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ABSTRACT 

Rationale and Objectives: 

To explain predictions of a deep residual convolutional network for characterization of lung 
nodule by analyzing heat maps 

Materials and Methods 

A 20-layer deep residual CNN was trained on 1245 Chest CTs from NLST trial to predict the 
malignancy risk of a nodule. We used occlusion to systematically block regions of a nodule and 
map drops in malignancy risk score to generate clinical attribution heatmaps on 103 nodules 
from LIDC-IDRI dataset, which were analyzed by a thoracic radiologist. The features were 
described as heat inside nodule (IH)-bright areas inside nodule, peripheral heat (PH)-
continuous/interrupted bright areas along nodule contours, heat in adjacent plane (AH)-
brightness in scan planes juxtaposed with the nodule, satellite heat (SH)- a smaller bright spot in 
proximity to nodule in the same scan plane, heat map larger than nodule (LH)-bright areas 
corresponding to the shape of the nodule seen outside the nodule margins and heat in 
calcification (CH) 

Results 

These six features were assigned binary values. This feature vector was fed into a standard J48 
decision tree with 10-fold cross-validation, which gave an 85 % weighted classification accuracy 



with a 77.8 %TP rate, 8% FP rate for benign cases and 91.8% TP and 22.2 %FP rates for 
malignant cases. IH was more frequently observed in nodules classified as malignant whereas 
PH, AH, 
and SH were more commonly seen in nodules classified as benign. 

Conclusion 

We discuss the potential ability of a radiologist to visually parse the deep learning algorithm 
generated 'heat map' to identify features aiding classification. 
 
 
Introduction 

The recent surge in applications built on artificial intelligence (AI) has resulted in the need for 

greater training, understanding and studying the ethical implications of AI in the field of 

medical imaging (1,2). The excellent image classification capabilities of deep learning (DL) are 

often approached with caution due to perceived lack of explainability of their functioning (3). 

This perceived opacity in the functioning of DL algorithms has led to such networks being 

referenced as a ‘black box’. Democratization in the understanding of the network architecture 

with the help of activation maps, has led to greater emphasis on explainable AI (exAI or xAI). 

This development has found favor as a method which can lead skeptical clinicians and 

radiologists towards informed adoption of the DL techniques in their practice (4). Such works 

can help the transition from in-silico testing of AI solutions to prospective clinical evaluation. In 

this paper, we attempt to explain predictions of a deep residual convolutional network 

developed for characterization of lung nodules by analyzing the class attribution maps - more 

generally known “heat maps”. 

 

Material and Methods 

All required Ethics approval was obtained from the institutional ethics committee. 

The class attribution map analysis featured a 20-layer deep residual convolutional neural 

network trained to identify and characterize the pulmonary nodules. This network was trained 

on 1245 Chest CT scans from the NLST (5) trial to predict the malignancy risk of a given CT. 



The training consisted of two stages where the network was trained to detect pulmonary 

nodules in the first stage and pool the nodules through a leaky noisy-OR gate in the second 

stage to predict overall malignancy risk for the CT scan. 

Training: 

A deep learning system based on convolutional neural networks was trained to predict the 

malignancy status from CT scans of the chest. The deep learning system comprises of a nodule 

detector and a malignancy estimator. The nodule detection system was trained and validated 

to pick up pulmonary nodules >= 3mm on 554 CT scans from NLST and 888 CT scans from LIDC-

IDRI (8,9). The malignancy estimator was trained on the 1245 CT scans and validated on 350 CT 

scans from NLST. 

CADe (Nodule Detector): 

The CADe system is an ensemble of 3 single-shot 3D Feature Pyramid Networks (FPN) (8,9) 

which is trained to detect lung nodules from the CT scans. The 3D FPN is built with a U-Net 

encoder-decoder architecture, composed of 3D convolutions, to maximize the effective 

receptive field and fuse multi-scale information. Multi-scale information is essential for 

differentiating pulmonary nodules from vasculature present in the organs. The network takes in 

a 3D patch of size 128x128x128 as input and gives out 32x32x32x3x5 as output, with 3 anchor 

boxes of varying size limits for each network in the ensemble. During inference, the ensemble is 

rolled over the CT scan with 128x128x128 overlapping patches and the predicted bounding 

boxes are fused with non-maximum suppression to provide the final candidates for lung 

nodules. 

The CADe system is trained on 711 CTs from LIDC-IDRI and 554 CTs from NLST with Adam 

optimizer and a learning rate of 0.0001, a weight decay of 0.0005 and a dropout of 0.5. 

Validation was done on 177 CTs from LIDC-IDRI. The data was augmented with nodules of 

different sizes to ensure training was not biased towards detecting small nodules. The network 

architecture is depicted in Figure 1.  



CADx (Malignancy Estimator): 

The CADx system is a leaky Noisy-OR gate (10) based on deep convolutional neural networks. 

The noisy-OR model operates on 96x96x96 patches from each detected nodule, fuses the 

information from each nodule and gives the probability of the patient being affected by lung 

cancer. During training, top 5 nodule candidates, based on their nodule probabilities, are taken 

from the CADe system and fed to the noisy-OR model. A leakage probability is assigned to the 

CADx model during training to account for missed primary nodules/masses by the CADe system. 

The CADx model shares the same backbone as the CADe model with the convolutional layers 

sharing their weights to avoid over-fitting. 

 

 

Figure 1. The deep learning network architecture  

The CADx system was trained on 1245 CT scans and validated on 350 CT scans from NLST. 

During inference, all the detected nodules are considered to compute the overall malignancy 

risk at a scan-level. 

Occlusion 



The CADx network was taken to understand the decision-making process of predicting 

malignancy for a given pulmonary nodule. The analysis of the functioning was initiated by a 

technique called “occlusion” (10), wherein, systematic blocking of various regions of the nodule 

were done and drops in the malignancy risk score by the CADx network were recorded.  The 

changes in malignancy scores are mapped back to form a clinical attribution heat map for the 

said nodule. A patch size of 4x4x4 was taken to block the image of the nodule with a stride of 4 

steps per block. For an input patch of 96x96x96, an output heatmap of size 24x24x24 was 

obtained. The 24x24x24 patch was then zoomed back to 96x96x96 with trilinear interpolation 

to map it back to the original nodule patch.  

Saliency Maps 

The saliency maps are generated by systematically blinding the classifier to specific regions of 

the nodule. This can be visualized as breaking down the nodule into multiple 3D tiles, and 

individually single tiles are removed and replaced during prediction through the neural 

network. The difference in classification outputs of the neural network is monitored and used 

to generate a final heatmap. The process is based on the intuition that the probability of 

malignancy should drop when a relevant region on the nodule is blinded to the neural network 

during prediction. This technique is depicted in figure 2.  

Such heat maps were generated for randomly selected 103 unseen nodules from LIDC-IDRI 

dataset. It comprised of 49 benign and 54 malignant nodules. The network correctly predicted 

malignancy in 38 nodules and absence of malignancy in 37 nodules. There were 12 benign 

nodules incorrectly classified as malignant and 16 malignant nodules incorrectly classified as 

benign. The sensitivity and specificity values were 70.3 % and 75 % respectively. The 

distribution of these nodules is summarized in table 1. 



 

Figure 2. The occlusion technique used for creating the class activation maps 

 

 Positive (Biopsy) Negative (Biopsy) Total Biopsy proven 

results 

Malignant (AI) 38 16 54 

Benign (AI) 12 37 49 

Total network labels 50 53 103 

Table 1.  Confusion matrix comparing the network labels with the ground truth. 

 

These heat maps were analyzed by a radiologist with more than 8 years’ experience in chest 

imaging. The radiologist analyzed the pattern and discernible features in the heat maps 

generated for network-benign and network-malignant nodules separately. The common 

features observed in the heat maps for both the set of nodules on axial planes were described 

using the following terminology: ‘heat inside the nodule’, ‘peripheral heat rim’, ‘heat in 

adjacent scan plane’, ‘satellite heat’, ‘heat map larger than nodule’ and ‘heat in calcification’. 



1.     Heat inside the nodule: 

Any activation or bright areas observed inside the nodule contours is considered as positive 

for heat inside the nodule activation. It included both homogenous and heterogenous 

activations (Fig 3a) 

2.     Peripheral heat rim 

This is defined as peripheral activation or bright area along the boundaries of the nodule. It 

includes both continuous as well as interrupted areas of activation along the margins (Fig 

3b). 

3.     Heat in calcification 

This feature is defined as presence of activation within the calcified regions of the nodule. 

When confounded by presence of other defined features like ‘heat inside the nodule’ or 

‘peripheral heat rim’, this feature is distinguished by positive activation more prominent 

than the other forms of activation (Fig 3c). 

4.     Satellite heat 

This includes areas of activation, near but distinct from the nodule. It is also typically smaller 

than the size of the nodule and is seen in the same scan plane of the parent nodule (Fig 3d). 

5.     Heat map larger than the nodule 

This is described as areas of activation larger than the size of the nodule extending outside 

its margins (Fig 3e). 

6.     Heat in adjacent scan planes 

This is described as areas of activation seen in immediately adjoining scan planes both 

above and below the plane in which the nodule is seen (Fig 3f). 



 

Figure 3. Heat Map features overlaid on the CT scan. 3a. Heat inside nodule, 3b. 
peripheral rim heat, 3c. Heat inside calcification, 3d. Satellite heat, 3e. Heat map larger 
than nodule, 3f. Parenchymal heat in adjacent scan plane 
 
The radiologist analyzed all the class activation maps generated for all these 103 nodules.  

Some of these heat map features are depicted without the CT overlay in figure 4.  

 

Figure 4a-b. Heat maps represented separately without overlay on corresponding CT 
images. Figure 4a. Peripheral rim in a subpleural calcified benign nodule with activation 
seen in an area larger than the nodule. Figure 4b. Heat map matching the size of a 
malignant nodule. No activation in the adjacent areas. Figure 4c. Peripheral rim and heat 
inside the nodule seen in a benign nodule. Figure 4d.  Heat map larger than the nodule in 
a calcified benign nodule.  
 



The presence or absence of the six described features in the heat maps generated for each 

of these nodules was binarized - 1 for the presence of the feature and 0 for absence of it.  

This feature vector was then fed into a standard J48 decision tree with 10-fold cross-

validation.  

Results 

The presence or absence of each of these features were analyzed in the clinical attribution 

maps generated for these nodules. The distribution of these features and the correlation 

with the network labels and the ground truth is summarized in Table 2.  

1.     Heat inside the nodule: 

This was seen in 67 of the 103 nodules. 19 of these nodules were classified as benign by the 

network with two of them being false negative predictions on comparison with ground 

truth. 48 of these nodules were classified as malignant with 11 false positive predictions. 

Table 2. Summary of distribution of the radiologist described features and their 
correlation with the network labels and the ground truth 

  2.   Peripheral heat rim 

Peripheral rim of activation is seen in 86 nodules. 45 of these nodules were classified as 

benign by the network whereas 31 were classified as malignant. Among these there were 

16 false negative and 6 false positive predictions. This peripheral rim of activation appeared 



interrupted in 23 of the true benign predictions and 8 of the false negative predictions. In all 

the remaining cases, the peripheral rim of activation appeared continuous. 

3.     Heat in calcification 

51 of the 103 nodules revealed some degree of calcification. 34 of these nodules were 

classified as benign by the network with false negatives predicted in four cases. 17 of those 

nodules with calcification were classified as malignant with a false positive in 6 nodules. 

Heat in calcification was noted in 23 of these 51 nodules. 17 of them were classified as 

benign with all predictions corresponding to the ground truth. None of the four calcified 

nodules which were falsely classified as benign by the network showed any activation 

within the calcification whereas five out of the six nodules which were incorrectly classified 

as benign showed activation with their calcification. Also, out of the 11 true positive 

calcified malignant nodules, only one showed activation within the calcification. 

4.      Satellite heat 

Satellite nodule like activation was seen in 21 nodules, 16 of them were classified as benign 

and 5 of them classified as malignant by the network. There were four false negative 

predictions in the 16 network-benign nodules and one false positive prediction among the 

five network-malignant nodules. 

5.    Heat map larger than the nodule 

 This was noted in 76 nodules. 41 of these nodules were classified as benign by the network 

with 16 false negative predictions. 35 nodules with heat map larger than their size were 

classified as malignant with 12 false positive predictions.  

 6.     Heat in adjacent scan planes 

Activation in adjacent scan planes were observed in 35 nodules out of 103. Among these 

there were 29 nodules that were classified as benign with 11 of them being false negative 



classifications. Six nodules were classified as malignant by this network with one false 

positive prediction. 

The ability of using these described features to predict the network classification was then 

assessed by feeding this feature vector into a standard J48 decision tree with 10-fold cross 

validation. The J48 decision tree gave 85 % weighted classification accuracy for predicting the 

output based on these activation maps. The use of this decision tree independently yielded a 

true positive prediction rate of 77.8 %, False positive prediction rate of 8% for the network-

benign cases. It also resulted in a true positive prediction rate of 91.8% and False Positive 

prediction rate of 22.2 % for network-malignant cases. It is important to note that the decision 

tree was used to predict the network classification, but not the true malignancy probability of 

the nodules. Hence the ground truth for the comparisons are the network predicted classes and 

not the biopsy results. These results are summarized in Table 3.  

 

Table 3. Results of the decision tree prediction of the network labels analyzing the heat maps 

 

The decision tree highlighting the potential ability of a radiologist to visually parse the DL 

algorithm generated heat map to identify features aiding diagnosis is shown in Figure 5. 

Among the individual features, the interior heat had the highest correlation with malignancy 

prediction (correlation coefficient = 0.19, p = 0.06) whereas peripheral heat rim correlates with 

benignity (correlation coefficient = 0.34, p = 0.0007). 

 



 

Figure 5. The decision tree highlighting the potential ability of a radiologist to visually parse 
the Deep Learning algorithm generated heat map to identify features aiding diagnosis 
 

The morphological features of these nodules recorded by three radiologists provided with the 

LIDC-IDRI dataset (7) were compared with these heat maps to evaluate any correlation and 

Pearson correlation co-efficient was calculated (table 4).   The morphological features 

compared included diameter of the nodule, lobulation, margins, sphericity, spiculation, texture 

(solid, part-solid or ground glass) and perceived malignancy risk (subjective assessment of the 

likelihood of malignancy, assuming the scan originated from a 60-year-old male smoker). 

None of the heat map features had strong positive correlation with the morphological features 

defined by the radiologists. There was a moderate negative correlation between the perceived 

malignancy on morphology and the peripheral interrupted heat as well as heat in calcification (r 

= 0.4). 

Discussion 

 There is a certain degree of overlap in usage of the terms like explainable AI, interpretable 

machine learning, intelligible DL. At a higher level, these terms imply the need for assisting 



physicians and other downstream DL users make appropriate decisions by providing a greater 

insight into the functioning of the DL.  In its true sense, explainable AI is not limited to mere 

transparency of a model, but the need for every constituent element of the system to be 

understandable (11,12). The granularity of the explanations should be at the level of human 

cognition with the assumption that the end user has basic domain knowledge. 

 

In this study, we attempt to explain the interpretations of a specific radiology focused DL 

network by analyzing the weighted outputs generated by systematic occlusion. The outputs are 

categorized in to features relevant to the classification problem as well as the domain 

knowledge and understanding of the end-user.  

 

Interior heat or heat inside the nodule was found to be statistically significant classifier for 

malignancy. This is consistent with the current radiology practice of examining the presence or 

absence of heterogeneity in a nodule while characterizing it on CT scan (13,14). Peripheral heat 

rim was the statistically significant classifier for benignity of the nodule. This again is 

explainable by a radiologist, that smooth contours without spiculated margins is a feature 

characteristic of benign nodules. 

 

Heat inside a calcification was found to be a very specific indicator of benignity. There was 

calcification in 36 benign and 15 malignant nodules in the test set. The network showed 

positive activation in 21 of the benign nodules, classifying 17 of them as benign, all of them 

corresponding to the biopsy ground truth. The remaining five were incorrectly classified as 

malignant. There was activation in five of the malignant nodules with one correct prediction 

and five false negative classifications. It can be proposed from these results that the presence 

of calcification and probably patterns of calcification were weighted by the network in 

classifying a nodule is benign. Further analysis by classifying the patterns of calcification may 

provide further insights into the network.  

 



Satellite heat was found to increase the likelihood of classification of a nodule as benign. Even 

though this observation is concordant with the clinical observations that the presence of a 

satellite nodule is a feature seen in benign granulomatous nodules (15), many of the cases with 

activations did not show a visible satellite nodule. No simple hypothesis can be derived for this 

observation. 

 

Heat in adjacent scan planes was again found to favor a benign classification with nearly 83% of 

the nodules with such activation being classified as benign. The nearest domain correlate for 

this observation is the knowledge that presence of ground glass densities surrounding the 

nodule is known to be associated with malignancy in most cases (16,17). 

 

Heat map larger than the nodule was the most frequent observation without significant 

classifying power. This observation is an in-plane correlate of the activation in the adjacent scan 

planes. 

The absence of significant correlation between the morphological features and the features 

defined on the heat maps as shown in Table 4 can be attributed to new non-classical 

associations learned by the deep learning algorithm. Further studies are needed to evaluate 

this hypothesis.  

 

Table 4. Pearson correlation index for heatmap features vs morphological features of the nodule  

 

This algorithm makes predictions based on features learned by correlation with the ground 

truth established by biopsy. The focus of our research work is not on the accuracy of these 



predictions but rather on the ability of a human reader to predict the predictions of the 

algorithm from the saliency maps.  

  

Strengths and Limitations 

The strength of the study is that it is attempting to offer clinical insights into the functioning of 

a DL network by analyzing the clinical attribution maps. We also compare the correlates 

between the imaging features of characterizing a pulmonary nodule to the features on the 

activation maps. 

The major limitation of the study is that the features were described and observed by a single 

reader. The downside of using multiple blinded readers would have been too many non-

overlapping features to evaluate and build hypotheses towards explainability. However future 

approaches can include multi-reader consensus-based methods. 

 

The other limitation of the study can be traced to the argument that truly explainable system 

should integrate reasoning that explains the decision-making process of the model via user 

understandable features of the input data. One school of thought (12) argues that leaving 

explanation generation to human analysts can be dangerous since, depending on their 

background knowledge about the data and its domain, different explanations may be deduced. 

 

The handcrafting of the classification patterns of the activation maps is another major 

limitation in this study. Until newer methods that might enable explicit automated reasoning 

for DL predictions by extraction of symbolic rules are developed, the human reader identified 

features might help in comprehending the model properties and functions. Research studies 

offering supporting evidence for explainability of such algorithms can assist in devising 

strategies to make AI based applications safe and accountable (18,19).  

 

Conclusions 

In this study we describe a method of explain the functioning of a DL network used in the 

characterization of lung nodule by manual analysis of the class activation maps and 



corroborating it with the domain knowledge of radiologists.  We derived a decision tree with 

reasonable accuracy that can predict the model output by analyzing the radiologist described 

features on the clinical attribution maps. 
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