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Abstract: The collection of the consecutive composite integers is the composite

connected, and no pair of its distinct integers may be generated by a single prime

number. Composite connectedness implies the two-primes rule and the singular-

ity propagation/breaking rule. Failure of the singularity propagation proves the

Gremm’s Conjecture.
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Introduction

Carl Albert Grimm, April 1, 1926 - January 2, 2018, states that to each element of a set of
consecutive composite numbers, one can assign a distinct prime that divides it. The problem is
one of the important but still not solved problems in the Number Theory.

We define the set S to be a collection of the consecutive composed integers x1, x2, x3, · · · , xn, per-
haps placed between two consecutive primes α and β. All primes are outside of the set S, and
consequently the set S is the composite connected. The size of the set S cannot exceed α. Else,
the size of the set would be greater than 2α, by Bertrand’s postulate the set would contain at
least one prime and would not be composite connected.

The collection of all prime divisors of an integer x ∈ S is the set D(x). According to the funda-
mental theorem of arithmetic each integer x is generated by its prime divisor set p, x = Πp, and
will be identified by the pair (x,p). The set D(x, y) = {d: d|x, d|y} is the collection of all prime
divisors common to both x and y integers. Further, x = dxΠp′ and y = dyΠq′, where dx and
dy are products of the primes from D(x, y) particular to the integers x and y, and Πp′ and Πq′ are
the products of their additional composing primes.

Example The following table shows the prime factorization and some collections of distinct prime fac-
tors of the composed integers between primes α = 89 and β = 97. The set S has 7 and the collection
2, 3, 7, 5, 13, 19, 31, 43, 47 of its prime divisors has 9 distinct members.

Table 1. The set S9789 and Some Prime Divisors Selections

|i〉 89 90 91 92 93 94 95 96 97

Πξ 89 2 · 32 · 5 7 · 13 22 · 43 3 · 31 2 · 47 5 · 19 23 · 3 97
P1 3 13 43 3 2 5 3
P? 2 7 43 31 47 19 3
P3 2 13 43 3 47 5 3

Clearly, it is always possible to select a collection of 7 prime divisors. The primes 2, 3, 5 are divisors of a
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few distinct integers from the set S. However, Grimm’s conjecture requires the set P of 7 distinct prime

divisors selected from the 7 distinct integers of the set S. Notice that such selection is not unique.

Description

Relations between two distinct integers from the set S, are characterized by the set intersection
of their prime divisor sets and by their greatest common divisor. For integers x and y in S

1. D(x, y) = ∅,
2. D(x, y) = D(x) = D(y),

3. D(x, y) = D(x) ⊂ D(y),

4. D(x, y) = D(y) ∩D(x) 6= ∅ & D(x).

The greatest common divisor and D(x, y) are related. For, if x = Πpm and y = Πpn, n > m then

g = Πpk, k = max{m,n} ∴ pk|x & pk |y ⇒ x = gGx, y = gGy,

where Gx and Gy are the g cofactor integers in the x and y. Two important cases are when inte-
ger x is the greatest common divisor of y, and when both x and y are generated by a single prime.

Corollary 1. There are no distinct integers x and y in S, such that either x divides y or that a
single prime generates both x and y.

If x|y the integer x is the greatest common divisor of x and y and its cofactor yx−1 in the y is an integer
greater or equal to 2. By the Bertrand’s postulate there is a prime between x and y and the set S is not
the composition connected, contradiction.

If both x and y are generated by a single prime p then x = pm and y = pn, n > m. Hence y = xpn−m and
x is the greatest common divisor of x and y with cofactor pn−m in y greater or equal to 2. Again, by
Bertrand’s postulate there must be a prime between x and y, contradiction. There is no integer pair in
the set S generated by the single prime. �

Corollary 2. Each pair (x, y) of the distinct composed integers from the set S lets a pair |p, q〉. of
distinct prime divisors p|x and q|y.

We will consider one by one the set intersection cases of the prime divisor sets of a pair (x, y) of distinct
composed integers x ∼ (p,p) and y ∼ (q,q) from the set S. We may assume y > x when it is necessary.

1. When D(x, y) = ∅ the integers x and y are composed on two distinct sets of the primes. It is sufficient
to take a prime divisor p of x and a prime divisor q of y to make the pair |p, q〉 of the distinct primes.

2. When D(x) = D(y), the set D(x, y) cannot be a single prime set, see Corollary 1. Consequently, the set
D(x, y) must have at least two distinct prime divisors and the vector |p, q〉 of the distinct prime divisors
of x and y cannot be empty.

3. When D(x) ⊂ D(y) all primes in the set D(x, y) are the divisors of the x, and there is at least one
prime q divisor of y not in the D(x, y). The vector |p, q〉, p ∈ D(x, y), is a pair of distinct prime divisors
of x and y respectively.

4. Finally, when D(x, y) is nonempty intersection D(y) ∩ D(x) not identical to D(x) there are at least
two distinct primes p ∈ D(x)\D(y) and q ∈ D(y)\D(x) such that x = pΠdx and y = qΠdy, where
dx, dy ∈ D(x, y). Definitely, at least, |p, q〉 is the vector of two distinct prime divisors of the pair (x, y). �
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Remark: Further, we are selecting a collection P = {p1, p2, p3, · · · , pn} of the prime divisors from
a set of the consecutive composed integers S = {x1, x2, x3, · · · , xn}, and require that the following,
either affirmative or negative, statements of the Grimm’s Conjecture hold

∀S, ∃P = |p1, p2, · · · , pi, · · · , pn〉, pi|xi ∴ ∀i 6= j ⇒ pi 6= pj ,

∃S, ∀P = |p1, p2, · · · , pi, · · · , pn〉, pi|xi ∴ ∃i 6= j ⇒ pi = pj .

The working hypothesis is that Grimm’s Conjecture is false, which is that each prime divisor
selection ”must” choose at least a single prime divisor ξ for at least a pair of the integers x and
y from S. Such a couple of the integers we call singular, else regular couple.

The ”must” statement of the hypotheses is equivalent to the saying that there is no reconstruc-
tion of a chosen prime sequence, which would remove the singularity. The last suggests the proof
strategy to be the reconstruction of the prime divisors set P, created on the singular ground pair
(x,y). If the reconstruction removes the ground couple singularity, the Grimm’s Conjecture is
true. Otherwise, it is false.

Remark: The essence of Grimm’s Conjecture is in the natural relations between the integers of
the set S, All distinct prime constituents of S are Π, and all distinct prime divisors of an integers
x ∈ S are Πx.

For convenience, we represent each integer from the set S by three primes, x = (p, q, qo). The
primes p and q may be identical and the additional prime divisors qo may or may not be there.
The prime p is the integer division representative or the first prime. The second prime q, the
linking prime divisor or the second prime, relates the integer x to other integers. Recall that the
integers of the ground pair (x,y) are mutually related by the set of the common prime divisors
D(x,y),

Direct family Fp of the prime p is the collection of all integers z ∈ S p divides. We will say that
p is self-coupled or reproduced in the integers from the direct family. The actual family F ′p of the
prime p is broader, it is the collection of all integers z ∈ S divisible by the all primes in D(x). The
actual family F ′p is the union of direct families of the primes q 6= p, and Fp ⊂ F ′p. A prime is
an isolated/lonely prime If its direct family is itself. All other primes in D(x) self-couple to all
integers of their direct families Fq.

The prime pointer q̂ is the second prime in x pointing to an integer y ∈ S it divides to make the
pair (x,y). Further, the pointer q̂ is the selection operator, choosing an integer y ∈ Fq from its
direct family to self-couple as its first or the prime representative p′. The operation q̂ : Fq → y ∼
(p′, q̂′) = (q, q̂′) prescribes the selection procedure to reconstruct the prime divisors set P.
Further, we will present any integer x by the triplet x ≡ 〈x, p, q̂|, the first prime p is its division
representative, the second prime is the prime pointer or the selection operator. After selection
is done the pair (x, z) is the quadruplet 〈x, p; q, z〉, and the integer z ≡ 〈z, p′, q̂′|, p′ = q.
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Singularity Propagation

The prime pointer self-coupling operation q̂q = p′ at x⇔ (x, p; q̂) induces the mapping

q̂ : S → P ⇔ q̂(x, p, q) = (y, p′, q′).

Definition: The consecutive application of the pointer operator to reconstruct a ”must” prime
sequence is the singular prime or just prime propagation.

Under the working hypotheses, the reselection operator q̂ starts at the singular prime p = ξ ∈ x, at
the ground pair (x,y), and, throughout the consecutive self-application recreates the singular
chain γ(x, p ;m) of the prime divisors up to an integer nm, and a pointer q̂m. Together with it the
chain of the integers Γ(x, p; i) they divide is created. We assume that such chain extensions are
regular up to the next singular point, if such exists or to an isolated prime or until all integers
of the set S are exhausted.

The smallest chain is an isolated prime chain γ(x, q̂ ; 1) , the first next is the single link chain
γ(x, p, q ; 2), and further come the linear chains γ(x, p, q ;m) = |p, q, · · · ;m〉, the chain loops and so
on. The prime divisor selection may have a few singular points and selection centers.

The singularity propagates throughout by the prime pointers linking the sequence of the quadru-
plets,

〈N1 p1; q1 N2〉
q̂1−→ 〈N2 q1; q2 N3〉

q̂2−→ 〈N3 q2; q3 N4〉
q̂3−→ · · · .

The extension of the singular link Γ(x, p; 1) are the integer and the prime regular chains

Γ(x, p;m) = |x,y,n1,n2, · · · ,nm〉
γ(x, p;m) = |p; q, q1, q2, · · · , qj〉, m ∈ N.

Definition: The collection of all consecutive images q̂ : 〈Xi, pi; qi | → q̂ qi = pi+1 ∈ Xi+1 is the
singularity propagation function of the singular prime representative p. Its propagation chain of
the order n is the discrete function

γ(x, p;n) = |p, p1, p2, p3, · · · , pn−1〉.

A conditional statement of Grimm’s Conjecture in terms of the propagation function is: ”If the
Grimm’s Conjecture is true, the propagation function is 1 : 1 correspondence. Else, there is at
least one pair (xi,xj) ∼ 〈xj pj ; qj z′〉, such that”

q̂qi = pi = qj , j 6= i.

Propagation of the chain, and therefore of the singularity, is carried out by the instant pointer.
A free prime pointer connects to an integer outside of the chain to continue the chain, or the
propagation breaks by the isolated pointer, or the last pointer self-coupling to the chain or by
another singularity.

Corollary 3. Three Primes Rule:

If ξ is the singular prime divisor of an integer pair (x,y), x ≺ y, each of the integers x and y must
have an additional prime divisor.

The Singularity Propagation/ Breaking Rule:
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To propagate the singularity, each current pointer of the chain must self-couple in an additional
integer in S. Else, the pointer is the propagation breaking pointer, the prime singularity propa-
gation breaks, the chain P of the prime carrier divisors destructs all the way down to the ground
level, and the regular chain Q of the distinct pointer primes in 1 : 1 correspondence with integers
of the set S is exhibited. The singularity propagation breaking pointer removes the singularity.

� If the integers (x,y), x ≺ y do not have the second prime divisors, the single prime ξ ∈ D(x,y) gen-

erates both integers, the set S is not composite connected, and the Grimm’s Conjecture does not satisfy

the defining conditions. Hence both x and y must have an additional prime divisor, and x ≡ 〈x, ξ; q̂∗| and

y ≡ 〈y, ξ; q̂|. The same holds for any pair (ni,ni+1) coupled by the pointer q̂i = η.

Further, in addition to the pair 〈x, p ; q, y〉 we look at the pairs 〈y, ξ ; q′, z〉 and 〈y∗, q∗ ; q′′, z∗〉.
The pointer ξ̂, couples x to y in the integer pair y ≡ 〈y, ξ; q̂| of the chain P = |ξ, ξ〉. If q̂ ∈ y is the

last chain pointer, it would be an isolated prime and could be chosen to be the prime divisor, a distinct

representative of the integer y, leaving ξ = p to be the distinct representative of the integer x only. The

chain of the distinct regular pointers Q = 〈q, p = ξ| in 1 : 1 correspondence with the integers x, y exhibits,

and the the singularity of the ground pair cancels. However, Grim’s conjecture is not true, and the pointer

q̂ must couple to an integer z ≡ 〈z, q; q̂′| ∈ S.
If the pointer q̂′ ∈ z is the breaking pointer, the prime q′ could be chosen to be the prime divisor of

the z, leaving the pointers q and ξ to be the prime divisor of the integers x and y. Consequently, the

sequence of the regular distinct prime pointers Q = 〈q′, q, ξ| would be exhibited instead of the singular

chain P = |xi, ξ, q〉. The singularity at the ground pair is removed, and . . . .

It is obvious that the same holds at an arbitrary level m. If the pointer is the breaking pointer the

regular chain Q = 〈qm, · · · , q′, q, ξ| of the distinct primes in 1 : 1 correspondence with the integers

nm,nm−1 · · · z,x,y exists. Else the chain is the singular chain P = |ξ, ξ, q, q′, · · · , qm−1〉. �

An obvious conclusion is that the three primes rule, the singularity propagation/breaking rule,
and the finiteness of the set S, governs and determine the singularity propagation.

Conclusion

The two primes rule and the singularity propagation/breaking rules govern the singularity de-
velopment. If the current pointer is free, it will self-couple in an integer outside of the chain to
continue the singularity propagation. Otherwise, the following singularity propagation outcomes
are possible:

1. the isolated/lonely pointer case

2. the chain loop closure pointer case

3. the loop-appendix pointer realization .

Remark: In the case of any of three singularity propagation outcomes, the singularity propa-
gation/break rule applies, the chain breaks, and Grimm’s Conjecture is true.
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To see this, we rely on the Corollary 3. We will go one by one through the cases. Tables 2 and 3 present
the current self-coupling chains. The row P is the singular chain of the first prime p divisor representa-
tives, and the row Q is the regular chain of the distinct prime divisors in the 1 : 1 correspondence with
the integers of the chain.

1. Isolated Pointer

The singularity propagation breaks at the integer ni = nm of the chain and, according to Corollary
3, the regular chain of the distinct second prime divisors Q = |qm, qm−1, · · · , q2, q1, q, ξ 〉 in the
1 : 1 correspondence with the collection of the integers from the set S forms instead. The row
translation 1̂ : P → P 	 1̂ = Q is the chain regularization. We chose the prime divisors collection
γ(ξ, q,m+ 2), the singularity cancels, and the Grimm’s Conjecture is true.

Table 2.Isolated Pointer and the Chain Loop

〈Ni| Nm+1 Nm Nm−1 · · · N3 N2 N1 y x y∗

P qm−1 qm−2 · · · q2 q1 q ξ ξ q∗
Q qm qm−1 · · · q3 q2 q1 q ξ q∗

γ(ξ, q,m+ 2) qm qm−1 · · · q3 q2 q1 q ξ

Λ(x, ξ;Nm) qm ≡ q∗ qm−1 · · · q3 q2 q1 q ξ

2. The Chain Loop

In this case the pointer q̂m ∈ D(xm ∩ x) self-couples in the integer x ≡ 〈x, q̂∗, ξ| The identification
transformation Î : ξ ↔ qm, P 	 {q∗} → P 	 {q∗}, see the last line of Table 2, closes the chain in
the regular loop Λ(x, ξ;nm) = |qm = q∗, qm−1, · · · , q2, q1, q, ξ 〉, the singularity cancels, and the
Grimm’s Conjecture is true.

If the prime divisors chain exhausts all integers of the set S, the last integer nn ≡ 〈nn, pn, q̂n| must
couple to the ground integer x ≡ 〈x, q̂∗, ξ|. The quadruplet 〈nn, q̂n; q̂∗, x〉, closes the chain in the
loop, the singularity cancels, and the Grimm’s Conjecture is true.

3 The Loop with Appendix

In the first part of Table 3, the row Q of the second primes Q = P 	 1̂ is the back transfor-
mation of the first primes row. Without limitations on the pointer q̂m, the chain, row γ is the
regular chain. However, the singularity propagation chain γ(x, ξ, m) ≡ P attaches by its end point
nm ≡ 〈nm, qm−1; q̂ | to an integer nk ≡ 〈nk, pk, q̂k| ∈ Γ(x, p ;m), k < m. Clearly, qm ∈ D(nk ∩nm).
If the pointer q̂m contacts q′′ ∈ nk the self-coupling qm = q′′ 6= pk is just the chain external exten-
sion to an integer, which happens to be in nk.

Otherwise, q̂m self-recreates as the first prime pk ≡ qk−1 = ξ′, and the new singular pair (nm,nk) ∼
〈x′, ξ′; ξ′,y′k〉 creates, see the second part of Table 3. At this place we rename m′ = m− k,

(nk,nk+1,nk+2, · · · ,nm−1,nm)→ (y′,n′1,n
′′
2 , · · · ,n′m′−1,x

′),

p′ = (qk−1, qk, qk+1, · · · , qm−2, qm−1)→ (ξ′, q′, q′1, · · · , q′m′−2, q
′
m′−1),

q = (qk, qk+1, qk+2, · · · , qm−1, qm) → (q′, q′1, q
′
2, · · · , q′m′−1, ξ

′)
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The row P′ = |p〉 ⊕ p of the first primes is the singular chain, such is also its second part p′, and
the row of the second primes Q′ restriction to q′ are all regular distinct primes. The backward
translation 1̂ : |p 〉 → |p 〉	 1̂ creates the linear chain γ(y∗, ξ; k+ 3) = |q′∗, q∗, ξ, q, q1, · · · , qk−2, 〉 and
the identification transformation Î : q′m′ ↔ q′k = ξ′, q	q′m′ → q	q′m′ create a loop Λ(y′, ξ′;m+1) =
|ξ′, q′, q′1, · · · , q′m′−2, q

′
m′−1〉. Consequently

γ(y∗, ξ; k + 3) = |q′∗, q∗, ξ, q, q1, · · · , qk−2〉 = |q′∗〉+ γ(x, ξ; k + 2)

⇒ γ(x∗, ξ;m+ 2) = γ(y∗, ξ; k + 2) + Λ(x′, ξ′;m′ + 1),

and the chain is a union of the regular loop and regular appendix. The Grimm’s Conjecture is true.

Table 3. The Loop with Appendix

〈Ni| y∗ x y n1 n2 · · · nk−1 nk nk+1 nk+2 · · · nm−1 nm

P q′∗ q∗ ξ q q1 · · · qk−2 pk = qk−1 qk qk+1 · · · qm−2 qm−1
Q q∗ ξ q q1 q2 · · · qk−1 qk qk+1 qk+2 · · · qm−1 qm
γ ξ q q1 q2 · · · qk−1 qk qk+1 qk+2 · · · qm−1 qm

y′ n′1 n′2 · · · n′m′−1 x′

P′ q′∗ q∗ ξ q q1 · · · qk−2 ξ′ q′ q′1 · · · q′m′−2 q′m′−1
Q′ q′ q′1 q′2 · · · q′m′−1 ξ′

Appendix γ(y∗, ξ; k+ 3) Loop Λ(y′, ξ′;m+ 1)

γ∗ ξ q q1 q2 · · · qk−1 q′ q′1 q′2 · · · q′m′−1 ξ′

Corollary: The Grimm’s Conjecture is true.

� If Grimm’s Conjecture is not true, there is no prime divisor re-selection which would remove the singu-

larity. Consequently, the singular chain γ(x, ξ;m) must couple with an integer outside of the chain at each

evolution level m ≤ n. The set S is finite, and the chain must couple to itself at m = n, the singularity

propagation breaks, and the regular chain in 1 : 1 correspondence with integers of S constructs. Hence,

Grimm’s Conjecture is true. �
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