we have

VS : =

Z rS

0

Z �

0

Z 2�

0

�rS
r
� 1
�� 1

2

r2 sin �drd�d' (3)

=
4�r3S
3

�
Z 1

0

3x2q�
1
x � 1

�dx = 4�r3S
3

� 15�
16

And this result, that the volume of the black hole is just a little under three
times that subtended by S2 in units of rS , while surprising, is still nonvanishing
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- in contradistinction to the claim of [1], which seems all the more unfounded
in that the authors also write down the above expression for g(3) immediately
before. The reasoning forwarded to substantiate this mistake is an appeal to
the Kruskal-Szekeres map - which leads me to my next point. It is important
to note that coordinate (or metric) singularities - such as the locus of events
with r = rS in gKug - are quite common; you�re welcome to assess this by
my claim that the z-axis is a singular locus already in the basis of spherical
coordinates. However, if, for some reason, you don�t like them, you can "get
rid" of them; to illustrate this point, we can introduce the coordinate transform

(ct; r; �; ') 7! (v�; r; �; ') with v� given by v� := ct � rS ln
��� rrS � 1���, so that

d [ct (v�; r)] = dv� �
�
r
rS
� 1
��1

dr; it is easy to see that, after a little algebra,

substitution of this into the HD metric gives

gHD = �
�
1� rS

r

�
dv2� � 2

rS
r
dv�dr +

�
1 +

rS
r

�
dr2 + r2gS2 (4)

= �dv2� + dr2 + r2gS2 +
rS
r
(dv� � dr)2 ;

g�1HD = �dv2� + dr2 +
1

r2
g�1S2 �

rS
r
(dv� � dr)2 (5)

(beware the begginer�s trap: 2 rSr dv�dr really means
rS
r dv�
dr�

rS
r dr
dv�,

and so forth.) These are the famous Eddington-Finkelstein1 (EF) "coordinates"
(by this point, you should be able to tell the reason for the "": there�s really
just one Eddington-Finkelstein coordinate - namely, the "time(s)" v�), and
you can readily check that in this basis gHD, as well as its inverse g

�1
HD, are

indeed free of the r = rS metric singularity - even though the "z-axis" one
persists. Introducing the EF scheme is more than just pedagogical, though:
for, even as there is an abundance of other "coordinates" in the literature -
Gullstrand-Painlevé, Lemaître, Novikov, isotropic, Kruskal-Szekeres,... -, the
principle of general covariance (which, perhaps you haven�t been told, is a purely
mathematical ingredient of di¤erential geometry that is independent of any
physics) stipulates that they are all each equally as good to describe the region
they cover - so, w.l.o.g., one can keep to a given scheme - say EF - and completely
ignore the others. In any case, in any analysis of v� the very �rst thing anyone
should notice is that it doesn�t cover the entire region covered by the metric,

thanks to the function rS ln
��� rrS � 1���, which is two-to-one - which is why we

de�ne two of them. One may think, at �rst, that this need for two "times"
rather than just one is some sort of de�ciency of the EF scheme; however, since
di¤erential geometry warrants us the use of coordinate charts, we can always
cover our manifolds with an atlas of such charts, no matter how many - provided
only we use them correctly[5].

1Notice that another popular "recipe" is given as vMTW� := ct �
�
r + rS ln

��� rrS � 1����,
according to which we obtain gHD = �

�
1� rS

r

�
(dvMTW�)

2 � 2dvMTW
� dr + r2gS2 ; cf.

[4],[6],[7].
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Another thing that one may wonder about is the "vanishing" of the event
horizon; well, it�s not that this one particular region of spacetime vanished -
it�s merely that you de�ned it away with the introduction of v�, so that you
don�t have to stare at the ugly face of the r = rS singularity. Here, we return
to the reasoning of DiNunno & Matzner: they�d have us believe that, in order
to �nd the 3-metric for the volume of the black hole in the EF scheme, we
have to put dv� = 0 in (4). If this sounds innocent enough to you, consider
this: you�re assigned the problem of computing the area of S2 in Euclidian
space; starting with the 3-metric dr2 + r2

�
d�2 + sin2 �d'2

�
in the ordinary

spherical coordinates, you notice that you can get the invariant volume-element
for the surface by putting dr = 0,r = 1, and then repeating the procedure we�ve
previously delineated, thus obtaining AS2 = 4�. You�re not sure of this, though,
so you cross-check the calculation by going to Cartesian coordinates, in which
the 3-metric reads dx2+ dy2+ dz2; repeating the very same procedure, you put
dx = 0,x = 1, but strangely your �nal result is that AS2 6= 4�. From this you
brilliantly conclude that the volume of a beach ball depends on the coordinate
system you use to calculate it, then you sign and deliver your paper to the
teacher. Joking aside, it�s clear that the correct procedure is to put dv� =

�
�
r
rS
� 1
��1

dr in the metric when using the EF scheme - then we go on to,

"surprisingly", obtain the exact same thing we computed in the "Schwarzschild"
"coordinates".
I hope this is of some help for those willing to learn GR; in particular, the

more ambitious student is encouraged to match its wits with the generic three-
parameter (f(M;J;Q)g ' f(rS ; a; rQ)g) Kerr-Newman family of solutions, for
which, in Boyer-Lindquist "coordinates", the metric reads

gKN = � �

�2BL

�
cdt� a sin2 �d'

�2
+
�2BL
�
dr2 + (6)

+�2BL

�
d�2 +

sin2 �

�4BL

��
r2 + a2

�
d'� acdt

�2�
;

g�1KN = � 1

��2BL

��
r2 + a2

�
cdt+ ad'

�2
+

�

�2BL
dr2 + (7)

+
1

�2BL

�
d�2 +

1

sin2 �

�
d'+ a sin2 �cdt

�2�
with the ancilla

�2BL (r; �) : = r2 + a2 cos2 � (8)

�(r) : = r (r � rS) + a2 + r2Q (9)
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After that, you can have a showdown with it in Kerr-Schild2 "coordinates"

gKN = �dv2KS + dr2 + r2gS2 +
�2KS

�
�KSrS � r2Q

�
(�4KS + r

2a2 cos2 �)
� (10)(

dvKS +

"
�KS

�
r sin2 �dr + r2 sin � cos �d�

�
�2KS + a

2
+

+
a
�
r2 sin2 �d'

�
�2KS + a

2
+

�
r cos2 �dr � r2 sin � cos �d�

�
�KS

#)2
with the ancilla

�2KS (r; �)
�
�2KS (r; �)� r2 + a2

�
:= r2a2 cos2 � (11)

and see what is di¤erent. For reference, and perhaps motivation, I leave the

result for the area: AKN = 4�r2+ �
(r2++a

2)
r2+

.
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