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Interest  in  general  relativistic  treatments  of  thin  matter  shells  has  flourished  over  recent  decades,  most  notably  in
connection with astrophysical and cosmological applications such as black hole matter accretion, spherical wormholes,
bubble universes, and cosmic domain walls. In the present paper, an asymptotically exact solution to Einstein's field
equations for static ultra-thin spherical shells is derived using a continuous matter density distribution (r) ρ defined over
all space. The matter density is modeled as a product of surface density μ0 and a continuous or broadened spherical delta
function. Continuity over the full domain 0<r<∞ ensures unambiguous determination of both the metric and coordinates
across the shell  wall, obviating the need to patch interior and exterior solutions using junction conditions. A unique
change  of  variable  allows  integration  with  asymptotic  precision.  It  is  found  that  ultra-thin  shells  smaller  than  the
Schwarzschild radius can be used to model supermassive black holes believed to lie at the centers of galaxies, possibly
accounting for the flattening of the galactic rotation curve as described by Modified Newtonian Dynamics (MOND).
Concentric  ultra-thin  shells  may  also  be  used  for  discrete  sampling  of  arbitrary  spherical  mass  distributions  with
applications in cosmology. Ultra-thin shells are shown to exhibit constant interior time dilation. The exterior solution
matches the Schwarzschild metric. General black shell horizons, and singularities are also discussed. 

I. INTRODUCTION

A long-standing unsolved problem in astrophysics is the
observed discrepancy in the orbital velocity  v(r) of the
luminous  matter  of  galaxies.  This  discrepancy,  often
called the  flattening  of the  galactic rotation curve,  has
been ascertained from Doppler shift measurements that
indicate  the  outlying  stars  and  hydrogen  clouds  of
galaxies  orbit  too  fast  to  be  gravitationally  bound  by
baryonic matter  alone.  In regions outside the luminous
disk,  v(r) does  not  fall  off  as  r 1/2─  as  predicted  by
Newtonian dynamics,  but tends toward a constant as  r
increases. The discrepancy is generally attributed to the
presence  of  dark  matter,  a  hypothetical  transparent
nonradiating material that has never been independently
detected  nor  reconciled  with  the  standard  model  of
particle  physics.  The  failure  to  identify  this  elusive
substance has given rise to modified gravity theories that
obviate  the  need  for  dark  matter,  such  as  Mordehai
Milgrom's  Modified  Newtonian  mechanics  (MOND)
[1,2] and others [3,4]. Here, a static spherical thin shell
solution to Einstein's field equations is derived that may
suggest a new explanation for the galactic rotation curve.
A  solution  for  concentric  shells  is  also  presented  that
may be useful for discrete sampling of arbitrary spherical
mass distributions with applications in cosmology.

Investigation  into  the  gravitational  properties  of  thin
matter shells has flourished over the past few decades,
most  notably  in  studies  of  astrophysical  and
cosmological structures such as spherical wormholes [5-
7],  black  hole  accretion  shells,  bubble  universes  as
models of cosmic inflation [8,9], false vacuum bubbles
[10,11],  and  cosmic  membranes  or  domain  walls  that

split the universe into distinct spacetime regions [12-14].
The structures may be static, as in the case of spherical
wormholes;  contracting,  as  in  the  case  of  matter
accretion  shells  around  black  holes  [15]  and  shells
collapsing  into  wormholes  [16,17];  rotating  and
collapsing [18,19]; or expanding, as in the case of cosmic
brane  worlds  [20],  inflationary  bubbles  or  bubble
universes [21].  Such shells  may split  the universe into
two  domains,  an  interior  and  exterior  joined  by  an
infinitesimally thin wall of singular mass or pressure [22-
26]; or into three domains [27], where the wall of finite
thickness  is  sometimes  called  the  transient  layer [28].
Various  interior  and  exterior  metrics  are  assumed,
including  the  Friedman-Robertson-Walker  [29,30],
Schwarzschild,  de  Sitter  [31],  anti-de  Sitter  [32],
Minkowski,  and  Reissner-Nordstrom  [33,34]  metrics.
The metrics are often selected a priori, their parameters
later fixed by junction conditions at the inner and outer
surfaces of the wall, or at the shell radius [35]. Common
techniques  frequently  require  patching  solutions  for
inner,  outer,  and  possible  transient  domains,  using
separate coordinate systems and metrics for each domain
[36,37].  The  most  widely  applied  junction  conditions,
attributed to Israel [38,39], or Darmois and Israel [40],
require  that  both  the  metric  gμν and  the  extrinsic
curvature Kμ

ν be continuous across the shell wall. While
these conditions are common in the literature, doubt is
raised  about  their  application  to  certain  physical
scenarios  [41]  or  in  modified  theories  of  gravity [42].
Some authors derive new junction conditions that specify
jumps in curvature [43], jumps in the tangential metric
components  to  account  for  domain  wall  spin  currents
[44], or other field behavior [45]. Others avoid junction
conditions by use of a confining potential [46].
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It may be significant that Israel's original derivation was
based on properties of electromagnetic fields rather than
on general relativity (GR), although recent derivations, in
contexts such as cosmological brane-worlds,  address the
junction  by  adding  a  Gibbons-Hawking  term  to  the
standard Einstein-Hilbert  action of  GR [47].  However,
some  authors  point  to  contradictions  in  this  method,
particularly when applied to infinitely thin shells [48].

While  procedures  for  deriving  the  Israel  junction
conditions  are  well  established,  their  implementation
relies on concepts outside the core formalism of GR and
other  metric gravities,  including the notion of  induced
metric,  or the D n─  dimensional metric in the transient
domain;  the  vector  ni normal  to  the  domain  wall;  the
surface stress-energy tensor Sμ

ν for the transient domain;
the extrinsic curvature Kμ

ν; the Gibbons-Hawking action
term,  and  so  forth.  A  treatment  of  thin  shells  that
obviates the need for junction conditions may therefore
be  useful  for  its  simplicity.  Cosmic  inhomogeneities
using cubic lattices that avoid junction conditions have
been  studied  by  some  authors  [49,50].  Nevertheless,
examples in the literature of continuous spherical  thin-
shell  solutions to the gravitational  field equations have
proven difficult to find.

The purpose of this paper is to derive an asymptotically
exact continuous solution to Einstein's field equations for
static,  spherical,  ultra-thin massive  shells  without  the
need for junction conditions, employing a uniform set of
coordinates defined over all space, with equation of state
p=w .ρ  Here,  asymptotically  exact means  exact  in  the
limit  of  vanishing  thickness (although  the  solution  is
undefined  for  zero  thickness),  and  ultra-thin denotes
arbitrarily thin but non-vanishing. One advantage to the
continuous  solution  method,  in  which  density  (r)ρ ,
pressure p(r), and the metric gμν(r) are uniformly defined
over all space, is that only two boundary conditions are
needed to fix the metric:

1. gμν must be nonsingular at r=0,

2. gμν must match Minkowski space as r >∞─ ,

where  Minkowski  space is  here  defined  by  the  metric
gμν=diag(1, 1, r─ ─ 2, r─ 2sin2( )).  Θ The  first  condition
follows from the absence of matter in the interior [51].
This is relaxed in the case of a central mass. The second
dictates  that  space  be  asymptotically  flat,  assuming
g00 >1─  as  r >∞─ , or that the standard laboratory clock
rate is the same as that at infinity.

To  obtain  a  continuous  solution  to  Einstein's  field
equations (EFE),  i.e. a  metric composed of continuous
analytic functions gμν(r) defined over all space, one must
first define a continuous density (r)ρ  spanning the range
0≤r≤∞. For an ultra-thin shell, (r)ρ  will be modeled here

as continuous approximation to the spherical Dirac delta
function  (r rδ ─ 0),  where  the  continuous  or  broadened
version of the delta function, to be written δc(r r─ 0), will
be derived in Section II.  According to  this  model,  the
mass density distribution is

(r) = μρ 0 δc(r  r─ 0).                          (1)

Here,  μ0 is  the  surface  density  of  the  shell  and  has
dimensions  [m/r2].  Recalling  that  the  δ function  has
dimensions [1/r], it is clear that the volume density (r)ρ
has  dimensions [m/r3],  or  [1/r2] in  the  units  G=c=1.
This  density  distribution  may  be  substituted  into  the
energy-momentum tensor  Tμν on the right-hand side of
EFE.  The  equations  are  then  solved  using  a  unique
change  of  variable  that  allows  integration  to  arbitrary
accuracy.  The  result  is  an  asymptotically  exact
continuous metric for an empty ultra-thin shell.

The metric signature (+ - - -) and units  c=G=1 will be
used throughout this paper. Small Greek letters stand for
spacetime  indices  0,1,2,3.  The  symbol  ≈ denotes
asymptotic  equality,  or  equality  in  limit  as  thickness
parameter  ε approaches zero, although the formalism is
undefined at =0ε . An equation of state (EoS) of the form
p(r)=w (r)ρ  for  w a constant will be assumed. While the
method here applies to static shells, it can in principle be
generalized to account for expansion or contraction. This
is  a  topic  for  future  research.  The  presentation  is
organized  as  follows.  In  Section  II,  the  broadened
spherical  delta  function  will  be  derived.  Section  III
shows  how  to  solve  EFE  for  a  thin  shell  using  the
continuous  solution  method.  In  Section  IV,  the  novel
properties  of  black shells  (those of  radius  less  than or
equal  to  the  Schwarzschild  radius)  will  be  examined.
Section  V  discusses  how  the  galactic  rotation  curve
might be explained by a supermassive black shell at the
galactic  core,  and  Section  VI  presents  the  concentric
shell  solution  as  a  method  for  discrete  sampling.
Concluding remarks are found in Section VI.

II. MASS DENSITY: DEFINING THE
CONTINUOUS DELTA FUNCTION

Spherical  Dirac delta  functions  as  models  for  mass  or
charge distributions have appeared in the literature  for
many decades.  Use of the delta function for thin shell
solutions  to  EFE  is  frequently  encountered  in  such
applications  as  bubble  universes  and  cosmic  domain
walls. However, the discontinuities in the delta function
and its integral, the step function, necessitate piecewise
solutions  and  attendant  junction  conditions,  as  noted
above. To apply a delta function model uniformly over
all space requires that the Dirac delta function (r rδ ─ 0) be
replaced  by  a  continuous  or  broadened  delta  function
δc(r r─ 0) with similar properties. One such function can
be defined as follows: 
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1) Let δc(r r─ 0) be an approximation to a spherical Dirac
delta function (r rδ ─ 0),  where the latter is expressed in
terms of the normalized spherical Gaussian

G(r) := ( √ )ε π 1─  exp[─(r─r0)2/ε2].             (2)

Here  G(r) is defined over the domain  r≥0,  with a peak
centered  at  r=r0 of  height  1/(π1/2 )ε  and  width
proportional to ε. For <<rε 0, G(r) obeys the relation

∫0
∞dr G(r) = ∫0

∞dr ( √ )ε π 1─  exp[─(r─r0)2/ε2]  1, ≈

 <<rε 0.

This relation may be verified by evaluating the integral
of  a  normalized  rectangular  Gaussian  G(x), which  for
<<xε 0 has the property

∫0
∞dx ( √ )ε π 1─  exp [─(x─x0)2/ε2 ]                            

                      ≈ ∫ ∞─
∞dx ( √ )ε π 1─  exp [─(x─x0)2/ε2] = 1.

The delta function may thus be written

(r rδ ─ 0 ) = lim[ >0] ε─ ( √ )ε π 1─  exp [─(r─r0)2/ε2].       (3)

2) The  continuous  or  broadened delta function δc(r r─ 0)
is obtained as an approximation to  (r rδ ─ 0) by taking an
incomplete limit in Eq. (3), that is, by letting  ε become
arbitrarily small but nonzero.

3) For  n a small integer such that  2nε approximates the
peak  width  to  some  selected  accuracy,  the  broadened
delta  function  δc(r r─ 0) nearly vanishes in  the domains
r<r0 n─ ε and  r>r0+nε.  Therefore  mass  density  (r)ρ
approaches that of a  near-vacuum in these regions. By
increasing  n and  decreasing  ε,  the  vacuum  can  be
achieved as closely as desired.

4) The broadened delta function δc obeys, to any desired
accuracy,  the  defining  properties  of  the  Dirac  delta
function:

    a)         ∫0
∞dr δc(r r─ 0)  1≈

    b)         ∫0
∞dr f(r) δc(r r─ 0)  f(r≈ 0)

provided  that  f(r) is  slowly  varying  over  the  transient
layer r0 n <r<r─ ε 0+nε.

5) The integral  ∫0
rdrδc, or the  inverse derivative  of the

broadened  delta  function  δc,  is  a  continuous  or
broadened step function Sc(r;r0) such that

∫0
rdr f(r) δc(r r─ 0)  f(r≈ 0) Sc(r;r0),             (4)

where  f(r) varies  slowly  over  the  transient  layer,  and
Sc(r;r0) has the properties

Sc(r;r0)  0 ≈                             r < r0 n─ ε  

Sc(r;r0)  1/2≈                           r = r0          '

Sc(r;r0)  1≈                               r > r0+n .ε

(For  convenience,  the  symbol  r represents  both  the
dummy variable and the integral limit.) That  Sc 1/2≈  for
r=r0 can be seen by integrating  G(r) from  0 to  r0, and
recalling that the integral over all space of a normalized
Gaussian  is  unity.  The  function  Sc,  while  locally
continuous,  appears  globally  discontinuous in  that  its
value  changes  rapidly  over  the  thickness  2nε of  the
transient layer.

One advantage to modeling mass density (r) ρ in terms of
a  broadened  delta  function  is  the  ease  of  integration
when solving EFE. Many integrals can be read off  by
simply applying Eq. (4). This technique can be extended
to concentric shells, such as those discussed in reference
[52],  and  may  be  useful  for  modeling  astrophysical
objects  such  as  spherical  dust  accretion  clouds
surrounding  dirty  black  holes  [53],  spherical  domain
walls  enclosing  the  known  cosmos,  or  for  a  discrete
sampling of any continuous spherical mass distribution.

III. SOLVING EINSTEIN'S FIELD EQUATIONS
FOR A THIN SHELL: THE CONTINUOUS

SOLUTION METHOD

We will now derive a locally continuous ultra-thin shell
solution to EFE, assuming a static spherically symmetric
metric gαβ of the form

ds2 = g00(r) dt2 + g11(r) dr2  r─ 2dΩ2

= eν dt2  e─  λ dr2  r─ 2dΩ2       

The  appropriate  gravitational  field  equations  may  be
found  by  substituting  this  metric  into  Einstein's  field
equations, given by

Rμ
ν  (1/2) g─ μ

 ν R =  Tκ μ
ν                      (5)

where Rμ
ν is the curvature or Ricci tensor, R is the scalar

curvature,  κ is  a  constant  with  the  value  κ= 8 G/c─ π 2

(using  Dirac's  sign  convention  [54]),  or = 8  κ ─ π for
G=c=1, and  Tμ

ν=diag( , p, p, p)ρ ─ ─ ─  is the stress energy
tensor,  with  (r)ρ  the  mass-energy density  and  p(r) the
pressure. After calculating the Christoffel symbols Γμ

αβ
and curvatures  R and  Rμ

ν, EFE of Eq. (5) simplify to a
pair of simultaneous equations [55]

Tκ 0
0 = (r) = eκρ ─λ/r2  1/r─ 2  e─ ─λλ′/r                (6a)

Tκ 1
1 =  p(r) = e─ κ ─λ/r2  1/r─ 2 + e─λν′/r,           (6b)
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where primes denote derivatives with respect  to  r.  Eq.
(6a)  can  be  solved  by  rearranging  terms  to  produce  a
pure differential (see Appendix for details of derivations
in this section):

rκρ 2 + 1 = (re─λ)′.

Integrating and solving for eλ, we obtain

eλ = [1 + k0 /r + ( /r)κ ∫r dr (r) rρ 2]  1─ .             (7)

where  k0 is  a  constant  of  integration.  Substituting
(r)=μρ 0δc(r r─ 0) and μ0=m0/4 rπ 0

2, and applying Eq. (4),
this becomes

eλ = (1 + k0 /r  2m─ 0Sc/r)  1─ .                  (8)

For  an empty shell,  the  boundary condition that  eλ be
non-singular  at  r=0 requires  that  k0=0.  (If  the  shell
contains  a  central  mass  M,  an  integration  constant
k0= 2M─  is generally assumed.) The rr component of the
ultra-thin shell metric is therefore

g11 =  e─ λ =  (1  2m─ ─ 0Sc /r)  1─ .               (9)

Outside the shell, where  Sc 1≈ , we see that  g11 matches
the radial component of the Schwarzschild metric  gS

μν,
as given by

ds2 = (1  2m/r)dt─ 2  (1  2m/r)─ ─ 1─ dr2  r─ 2dΩ2    (10)

for m the central mass. In the interior of the shell, where
Sc 0≈ , it is clear that g11 matches the Minkowski metric.

Next,  the  tt component  g00=eν can  be  evaluated  by
subtracting Eq. (6b) from Eq. (6a) to obtain

( +p) =  eκ ρ ─  ─λ λ′/r  e─  ─λ ν′/r.

Solving for ν′, substituting eλ from Eq. (9) and (r) ρ from
Eq. (1), and using equation of state p=wρ, the result is

ν′ =  ─ λ′  (1+w)μ─ κ 0δcr / (1  2m─ 0Sc/r),

where  δc and  Sc  are  abbreviated  notations  for  the
broadened  delta  and  step  functions. Upon  integrating,
this becomes

 =   + kν ─ λ 1  (1+w)μ─ κ 0 ∫r dr [δcr / (1 2m─ 0Sc/r)]  (11)

with  k1 a constant of integration. Eq. (11) represents an
exact solution to EFE for the tt metric component g00=eν

of an ultra-thin shell.  The integrand, however, contains
the  spherical  Gaussian  G(r) and  may  be  difficult  to
evaluate analytically. For the present, an arbitrarily close
approximation can be found using the properties of the
broadened  step  and  delta  functions.  This  procedure
requires care due to the rapid variation of Sc(r;r0) in the
transient layer  r0 n <r<r─ ε 0+nε.  We proceed by writing
the integral in Eq. (11) as a function of the upper limit r

I(r) = ∫0
r dr δc r/(1  2m─ 0Sc/r).                (12)

Since  δc(r r─ 0) 0≈  in the near-vacuum domains  r<r0 n─ ε
and  r>r0+nε,  the  integrand  vanishes  to  any  desired
accuracy  in  these  domains.  (An  exception  is  the  case
r0=2m0,  where the integrand approaches  0/0 rather than
0  for  r>>r0+n ,  ε as  will  be  discussed  in  Section  IV.)
Hence  in  general,  r  changes  by  a  near  infinitesimal
amount  2nε across  the  non-vanishing  domain  of  the
transient  layer  and may be  treated  as  a  constant  r r≈ 0.
Thus we have,

I(r)  r≈ 0 ∫0
r dr δc / (1  2m─ 0Sc/r0)        r0≠2m0.   (13)

(Here  as  elsewhere,  the  symbol  ≈ denotes  asymptotic
equality,  for  which precision increases as   ε decreases.)
I(r) can now be integrated to asymptotic precision by a
unique change of variable.  Recalling from Eq. (4) that
Sc=∫rδcdr and  therefore  dSc=δcdr,  the  continuous
monotonic  function  Sc can  be  used  as  the  variable  of
integration. The limits of integration become 0 and Sc(r),
and the integral may be written

I(r)  r≈ 0 ∫0
Sc(r) dSc / (1  2m─ 0Sc / r0 )

             (r≈ ─ 0
2/2m0) ln |(1  2m─ 0Sc / r0)|,

where  the  absolute  value,  arising  from  the  standard
integral formula (dx/x)=ln|x|∫ , will impact later analysis.
Substituting  I(r) back into Eq.  (11) and evaluating the
constants κ and μ0  yields

    + kν ≈ ─ λ 1  (1+w) ln |1  2m─ ─ 0Sc/r0)|.

Upon substitution of eλ from Eq. (8), the result is

eν  (1  2m≈ ─ 0Sc/r) ek1 |1  2m─ 0Sc/r0|  (1+w)─ .

Since  eν must obey the Minkowski condition  eν >1─  as
r >∞─ , the integration constant ek1 must cancel the right-
hand factor  in  the  outer  region  where  Sc >1─ ,  leaving
only  the  left-hand  factor,  which  is  asymptotically
Minkowski. Hence the integration constant is

ek1 = |1  2m─ 0/r0| (1+w)

and the final result for the tt component of the ultra-thin
shell metric is

g00 (1 2m≈ ─ 0Sc/r) |1 2m─ 0/r0|(1+w) |1 2m─ 0Sc/r0| (1+w)─

r0 ≠ 2m0.                                (14)

To analyze this result,  we evaluate  g00 for the interior
and exterior, obtaining

g00int  |1  2m≈ ─ 0/r0|(1+w)                          (15a)

g00ext  (1  2m≈ ─ 0/r).                                  (15b)

4



The exterior component g00, like the exterior component
g11,  matches  the  Schwarzschild  solution  as  expected.
Note that the quantity 2m─ 0 in the exterior metric arises
automatically from the field equations and, unlike for the
case  of  Schwarzschild  metric,  is  not  put  in  as  an
integration constant. That this quantity is predetermined
by  EFE  further  confirms  the  consistency  of  general
relativity,  in  that  vacuum  and  non-vacuum  solutions
agree for regions surrounding a central mass. Thus, solar
system  tests  confirm  not  just  the  vacuum  equations,
where  Tμ

ν=0,  but  also  the  massive  equations,  where
Tμ

ν≠0,  insofar as a thin shell serves as well as a point
mass for modeling a star or planet.

Regarding time dilation, it is significant that the interior
metric  g00int is a constant not equal to unity, while the
exterior  metric  g00ext asymptotically  approaches  unity,
indicating clocks inside the shell  run at  different  rates
than those at infinity. For so-called non-phantom matter,
which has an EoS p(r)=w (r)ρ  with  w> 1─ , we note that
g00int<1, indicating time inside the shell is dilated with
respect  to  infinity.  This  result  may seem at  odds with
occasional  claims  that  time  does  not  dilate  inside  an
empty  shell.  Such  claims  may  arise  from  piecewise
solutions  and  are  often  based  on  two  arguments:  1)
Minkowski  spacetime,  with  g00=1,  prevails  inside  a
hollow shell; or 2) according to Birkhoff's theorem, the
Schwarzschild metric governs the vacuum in an empty
shell, leading to g00=1 [51]. These arguments, however,
depend on a rescaling of the time coordinate inside the
shell.  The  continuous  solution  method,  in  contrast,
assumes a uniform time coordinate over the whole space
domain 0≤r<∞. It is clear, nevertheless, that no apparent
gravitational forces exist inside an empty shell due to the
constant value of the interior metric.

For a shell composed of dust, the EoS parameter is w=0,
and  the  interior  and  exterior  solutions  match  at  r=r0.
Therefore  g00  and  the  corresponding  clock  rates  are
continuous across the shell wall. The tt component for a
thin  dust  shell  thus  satisfies  the  first  Israel  junction
condition.

For a shell composed of stiff matter, which has an EoS of
w=1, we see that  g00 changes abruptly across the shell
wall,  allowing interior time dilation up to twice that at
the outer surface. Thus the continuous solution method
predicts time dilation measurements using real non-dust
shells would show a violation of the Israel conditions. It
seems interesting that the interior metric  g00int depends
on the EoS of the shell, while the exterior metric  g00ext
like the Schwarzschild metric, is independent of the EoS.
This  curious  distinction  resolves  the  seeming paradox,
mentioned  in  a  previous  paper  [56],  that  while  non-
vacuum solutions to EFE require an EoS, Schwarzschild
vacuum solutions do not, even though mass appears in
the metric.

IV. BLACK HOLES AND BLACK SHELLS

The ultra-thin shell metric of Eqs. (9) and (11) may be
applied  to  shells  of  radius  equal  to  or  less  than  the
Schwarzschild radius, or shells such that ro≤2m0. To be
called black shells,  these exotic objects would generally
appear  to  a  distant  observer  as  a  Schwarzschild  black
hole (although unexpected singularities may occur).  At
close range, black shells display unique properties with
respect to horizons and singularities. To compare black
holes and black shells, first recall  the properties of the
Schwarzschild black hole with metric  gS

μν as given by
Eq. (10):

1. A  coordinate  singularity,  or  horizon,  exists  at
r=2m, where gS

00=0 and gS
11 > ∞.─ ─

2. Inside the horizon, squared proper time intervals
dτ2=gS

00dt2 are negative, and thus proper time is
spacelike,  while squared proper  radial  intervals
dR2=gS

00dr2 are  positive,  and  proper  radial
distance is timelike.

3. A physical  singularity  is  generally  assumed  to
exist at r=0, where gS

00 >-∞ and ─ gS
11=0.

4. There are no finite discontinuities in the domain
r>0.

To compare the properties of black shells, we consider
the  metrics  for  four  shell  types:  ordinary  shells  with
r0>2m0; horizon black shells with  r0=2m0;  subhorizon
black shells with r0<2m0,  and semi-horizon black shells
with  r0=m0.  First,  recall  the  interior  and  exterior  thin
shell metrics of Section III:

g00int  (1  2m≈ ─ 0 /r0)(1+w)            r0 ≠ 2m0    (16a)

g00ext  1  2m≈ ─ 0 /r                         r0 ≠ 2m0    (16b)

g11int  1≈ ─                                                       (16c)

g11ext   (1  2m≈ ─ ─ 0 /r) 1─ .                             (16d)

In  the  case  of  ordinary  shells  (r0>2m0),  the
Schwarzschild radius  rs=2m0 lies inside the shell where
the metric is constant. Thus there is no horizon at r=rs. In
addition,  no  singularity  exists  at  r=0.  Although  the
metric is  locally continuous everywhere, comparison of
Eqs.  (16c)  and (16d)  reveals  a  global discontinuity or
jump across  r0 in  the  component  g11.  For  non-dust
models, for which w≠0, there is also a jump across r0 in
the  component  g00,  in  apparent  violation  of  the  Israel
junction conditions. However when w=0 as in the case of
dust, g00 remains unchanged across r0, in agreement with
the Israel conditions.

For  horizon  black  shells (r0=2m0),  the  shell  radius  is
equal to the Schwarzschild radius  rs=2m0, and as noted
earlier, the approximation r >r─ 0 in the integrand of I(r)
of Eq. (13) is no longer valid. Deriving the properties of
g00 would require computing the exact  integral  of  Eq.
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(12) using the spherical Gaussian. Such a calculation is
not  attempted here.  If,  however,  we naively allow the
approximation  r >r─ 0 and apply Eq.  (14),  the apparent
properties of horizon black shells  suggest  such objects
may  be  nonphysical.  To  illustrate,  recall  the  full
equations for the metric:

g00 (1 2m≈ ─ 0Sc/r)|1 2m─ 0/r0|(1+w)|1 2m─ 0Sc/r0| (1+w) ─ (17)

g11   1 / (1  2m≈ ─ ─ 0Sc/r)                          (18)

Setting r0=2m0 in the first equation and assuming w> 1─ ,
it is clear that g00(r)=0 for 0<r<∞. This can be seen by
noting that the middle factor in g00 vanishes identically,
while  the  right-hand  factor  (denominator)  is  non-
vanishing for all finite r due to the property Sc(r)<1, and
the left-hand factor is finite for all r>0. The vanishing of
g00 suggests  that  a  horizon black shell  would  stop  all
clocks  in  the  universe,  a  physical  impossibility  and  a
violation  of  the  asymptotic  Minkowski  condition.
Whether  this  nonphysical  result  can  be  avoided  by
evaluating  g00 analytically  using the function  G(r),  by
applying numerical methods, or by redefining δc in terms
of  a  function  other  than  G(r),  is  a  question for  future
research.

Concerning the  rr metric component,  we see from Eq.
(16c) that  g11 1≈─  inside the shell, implying no interior
singularities exist. To check this result, note that by Eq.
(18), no singularity can exist unless there is an r such that
2m0Sc(r)/r=1, or  r/r0=Sc(r).  Since it is always true that
Sc(r)<1, any such singularity can only reside at  r<r0. It
will  be  stated without  proof  that  since  Sc(r) 1/2≈  when
r/r0=1,  and since  Sc(r) falls  to zero more rapidly than
r/r0,  there  can be no  r>0 such that  2m0Sc(r)/r=1,  and
hence no singularity in the domain  0<r<r0.  Moreover,
by L'Hopital's rule it is found that

lim[r >0]─  2m0 Sc(r)/r = 0,

ruling  out  a  singularity  at  the  origin.  Thus  a  horizon
black shell, unlike a Schwarzschild black hole, manifests
no singularities in g11.

Subhorizon black shells (r0<2m0), in contrast, appear at
close  range  like  Schwarzschild  black  holes,  with  a
horizon  at  r 2m≈ 0.  Subhorizon  black  shells  also  have
approximate  Schwarzschild  behavior  for  r>2m0.
However, a new singularity in  g00 may arise due to the
vanishing  of  1 2m─ 0Sc/r0 in  the  right-hand  factor
(denominator)  of  Eq.  (17).  To  locate  this  singularity,
recall that  Sc(r) increases monotonically over the range
0<Sc<1.  Thus  g00  becomes  singular  at  some unique r
such that Sc(r)=r0/2m0. Since Sc(r) traverses nearly all of
its  range  within a  distance  n  ε of  r0,  such  singularities
usually  fall  within  r0 n <r<r─ ε 0+nε,  or  in  the  transient
layer of the wall itself. However if r0=2m0─ς, where ς is

some extremely small quantity, a singularity may occur
at some large radius r=R0 where Sc(R0)=r0/2m0 1≈ . This
means subhorizon black shells could in principle cause
singularities  in  g00 at  cosmological  distances.  Such
models  may  have  astrophysical  applications  related  to
the composition of galactic cores (the topic of Section
V),  or  cosmological  interpretations  with  respect  to
Hubble  redshift,  bubble  universes  or  spherical  domain
walls, to be addressed in a later paper.

In  the  unique  case  of  a  semi-horizon  black  shell for
which the radius r0=m0 is half the Schwarzschild radius,
one might expect a singularity in  g00(r) at  r=r0,  where
Sc(r) 1/2≈ .  However, it turns out that  g00(r) has a finite
discontinuity rather than a singularity at  r=r0. This can
be shown as follows. Setting  w=0 and  r0=m0, Eq. (17)
simplifies to

g00 (r)  [1 2r≈ ─ 0Sc(r)/r] / |1 2S─ c(r)|,

which,  as  r  tends to  r0,  approaches the improper limit
0/0. Applying L'Hopital's rule yields the ratio H of the
derivatives of numerator and denominator:

H = ∂r [1 2r─ 0Sc/r] / ∂r |1 2S─ c|

              = (2r0Sc/r
2  2r─ 0δc/r) / (  ⁄ + 2─ δc)

=  ⁄ + (r─ 0/r) (Sc/rδc  1)─

where  the  sign  ambiguity  springs  from  the  absolute
value. Taking the limit r >r─ 0, the term Sc/rδc approaches
π1/2 /2rε 0<<1, and H tends to positive or negative unity,
with the positive case corresponding to approach from
r>r0 and the negative to r<r0. Thus for r0=m0, the limit
is not unique, leaving g00 undefined at r=r0. Whether the
semi-horizon  black  shell  discontinuity  arises  as  an
artifact of the approximation is not known.

V. BLACK SHELLS, MOND, AND THE
GALACTIC ROTATION CURVE

Can supermassive black shells in the cores of galaxies
explain the discrepancy in the galactic rotation curve? If
so,  it  would  obviate  the  need  for  postulating  a  dark
matter halo. The discrepancy in orbital velocity  v(r), as
noted  earlier,  arises  from  observations  of  differential
Doppler  shift,  which  indicate  the  outer  stars  and
hydrogen  clouds  of  galaxies  orbit  too  fast  to  be
gravitationally  bound  by  luminous  or  baryonic  matter
alone. Thus, outside the bright galactic disk, v(r) does not
fall off as  r 1/2─ , as would be expected from Newtonian
dynamics  [57],  but  tends  toward  a  constant  as  r
increases. This anomaly was noted by Fritz Zwicky in
1933 [58]  and first  quantified observationally by Vera
Rubin [59].

The  flattening  of  the  galactic  rotation  curve  can  be
described  by  an  effective  potential  φm(r) that  depends
only  baryonic  mass  and  increases  with  r at  large
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distances. The potential  φm,  for reasons evident below,
will be called the MOND potential. The goal is to show
that  a  subhorizon black  shell  (SBS),  or  similar  exotic
black  object,  located  in  the  galactic  core,  could
theoretically  account  for  the  observed  excess  orbital
velocities, or equivalently, that an SBS potential φSBS(r)
can be made consistent with the MOND potential  φm(r)
in outlying regions. The MOND potential will be derived
first, followed by the SBS potential. The two will then be
equated to show, by a redefinition of the broadened delta
function, a close correspondence in the metrics.

The MOND potential can be calculated from  Modified
Newtonian Dynamics (MOND), a formalism developed
in 1983 by Mordehai  Milgrom [60] to account for the
discrepancy in the rotation velocity of galaxies. Although
the excess velocity is usually attributed to the presence of
an  unseen  dark  matter  halo,  the  MOND  formalism,
relying on baryonic matter alone, has proven accurate in
predicting orbital motion [61], and thus provides a means
for testing theories.

The MOND formalism is based on the empirical relation

μ(a/a0)a = aN                              (19)

which  connects  observed  radial  acceleration  a to
predicted  Newtonian  acceleration  aN=GM/r2 using  an
interpolating function μ(a/a0), where

a0 = 1.2x10 8─ cm/sec2  H≅ 0 /2  = cπ 2/R = c2/( /3)Λ −1/2

is a universal constant with dimensions of acceleration,
H0 is  the Hubble parameter [62],  and  R is roughly  2π
times the radius of the visible universe or the de Sitter
radius  corresponding to  cosmological  constant  Λ [63].
The interpolating function runs smoothly from the inner
galaxy, where the field falls off as roughly  1/r2, to the
region outside the bright galactic disk, called the  deep
MOND region, where the field tends to fall  off as  1/r.
Using the simple interpolating function

μ(a/a0) = (a/a0) / (1+a/a0)

proposed  by  Zhao,  Famaey  and  Binney  [64,  65],  the
MOND  relation  of  Eq.  (19)  becomes  a  quadratic
equation with solution,

a =  (GM/2r─ 2) [1 + √(1+4r2/Rm
2)].          (20)

The radius Rm, to be called the MOND radius, lies near
the edge of the bright galactic disk and has the value

Rm = √(GMR/c2) = √(GM/a0).

In the domain of interest  2Rm<r<<R, which is roughly
the region outside the luminous disk, the observed radial
acceleration a of Eq. (20) can be approximated as

a   GM/2r≅ ─ 2  GM/R─ mr.                    (21)

The potential in this domain can be expressed as

φm =  a(r) dr   GM/2r + (GM/R─ ∫ ─≅ m) ln (r/Rm).

The factor  1/2 in  the  first  term on the  right  does  not
appear in some presentations of MOND, where different
interpolating  functions  apply  and  where  the  potential
covers  all  space [66].  However,  since the second term
increases with r and becomes dominant near Rm, we can
neglect the first  term and construct an effective metric
for the deep MOND region [67]

g00  1 + 2≅ φm/c2  1 + (2GM/c≅ 2Rm) ln (r/Rm),     (22)

which  is  accurate  in  the  domain  nRm<r<<R,  for  n a
small integer on the order of 4 or 5. Note that g00 >∞─  as
r >∞.─  Hence the effective metric violates the asymptotic
Minkowski condition and cannot, in the form of Eq. (22),
be consistent with a black shell metric. Consistency will
be attained through a later approximation.

Next, to calculate the SBS potential  φSBS(r), we assume
the galaxy is centered on a supermassive ultra-thin SBS
of radius

r0 = 2m0   = (1  ) r─ ς ─ σ s,                     (23)

where >ς ε is a small distance on the order of meters, rs is
the Schwarzschild radius  2m0, shell mass  m0 is a large
fraction  of  galactic  mass  M,  and  parameter  σ= /rς s
measures  the  small  difference  between  shell  size  and
Schwarzschild  radius.  Such  an  SBS  would  induce  a
singularity  in  g00 at  some  cosmic-scale  radius  R0,  at
which clocks would theoretically run at an infinite rate.
In  realistic  scenarios,  no  remote  singularity  can  occur
due to disturbance of the mass density by other fields.
Nevertheless,  a  remote  virtual  singularity implies  a
modification  of  the  field  in  the  neighborhood  of  the
galaxy.

The distance to the singularity at  R0 is inversely related
to ς and increases with step width 2nε. More specifically,
from Eq. (17), R0 must satisfy

1  2m─ 0Sc(R0)/r0 = 0,

or, upon substiting 2m0=r0+ς and rearranging,

Sc(R0) = 1 / (1 +  / rς s)    1   / r≅ ─ ς s.              (24)

To calculate the impact of the distant singularity on the
field  in  the  galactic  neighborhood,  we  start  by
introducing  a  new  function  (r)η  and  expressing  the
broadened step function as Sc(r)=1 (r)─η , where (r)<<1η
in the deep MOND region. This and Eq. (23) are then
substituted into the thin shell metric of Eq. (17), and the
result is evaluated for the shell's far exterior  r0<<r<R0,
yielding

g00SBS  [1  r≈ ─ s(1  )/r]  / | (r)  |─ η σ η ─ σ

 (1  r≅ ─ s/r)  / | (r)  |.σ η ─ σ                    (25)

7



From  Eq.  (24),  we  see  that  (Rη 0) = /r≅σ ς s,  and  the
denominator of g00SBS vanishes near R0 as expected.

To match  g00SBS to the MOND metric of Eq. (22), we
first  write  a  an  approximation  to  the  latter  which
repositions the singularity from infinity to a remote finite
distance r=R0 as follows:

g00MOND  1 + 2≅ φm/c2  1 + (r≅ s/Rm) ln |r/(R0 r)|.─   (26)

This  approximation  can  be  checked  by  calculating
acceleration a from potential φm

a   ≅ ─ φm′   GM/R≅ ─ mr  GM/R─ m(R0 r).─

It is clear that for r in the neighborhood of the galaxy,
(R0 r)─  is large enough that the right-hand term can be
neglected.  The  remaining  term  matches  the  MOND
acceleration of Eq. (21). Hence we see that  g00MOND of
Eq. (26) adequately approximates the MOND metric in
the deep MOND region.

The  MOND  and  SBS  metrics  may  now  be  equated,
giving

1 + (rs/Rm) ln |r/(R0 r)| = (1  r─ ─ s/r)  / [ (r)  ].σ η ─ σ

By solving for  (r),  η a new form Sm(r) of the broadened
step  function  is  obtained  that  is  consistent  with  the
MOND metric as follows:

Sm(r) = 1 (r) = 1   / [1+(r─η ─ σ s/Rm) ln |r/(R0 r)|]  .─ ─ σ

Simple calculation shows that Sm(r), while different from
the broadened step function  Sc(r) derived in Section II,
has  like  properties  in  the  domain r0<<r<R0.  To  wit,
Sm(r)  is  slightly  less  than  one  and  increases
monotonically  to  the  near-unity  value  1─σ as  r
approaches  the  near-infinite  distance  R0.  Thus,  it  is
possible  to  derive  a  MOND-compatible  step  function
Sm(r)  by  replacing  the  Gaussian  G(r) with  some
appropriate  function  F(r) in  the  definition  of  the
broadened delta function  δc, thus obtaining a new delta
function  δm.  An SBS modeled on  δm, embedded in the
galactic  core,  would  then  account  for  the  anomalous
orbital  velocities.  The exact  function  F(r) is  unknown.
Questions also remain about SBS formation and stability.
What is important is the implication that an exotic black
object,  possibly  a  subhorizon  black  shell,  could  in
principle  cause  the  observed  galactic  rotation  curve
without the need for a dark matter halo.

VI. CONCENTRIC SHELLS AND DISCRETE
DENSITY SAMPLING

The continuous solution method is easily generalized to
n concentric  shells  of  arbitrary  mass  and  radius.  This
technique provides a formalism for solving EFE for any
continuous  static  spherical  density  distribution  (r)ρ ,
where (r)ρ  is modeled by a discrete sampling at

 r = {r0, r1 ... rn-1}.

The  method  for  concentric  shell  solutions  will  be
illustrated  for  the  simple  case  of  two shells  with  EoS
parameter  w=0.  Assuming surface densities  μ0 and  μ1,
radii r0 and r1, and masses m0=4 μπ 0r0

2 and m1=4 μπ 1r1
2,

the mass density can be expressed in terms of broadened
delta functions as

(r) = μρ 0δ0 + μ1δ1

where δj=δc(r r─ j) denotes a broadened delta function at
radius  rj.  Substituting  (r)ρ  into Eq.  (7) and setting the
integration constant to zero yields

g11 =  e─ λ =  [1 + ( /r)─ κ ∫r dr rρ 2] 1      ─

=  [1 + ( μ─ κ 0/r)∫r dr r2δ0 + ( μκ 1/r)∫r dr r2δ1] 1─ .

Upon integration, the double thin-shell solution becomes

g11 =  e─ λ =  [1  2m─ ─ 0S0/r  2m─ 1S1/r] 1─     (27)

where  S0=Sc(r;r0) and  S1=Sc(r;r1).  The  interior
(r<r0 n )─ ε ,  middle  (r0+n <r<rε 1 n )─ ε ,  and  exterior
(r>r1+n )ε  solutions are therefore

g11int   1≈ ─                                                  (28a)

g11mid   (1  2m≈ ─ ─ 0/r) 1─                           (28b)

g11ext    [1  2(m≈ ─ ─ 0 + m1)/r] 1─ ,             (28c)

displaying Minkowski properties inside the smaller shell,
Schwarzschild  behavior  between  shells,  and  combined
Schwarzschild behavior outside the larger shell.

To solve for the time component g00 = eν
, the method of

Section III will be applied. From Eqs. (11) and (27), we
have

 =   + kν ─ λ 1  ─ κ∫r dr (r) eρ λ r

=   + k─ λ 1  ─ κ∫rdr(μ0δ0+μ1δ1)r / [1  2(m─ 0S0+m1S1)/r].

(29)

The integral may be expressed as a sum of two terms:

I(r) = μ0∫rdr δ0r / [1  2(m─ 0S0+m1S1)/r]

           + μ1∫rdr δ1r / [1  2(m─ 0S0+m1S1)/r].

Since r is slowly varying over the two transient layers, it
can be approximated by  r0 and  r1 in the two respective
integrands, yielding

I(r)  μ≈ 0r0∫rdr δ0 / [1  2(m─ 0S0+m1S1)/r0]

         + μ1r1∫rdr δ1 / [1  2(m─ 0S0+m1S1)/r1]

Note  that  in  the  first  integral,  the  outer  step  function
S1(r) varies slowly over the nonzero domain of the inner
delta  function  δ0,  and hence may be set  to  a  constant
S1 0≈ .  Analogously,  in the second integral,  S0(r) varies
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slowly over the nonzero domain of δ1 and may be set to a
constant S0 1≈ . The total integral then simplifies to

I(r)  μ≈ 0r0∫rdr δ0 / (1  2m─ 0S0/r0)         

                       + μ1r1∫rdr δ1 / (1  2m─ 0/r1  2m─ 1S1/r1).

Following the method of Section III, a change of variable
from r to S0(r) and S1(r) in the respective integrals gives,
upon integration,

I(r)  (μ≈ 0r0
2/2m0) ln |1  2m─ 0S0/r0|           

                  + (μ1r1
2/2m1) ln |1  2m─ 0/r0  2m─ 1S1/r1|.

Multiplying I(r) by κ and substituting back into Eq. (29)
then yields

 =  + kν ─λ 1  ln |1  2m─ ─ 0S0  /r0|

              ln |1  2m─ ─ 0 /r0  2m─ 1S1 /r1|.

and hence

g00 = e  ν = [1  2(m─ 0S0+m1S1)/r]  ek1
  |1 2m─ 0S0/r0| 1   ─

X  |1  2m─ 0/r0  2m─ 1S1/r1| 1─               (30)

where  X denotes  multiplication.  Again,  to  meet  the
asymptotic  Minkowski  condition,  the  integration
constant must be

ek1 = |1  2m─ 0/r0| |1  2m─ 0/r0  2m─ 1/r1|       (31)

The constant  ek1 is then substituted back into Eq. (30),
yielding  the  g00 component  of  the  double  concentric
shell  metric.  Taken  together,  Eqs.  (27),  (30)  and  (31)
represent  a  complete  continuous  asymptotically  exact
solution to EFE for two concentric ultra-thin dust shells
of arbitrary mass and radius.

It is straightforward to extend this result to n concentric
shells of mass  mi, radius  ri, and thickness  εi, as long as
εi<<(ri+1 r─ i).  Such  a  set  of  locally continuous  thin
shells may be viewed as a discrete sampling, at arbitrary
radii  ri,  of  a  globally continuous  mass  density
distribution  (r)ρ .  The  concentric  shell  formalism  thus
provides  a  discrete  method  for  approximating  the
solution  to  EFE  for  any  static,  spherically  symmetric
mass-energy density. Hence Einstein's equations can be
readily solved for complicated scenarios such as a star
surrounded by spherical dust clouds embedded in cosmic
bubbles,  and  so  forth.  The  impact  of  discreteness  on
accuracy is a topic for future discussion.

VII. CONCLUSION

We  have  derived  an  asymptotically  exact  solution  to
Einstein's  field  equations  for  individual  and  multiple
concentric ultra-thin shells of arbitrary mass and radius

using a continuous solution method that does not require
junction conditions. The single shell solution is given by
Eqs. (9) and (14), and the double shell solution by Eqs.
(27),  (30)  and  (31).  These  solutions  are  fixed  by  two
boundary conditions: asymptotic flatness at infinity and
non-singularity at the origin. The interior of a thin shell
is  found  to  manifest  no  effective  gravitational  forces.
However, interior clocks run at different rates from those
at infinity. For non-phantom matter (w> 1)─ , time in the
interior  of  the  shell  is  dilated  with  respect  to  infinity,
while for phantom matter, time is contracted.

Exterior to the shell, the field generally matches that of
the Schwarzschild metric. Exceptions are found for black
shells,  i.e. shells  of  radius  less  than  or  equal  to  the
Schwarzschild radius. The method breaks down for equal
radii,  and  an  asymptotically  exact  solution  was  not
attempted.  However,  approximations  suggest  such
objects  may  be  unphysical.  Subhorizon  black  shells,
which  have  a  radius  smaller  than  the  Schwarzschild
radius,  are  more  easily  analyzed,  and  were  shown  in
general  to  appear  as  Schwarzschild  black  holes
everywhere outside the shell.  This  holds  with one key
exception. When the radius of a supermassive black shell
is  less  than  its  Schwarzschild  radius  by  a  very  small
distance on the order of meters, a singularity may occur
in  the  time  component  of  the  metric  at  cosmological
distances.  It  was  then  shown  that  this  singular  metric
approximates  an  effective  MOND  metric,  where  the
latter is expressed in terms of an effective potential that
accounts  for  the  observed  galactic  orbital  velocities.
Thus, a supermassive subhorizon ultra-thin black shell or
similar  exotic  black  object,  located  at  the  center  of  a
galaxy, could theoretically explain the flattening of the
galactic rotation curve without the need for dark matter.

It  was  also  shown  that  the  solution  for  a  series  of
concentric shells provides a discrete sampling method for
calculating  the  approximate  gravitational  field  of  any
spherical  static  mass  distribution.  Applications  might
include  detailed  scenarios  such  as  spherical  accretion
shells  around  black  holes  embedded  in  a  constant
background density enclosed by a cosmic bubble.

The method developed here applies to static scenarios. It
can in principle be generalized to dynamic configurations
such as colliding shells in anti-deSitter spacetime [68] or
black  holes  embedded  in  expanding  bubble  universes
described  by  the  Friedman-Robertson-Walker  metric.
These are topics for future research. Other questions also
remain concerning:

1. Multiple concentric shell techniques for discrete 
sampling of cosmological mass distributions,

2. The impact of discreteness on accuracy,

9



3. Comparison of ultra-thin shell boundary 
properties to Israel junction conditions under a 
general EoS,

4. Collapsing ultra-thin shells and black shell 
formation,

5. Whether possible nonphysical features of horizon
black shells interfere with black shell formation,

6. The nature and stability of rotating or charged 
ultra-thin shells,

7. Stability of ultra-thin shells, particularly of 
subhorizon black shells in galactic cores, and

8. The mathematical properties of functions F(r) 
and δm compatible with MOND and the galactic 
rotation curve.

APPENDIX

Using the line element

ds2 = g00(r) dt2 + g11(r) dr2  r─ 2dΩ2

= eν dt2  e─  λ dr2  r─ 2dΩ2      

with  κ= 8─ π and a diagonal  stress-energy tensor of the
form  Tμ

ν=diag( , p, p, p)ρ ─ ─ ─ ,  Einstein's  field equations
simplify to

Tκ 0
0 = (r)κρ   =  e─λ/r2  1/r─ 2  e─ ─λλ′/r           (a1)

Tκ 1
1  =  p(r) = e─ κ ─λ/r2  1/r─ 2 + e─λν′/r,        (a2)

where primes denote derivatives with respect  to  r.  Eq.
(a1) can be solved by rearranging terms

rκρ 2 + 1 = e─λ (1  ─ λ′r)
      = (re─λ)′.

Integration then yields

re─λ = k0 +  ∫r dr ( rκρ 2 + 1) .

Here,  ∫r denotes  the  inverse  derivative  and  k0 is  a
constant of integration. Solving for eλ, we obtain

eλ = [1 + k0/r + ( /r)κ ∫r dr (r) rρ 2]  1─ .

Substitution of  (r)=μρ 0δc(r r─ 0)  and application of Eq.
(4) gives

eλ = (1 + μκ 0r0
2Sc/r + k0/r)  1─ .

Using surface density μ0=m0/4 rπ 0
2, this becomes

eλ = (1  2m─ 0Sc/r + k0/r)  1─ .               (a3)

The  boundary condition  that  eλ be  nonsingular  at  r=0
requires that  k0=0.  The  rr component of the ultra-thin
shell metric is therefore

g11 =  e─ λ =  (1  2m─ ─ 0Sc/r)  1─ .           (a4)

The tt component g00=eν can be evaluated by subtracting
Eq. (a2) from Eq. (a1) to obtain

( +p) =  eκ ρ ─  ─λ λ′/r  e─  ─λ ν′/r.

Solving for ν′ yields

ν′ =  ─ λ′  ( +p) e─ κ ρ  λ r.

If we now substitute (r)ρ  and eλ from Eq. (a4), and apply
the equation of state p=wρ for w a constant, the result is

ν′ =  ─ λ′  (1+w)μ─ κ 0δcr / (1  2m─ 0Sc/r).

Upon integrating, this becomes

 =   + kν ─ λ 1  (1+w)μ─ κ 0 ∫r dr δcr / (1  2m─ 0Sc/r)   (a5)

with  k1 a constant of integration. Eq. (a5) represents an
exact  solution  to  Einstein's  field  equations  for  the tt
metric  component  g00=eν of  an  ultra-thin  shell.  To
approximate  the  integral,  we  use  the  properties  of  the
broadened step and delta functions. The integral may be
written

I(r) = ∫0
r dr δc r/(1  2m─ 0Sc/r).

Since  r  changes  by  the  near  infinitesimal  amount  2nε
across the transient layer, it may be treated as a constant
r r≈ 0, hence

I(r)  r≈ 0 ∫0
r dr δc/(1  2m─ 0Sc/r0)         r0≠2m0.

I(r) can be integrated by a change of variable dSc=δcdr,
with limits of integration 0 and Sc(r):

I(r)  r≈ 0 ∫0
Sc(r) dSc/(1  2m─ 0Sc/r0)

                         (r≈ ─ 0
2/2m0) ln| (1  2m─ 0Sc/r0)|0

Sc(r) 

                   (r≈ ─ 0
2/2m0) ln| (1  2m─ 0Sc/r0)|,

Substituting I(r) into Eq. (a5) yields,

    + kν ≈ ─ λ 1 + [ (1+w)μκ 0r0
2/2m0] ln |1  2m─ 0Sc/r0|.

Evaluating the constants κ and μ0, this simplifies to

    + kν ≈ ─ λ 1  (1+w) ln |1  2m─ ─ 0Sc/r0)|,

with the result

eν  e≈ ─λ ek1 |1  2m─ 0Sc/r0|  (1+w)─

 (1  2m≈ ─ 0Sc/r) ek1 |1  2m─ 0Sc/r0|  (1+w)─ .

Since  eν must obey the Minkowski condition  eν >1─  as
r >∞─ , the integration constant ek1 must cancel the right-
hand factor in the outer region where  Sc 1≈ ,  Hence the
integration constant is

ek1 = |1  2m─ 0/r0| (1+w)
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and  the  tt component  of  the  ultra-thin  shell  metric
becomes

g00 (1 2m≈ ─ 0Sc/r)|1 2m─ 0/r0|(1+w)|1 2m─ 0Sc/r0| (1+w)─

r0 ≠ 2m0.

_____________
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