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Abstract 
 

Relativity claims that the simultaneity between two (or more) observers, each 

traveling in different Inertial Reference Frames (IRFs) is such that “Both observers 

consider the clock of the other as running slower”. This is shown on a Minkowski 

diagram in the section titled “Time dilation” on the Wikipedia page given in my 

Reference [2]. However, as I will explain, this interpretation leads to an inconsistency 

which cannot be true. I point out the error being made in the interpretation of 

Minkowski diagrams that leads to this inconsistency, and how the diagram should be 

interpreted to correct this error. 
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      Figure (1) 

This diagram (Figure 1) is a Minkowski diagram depicting two spaceships approaching each other at 

40% of the speed of light. Ship A is moving from left to right and ship B from right to left.   The Black 

axes are for a stationary observer between ships A and B (y axis is ct, x axis is distance). The Green 

axes are ct’ and ct’’ respectively and the blue axes are x’ and x’’ respectively.   The dashed blue lines 

are parallel to x’ and x’’ and are lines of simultaneity for each of the ships (A and B). These dashed 

lines pass through an event on the stationary observer’s ct axis (at coordinates 0,50), where the event 

is indicated by a blue dot.    



Introduction 

Relativity would have you believe that where the lines of simultaneity of ships A and B pass through 

the other ships ct axis (indicated by Black dots) indicate what time on the other ship (B and A) is 

simultaneous with the first ships ct intersect is. Therefore, so Relativity claims, ship A observes a 

different time on ship B, and vice-versa. However, it is easy to prove that this interpretation is wrong: 

If each of the three observers (ship A, ship B and the stationary observer in the middle) send signals 

to each other indicating their own current time, then each of the signals form ship A and ship B arrive 

at the event on the stationary observer’s ct axis (indicated by a blue dot).  

Simultaneously, the stationary observer’s time signal travels from the blue dot to each of ships A and 

B ct axes (indicated by the Red dots). As all three of these points are connected by lines of simultaneity, 

all readings correspond to the same moment (although each observers clock may show a different 

time). Each ship sends its current time to the observer at the Blue dot and he displays the times on a 

screen visible to each ship, each ship sees the screen at a time simultaneous with its Red dot. So, as 

the Red dot points are simultaneous with the blue dot event on the stationary observer’s ct axis, the 

Black dot points CANNOT also be simultaneous with these events as Relativity claims. 

So, to correctly determine the time that is simultaneous on ship A from ship B’s point of view (and 

vice-versa), one must follow the dashed blue line of simultaneity from ship B up to the point where it 

intersects with ship A’s line of simultaneity (the other dashed Blue line) - one could draw a stationary 

IRF (drawn on the diagram as orthogonal x and ct axes) at this point. Then one must follow ship A’s 

line of simultaneity until it intersects with ship A’s ct axis. 

 

Determining signal emission times 

Analysing this situation with actual light signals, which take time to propagate, means that on 
reception of a signal by an observer, he must apply a correction to the arrival time in order to 
determine what the emission time (in his own reference frame) was. As the Minkowski diagram is 
drawn from the point of view of the stationary observer, he must take his own motion into 
consideration in order to apply the correction properly. First, he must determine the travel time of 
the light signal (as determined from the Minkowski diagram using the stationary observer’s axes).  

As the light signal travels at 45 degrees in any IRF on a Minkowski diagram, the observer on Ship B 
simply traces the light path back in time until it intersects the known trajectory of Ship A. This point 
must then indicate where and when the light signal was emitted. Then he must determine the distance 
on the Minkowski diagram (drawn from the stationary observer’s perspective) to trace back along his 
ct axis. This can be done by multiplying the time interval 𝑑𝑡 by the length along his ct axis 

corresponding to one unit of time on the stationary observer’s ct axis (ℎ𝐵, the length of the 
hypotenuse of a triangle with side lengths of 1 and 𝛽). 

To determine his actual time at the moment the light signal was emitted, he must divide the distance 
along his ct axis (just determined) by the unit time length on his ct axis (given by U). For moving inertial 
reference frames, U will be greater than 1. Once this is done, he must subtract this result from his 
measured light arrival time in order to know what his own time was when the light was emitted. 

The time correction to determine Ship B’s time is: 
 

 ∆𝑡 = −
ℎ𝐵∙𝑑𝑡 

𝑈𝐵
= −

𝑑𝑡

𝛾
                                                       

 
 



Where: 

𝑑𝑡 is the travel time of the light signal (using the stationary observer’s axes). 
 

B   refers to values for the observer of the light signal. 

 

ℎ𝐵   refers to the length of the hypotenuse of a triangle with side lengths of 1 and 𝛽. 
 

 

𝛽 =
𝑣

𝑐
  

 

ℎ𝐵 = √1 + 𝛽2 
 

𝛾 =
1

√1−𝛽2
  

𝑈𝐵 = ℎ𝐵 ∙ 𝛾 = √
1+𝛽2

1−𝛽2
   

 
Note:  For source and destination reference frames that have different non-zero speeds, in order to 
map from one to the other and get the correct distance to move back along the observer’s ct axis, 

one must account for the time shift from one IRF coordinate system (the origin of the signal) 
and another IRF coordinate system (the observer’s frame). This difference is due to the 
difference in the angles of each frame’s x axis (due to their different speeds), thus the 
different points at which each intersects with the stationary observer’s ct axis. So, to map 
from one IRF to another on the Minkowski diagram, the dt value used in the above 
equations must have this mapping adjustment 𝑡𝐴𝐵 added to it: 

 

If   𝛽𝐴 ≠ 0     𝑎𝑛𝑑    𝛽𝐵 ≠ 0 

 

𝑡𝐴𝐵 = (|𝛽𝐴| − |𝛽𝐵|) ∙ |𝑥𝐴 − 𝑥𝐵| 

 

Where: 𝑥 is the distance from the origin along the x axis 
  A refers to the sender of the signal 
  B refers to the observer of the signal 

 

Thus, the full form of the time correction equation is: 

 

∆𝑡 = −
ℎ𝐵∙(𝑑𝑡+𝑡𝐴𝐵) 

𝑈𝐵
= −

𝑑𝑡 + (|𝛽𝐴|−|𝛽𝐵|)∙|𝑥𝐴−𝑥𝐵|

𝛾
         

  



 
 

 

 

 

 

 

 

 

 

 

 

              Figure (2) 

This diagram shows two light signals (in Cyan). One from Ship A to the stationary observer at coordinate (0,50), 

and another from the stationary observer to Ship A. Also shown in Red is the correction made by each observer 

to the time of the received light signal, such that he can determine when the signal was sent. Also shown is 

the light signal from Ship A continuing to reach Ship B after passing the stationary observer (dashed cyan line). 

Then on Ship B's ct axis he applies his time correction for the entire travel time of the light signal (the time to 

go from Ship A to the stationary observer, plus the time to go on from there to Ship B's ct axis). As you can see, 

the observer on Ship B determines that the time on Ship A is the same as his own. 

 

 

 

 

 

 

 

 

 

 

 

 

       

               Figure (3) 

          Figure (3) 

This diagram shows the same information as in Figure (2) but re-drawn from the point of view of Ship A (Ship 

A's Inertial Reference Frame). 



Discussion 

Furthermore, if the claim is made that the different time observed from one ship to the other are just 

what is OBSERVED rather than ‘real’ time differences, then that too is incorrect as the lines of 

simultaneity depict actual simultaneity of events and there is no propagation delay due to the travel 

time of light included in the diagram. For the difference in time to be just an observational difference 

one would have to explain the difference between observed time and actual time to be due to the 

time taken for the light signal to travel from one ship to the other., but I have just shown that even if 

real light signals are used, both ships determine that their times, and rates of time are the same. 

The rate of time of each IRF (relative to the observer's IRF) can be determined, even without clock 

synchronization, by comparison of two or more readings of the other's times over a known local time 

interval in the observer's IRF. If this is done, then ship A's observer will see the same rate of time (as 

his own) on ship B. 

So, if ship A & B can determine that they have the same rate of time when they move towards or away 

from each other at the same speed through the space/medium field, then they are free to move 

together until they are both at a point on the Black ct axis. Their respective times on their clocks at 

that point provides each with a reference point to which they can calibrate all the time observations 

they have made and continue to make on their journey towards & away from each other. After 

synchronizing their clocks to the same time, they then continue past each other whilst observing each 

other's time continually. They will then deduce that the red dots are simultaneous, not one Red and 

one Black dot. 

  



PROOF THAT SHIP A & B TIMES ARE AT THE SAME RATE USING THE 
LORENTZ TRANSFORMATIONS: 

 

That Ship A and B have the same rate of time is easily proved using the Lorentz 

Transformations: 

Transforming each ship to the IRF of the central observer, then eliminating the central IRF by 

substituting one LT into the other: 

 

  Note: 

 

  For Ship A (single primed ')  :   v is positive, Δx is negative 

 

  For Ship B (double primed '') :   v is negative, Δx is positive 

 

For Time: 

Δt' = γ[Δt - v/c² (-Δx)]       (1) 

Δt'' = γ[Δt – (-v)/c² Δx]      (2) 

Δt = Δt''/γ - v/c² Δx 

Δt' = γ[(Δt''/γ - v/c² Δx) + v/c² Δx] 

Δt' = γ[Δt''/γ] 

Δt' = Δt''        (3) 

Thus, the rate of time for Ship A is the same as for Ship B. 

 

For Space: 

Δx' = γ(-Δx - v Δt)       (4) 

Δx'' = γ(Δx - (-v) Δt)       (5) 

Δx = Δx''/γ - v Δt 

Δx' = γ(-(Δx''/γ - v Δt) - v Δt) 

Δx' = -γ(Δx''/γ) 

Δx' = -Δx''         (6) 

This we know to be true, as each ship is at a point equidistant on either side of the origin. 

 



Conclusion 

This misunderstanding about the Relativity of simultaneity stems from Einstein's mistaken assumption 

that the speed of light is really constant in any IRF and moves through space at speed c with respect 

to that IRF, rather than just measured to be so (as I have shown in previous work [1]) and actually has 

a fixed speed of c with respect to the space/medium field. The problem in the interpretation of 

Minkowski diagrams is due to the failure to recognize that each ship’s axes represents a different 

coordinate system and one must map from one coordinate system to the other coordinate system 

when drawing inferences between the two systems. 
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