
Determining satisfiability of 3-SAT in polynomial

time

Ortho Flint, Asanka Wickramasinghe, Jay Brasse, Chris Fowler

Abstract

In this paper, we provide a polynomial time (and space), algorithm
that determines satisfiability of 3-SAT.

1 Preliminaries and Definitions

Definition 1.1. A 3-SAT is a collection of literals or variables (usually rep-
resented by integers), in groups called clauses where no clause has more than
3 literals, and at least one clause does have 3 literals. If it’s possible to select
exactly one literal from each clause such that no literal l, and its negation −l
(or denoted ¬ l, meaning not l), appear in the collection of chosen literals, we
say that the 3-SAT is satisfiable, otherwise we say it’s unsatisfiable. For satis-
fiability, the collection of literals chosen is called a solution. Note that the size
of a solution set is smaller than the size of the collection, if the collection had
at least two clauses of which the same literal was chosen.

It is important to note, that our definition of a solution (definition 1.8), is in-
extricably tied to our constructs for a collection of clauses.

When we think of literals (also called atoms), we can consider an edge joining
two vertices, each with an associated literal, if and only if, it’s not a literal and
its negation. Under no circumstance would a literal and its negation be con-
nected by an edge. There are also no edges between two literals from the same
clause. So conceptually, there exist edges that connect every literal to every
other literal with the two restrictions that were just stated. Then it follows,
that a collection of literals for some solution is such that, a literal from each
clause is connected to every other literal from that collection. In graph theory,
such a graph is called a complete graph Kn, n being the number of vertices,
which here it’s also the number of clauses. We shall denote this graph as: KC

where c is the number of clauses.

Definition 1.2. An edge-sequence is an ordered sequence with elements 1 and 0.
The ordering is an ordering of the clauses, with indexing: C1, C2, C3, . . . , Cc

where a corresponding Ci has its literals ordered the same way for each sequence

1

constructed for a 3-SAT. An edge-sequence I, for an edge with endpoints labelled
x and y, where x 6= −y, the literals associated with the endpoints, is denoted by
Ix,y. The endpoints must always be from different clauses. We call the positions
in Ix,y that correspond to a clause Ci the cell Ci. The cells Cj and Ck containing
the endpoints, x and y for Ix,y have only one entry that is 1 in the positions
associated to x and y. When an edge-sequence is constructed, a given position
in Ix,y is 1 if the associated literal is not −x or −y. The initial construction
of Ix,y is subject to certain rules defined in 1.6 and 1.7, which may produce
more zero entries. Lastly, removing one or more cells from Ix,y is again a (sub)
edge-sequence, denoted by Ix,y*, if the cells containing the endpoints for Ix,y
remain.

Definition 1.3. A loner cell contains just one 1 entry for some literal. And a
loner clause contains just one literal.

Definition 1.4. A vertex-sequence is an ordered sequence with elements 1 and
0. The ordering is an ordering of the clauses, with indexing: C1, C2, C3, . . .
, Cc where a corresponding Ci has its literals ordered the same way for each
sequence constructed for a 3-SAT. A vertex-sequence V , for a vertex associated
with literal x, is denoted by Vx. We call the positions in Vx that correspond to
a clause Ci the cell Ci. The cell Cj containing the vertex x for Vx has only
one entry that is 1 in the position associated to x. When a vertex-sequence is
constructed, a given position in Vx is 1 if the associated literal is not −x. The
initial construction of Vx is subject to certain rules defined in 1.6 and 1.7, which
may produce more zero entries. Removing one or more cells from Vx is again a
(sub) vertex-sequence, denoted by Vx*, if the cell containing x remains.

Definition 1.5. When an entry 1 in an edge-sequence or a vertex-sequence,
becomes zero, we call it a bit-change. If a bit-change has occurred in an edge-
sequence or a vertex-sequence, we say the sequence has been refined, or a refine-
ment has occurred. A zero entry never becomes a 1 entry.

It’s worth noting here that if an edge-sequence Ia,b has a zero entry in some
position for a literal c, then there is no KC , using literals a, b and c together.
In fact, this is what a bit-change is documenting in an edge-sequence.

Definition 1.6. The loner cell rule, LCR, is that no negation of a literal be-
longing to a loner cell can exist in an edge-sequence or vertex-sequence. If such
a scenario exists in an edge-sequence Ix,y or a vertex-sequence Vx where z is
the loner cell literal, then all positions associated with literal −z incur a bit-
change. If this action of a bit-change for −z, creates another loner cell where
the negation of the literal in the newly created loner cell is still present in Ix,y
or Vx the action of a bit-change for the negation is repeated. Hence, to be LCR
compliant may be recursive, but all refinements are permanent for any edge or
vertex sequence.

2

LCR compliancy is determined for an edge-sequence Ix,y or a vertex-sequence
Vx if either Ix,y or Vx is being constructed. LCR compliancy is determined
after any intersection between two of more edge-sequences is performed. LCR
compliancy is determined if an edge-sequence or vertex-sequence incurred any
refinement.

Definition 1.7. The K-rule is that no cell from an edge-sequence Ix,y or a
vertex-sequence Vx can have all zero entries. If this is the case, then Ix,y or
Vx, equals zero, and Ix,y is removed from its S-set, or Vx is removed from the
vertex-sequence table. Note that their respective removals, is a refinement.

K-rule compliancy is determined for an edge-sequence Ix,y or a vertex-sequence
Vx, if either Ix,y or Vx are being constructed. K-rule compliancy is determined
after any intersection between two of more edge-sequences is performed. K-
rule compliancy is determined if an edge-sequence or vertex-sequence incurred
any refinement. And finally, the K-rule is violated if all the vertex-sequences
associated with a clause, are zero. In such a case, it’s reported that the 3-SAT
is unsatisfiable.

Definition 1.8. A solution for a collection of c clauses must have a correspond-
ing collection of edge-sequences, for some KC . More precisely, the intersection
of all the edge-sequences together, for a KC , does not equal zero. ie. A solu-
tion KC exists if

⋂
i,j

Ii,j 6= 0, where i and j are every pair of endpoints from

the collection of edge-sequences for a KC . A KP , p < c, exists if the set of all
sub edge-sequences P for KP are such that the intersection of P does not equal
zero. ie. A KP exists if

⋂
i,j

Ii,j* 6= 0, where i and j are every pair of endpoints

from the collection of sub edge-sequences for KP . It is to be understood that
an edge-sequence for a KC or KP , means the edge-sequence associated with the
edge for a KC or KP .

Definition 1.9. A S-set is a collection of edge-sequences whose endpoints are
from two clauses, Ci and Cj where i 6= j. The number of constructed edge-
sequences to be a S-set is |Ci||Cj | minus the non edge-sequences of the form:
Il,−l. For 3-SAT, there can be at most 9 edge-sequences in a S-set.

Now, we must define what it means to take an intersection or union of two
or more edge-sequences. No intersections or unions are taken with vertex-
sequences.

Definition 1.10. We take the intersection or union of two n length edge-
sequences, A and B, by comparing position i of A and B, using the Boolean
rules for intersections (denoted by ∩), and unions (denoted by ∪), for all posi-
tions, i = 0, 1, 2, . . . , n−1.

3

Recall that the entry for position i of A and B, is either 1 or 0.

Then, for an intersection, we have:

1A ∩ 0B = 0A ∩ 1B = 0A ∩ 0B = 0. And 1A ∩ 1B = 1.

And for a union we have:

1A ∪ 0B = 0A ∪ 1B = 1A ∪ 1B = 1. And 0A ∪ 0B = 0.

We provide serial code for this algorithm at: polynomial3sat.org. This code
includes pre-processing, but we remark that the algorithm described, does not
require any pre-processing to remove duplicates or pure literals.

2 Description of the algorithm

Construction of the edge and vertex sequences

Let n ≤ 3c, where c is the number of remaining clauses and n is the sum of
the sizes, for the c clauses. Then, after pre-processing, the n vertex-sequences,
grouped by clause association, are constructed first, as outlined in definition 1.4,
and then LCR and K-rule are applied. It would be common practice to order
the clauses, and the literals within each clause, and use this same ordering for
both the edge and vertex sequences. After pre-processing, the remaining clauses
not removed, have at most, 9 edge-sequences constructed from them pairwise.
The edge-sequences are constructed as outlined in definition 1.2, and then LCR
and K-rule are applied. Observe that the number of edge-sequences would be
less than

(
n
2

)
. It must always be less than, because we did not subtract the

over count of non-existent edges with i) both endpoints in the same clause or
ii) the non edge-sequences between a literal and its negation. Of course, if each
clause had just one literal and there was a solution, pre-processing would have
presented the solution or pre-processing removed all literals from at least one
clause, establishing unsatisfiability. Either way, no edge-sequences would have
been constructed. Each pair of clauses from the collection of c clauses, forms a
S-set. Thus, the number of S-sets is

(
c
2

)
, where any S-set contains at most, 9

edge-sequences. We shall denote a S-set with the indices of the two clauses used
to construct its edge-sequences. ie. Si,j has edge-sequences whose endpoints are
from clauses Ci and Cj .

The refinement rules (four efficiency rules creating permanent refinements. see:
polynomial3sat.org), refer to a bit-change occurring, an edge removed from its
S-set, or a literal having a zero entry in every edge and vertex sequence, all
being the result of the Comparing of S-sets. Given a collection of clauses, if
any of these refinements occurred that were not the result of the Comparing

4

of S-sets, it was the result of LCR and K-rule compliancy, while constructing
the edge-sequences and vertex-sequences. We shall apply the actions outlined
in the refinement rules even when constructing the vertex and edge sequences.
The example (at polynomial3sat.org), demonstrated that certain edge-sequences
were zero upon construction, as they failed LCR and K-rule compliancy. To
be systematic, we would first construct all the vertex-sequences as described in
definition 1.4. Then, apply LCR and K-rule to all of the vertex-sequences. If
the actions outlined in the refinement rules can be taken on any vertex-sequence,
we do so. Next, we construct all the edge-sequences as described in definition
1.2. Then, apply LCR and K-rule to all of the edge-sequences. If the actions
outlined in the refinement rules can be taken on any vertex or edge sequence,
we do so. This process may be recursive where all refinements are permanent.

The Comparing of the S-sets

Essentially, the Comparing process is the algorithm. All data structures are
simply updated based on the outcome of Comparing S-sets with one another.

Definition 2.1. When every S-set has been Compared with every other S-set,
we say that a run has been completed. If c clauses are considered, then there

are
(
c
2

)
S-sets, thus the number of S-set comparisons for a run is

((c
2)
2

)
< c4.

Definition 2.2. A round is completed if the Comparing process stops because
no refinement occurred during an entire run. We say that the S-sets are equiv-
alent when a round is completed.

We note that if the first round was not completed, it was the case that the
vertex-sequences associated to a clause, were evaluated to be zero, so they were
discarded. This violation of the K-rule stops all processing, as there is no solu-
tion for the collection of clauses given.

To Compare, we take two S-sets and determine if an edge-sequence Ix,y from
one of the S-sets, can be refined by a union of the intersections between Ix,y with
each of the edge-sequences, from the other S-set. Either Ix,y the edge-sequence
under determination, is refined or it remains the same. This is done for each
edge-sequence from both of the S-sets, in the same manner. As a matter of
practice, we determine in turn, each edge-sequence from one S-set first, and
then we determine in turn, each edge-sequence from the other S-set. Below, we
construct two S-sets to describe in more detail all the steps to be taken.

Let the S-set: Si,j contain 9 edge-sequences with endpoints from clauses: Ci =
(1, 2, 3) and Cj = (a, b, c) giving: I1,a, I1,b, I1,c, I2,a, I2,b, I2,c, I3,a, I3,b, I3,c

Let the S-set: Sk,l contain 9 edge-sequences with endpoints from clauses: Ck =
(4, 5, 6) and Cl = (d, e, f) giving: I4,d, I4,e, I4,f , I5,d, I5,e, I5,f , I6,d, I6,e, I6,f

5

If Si,j and Sk,l have 9 edge-sequences each, then there were no negations be-
tween the literals in Ci and Cj , or between the literals in Ck and Cl.

We say that determining all edge-sequences from one S-set first, is doing one

direction denoted by: Sk,l
1
⇀ Si,j . And, determining all edge-sequences once,

for both S-sets, is doing both directions, denoted by: Sk,l
1

2

Si,j

Suppose we determine I4,d of Sk,l first. Then we have:

(I1,a ∩ I4,d) ∪ (I1,b ∩ I4,d) ∪ (I1,c ∩ I4,d) ∪ (I2,a ∩ I4,d) ∪ (I2,b ∩ I4,d)∪
(I2,c ∩ I4,d) ∪ (I3,a ∩ I4,d) ∪ (I3,b ∩ I4,d) ∪ (I3,c ∩ I4,d) ≤ I4,d

The one efficiency present even in the original naive version, was eliminating any
unnecessary intersections by one easy check. After an edge-sequence is selected
for determination, say Ixr,ys

where xr ∈ Cr, ys ∈ Cs, the edge-sequences from
the other S-set in the Comparing, that do not have 1 entries for the endpoints
xr and ys when intersected with Ixr,ys , will be zero. Recall, that the two cells
containing the endpoints, only have a single 1 entry corresponding to the two
endpoints’ positions, in their respective cells. Thus, if the other edge-sequence
does not have a 1 entry for those same positions, the intersection will be zero,
due to K-rule violation. So, after the selection of an edge-sequence to be deter-
mined, we select the edge-sequences from the other S-set, if they have 1 entries
in both positions corresponding to the endpoints of Ixr,ys

. Of course, we could
also check to see if there are 1 entries in Ixr,ys

corresponding to the endpoints
of the other edge-sequence as well.

Let’s suppose then, that every edge-sequence in Si,j above, did have 1 entries
for both endpoints 4k and dl of I4,d. Now suppose 6 intersections become zero,
after the intersections were taken and LCR and K-rule was applied to each
intersection, and we now have:

0 ∪ (I1,b ∩ I4,d) ∪ 0 ∪ (I2,a ∩ I4,d) ∪ 0 ∪ 0 ∪ 0 ∪ 0 ∪ (I3,c ∩ I4,d) ≤ I4,d

which is equivalent to: (I1,b ∩ I4,d) ∪ (I2,a ∩ I4,d) ∪ (I3,c ∩ I4,d) ≤ I4,d

Now, we take their union. Of course, LCR and K-rule compliancy need not be
checked for any union, since it would not have been possible to create a new
loner cell scenario, nor a cell with all zero entries.

Then, to complete the determination of I4,d we need to compare position by
position, to see if I4,d has been refined.

More precisely, if we have: (I1,b ∩ I4,d) ∪ (I2,a ∩ I4,d) ∪ (I3,c ∩ I4,d) = I4,d, then
I4,d is unchanged, and we move on to the next edge-sequence to be determined.
Or instead, we have: (I1,b ∩ I4,d) ∪ (I2,a ∩ I4,d) ∪ (I3,c ∩ I4,d) < I4,d, then I4,d

6

has been refined. We need to know which literals incurred a bit-change, and
then we apply the appropriate actions of the refinements rules, and as always,
followed by testing LCR and K-rule compliancy.

To summarize, an edge-sequence I4,d to be determined, has 4 possible scenar-
ios.

1) I4,d 6= 0, and is unchanged.

2) I4,d 6= 0, and is refined. We determine which literals had a bit-change and
follow all appropriate refinement rule actions, recursively if need be.

3) I4,d = 0, because (I1,b ∩ I4,d)∪ (I2,a ∩ I4,d)∪ (I3,c ∩ I4,d) ≤ I4,d became zero
after an appropriate refinement rule action was taken, and then LCR and K-
rule was applied. In this case, edge-sequence I4,d is discarded, and the actions
stated in refinement rule 3 are taken, recursively if need be.

4) If each intersection: (I1,b ∩ I4,d), (I2,a ∩ I4,d) and (I3,c ∩ I4,d) had also been
zero at the outset, then I4,d = 0. And, as with 3), I4,d is discarded and the
actions stated in refinement rule 3 are taken, recursively if need be. When an
edge-sequence equals zero, it was the case that none of the edge-sequences from
a S-set could be part of a solution with the edge-sequence that was being de-
termined.

Recall definition 2.1, that after all pairs of S-sets have been compared with each

other, a run has been completed, which is
((c

2)
2

)
< c4, for c clauses. Another

run will commence if any refinement occurred. Eventually, a run will incur no
refinement, not even a bit-change, at which point a round has been completed,
and the S-sets are said to be equivalent which means at least one solution
exists for the given 3-SAT. Or, the algorithm stopped because unsatisfiability
had been discovered during round 1. Discovering unsatisfiability is when every
literal from some clause is such that their vertex-sequences equal zero.

Summary: Pre-processing begins with a DIMACS file submission, providing
clauses, where each clause is at most size 3. After pre-processing, edge and ver-
tex sequences are constructed from the remaining clauses. The edge-sequences
are grouped in their respective S-sets and the vertex-sequences are grouped
by their clause association in the vertex-sequence table. When the vertex and
edge sequences are LCR and K-rule compliant, the Comparing process begins.
The Comparing process stops if: i) a clause was such that all its literals’ vertex-
sequences are zero, where it’s reported that the given collection of clauses has no
solution. Or, ii) one or more runs take place, where the last run had no refine-
ment. This signals the end of a round, and the S-sets are said to be equivalent.

Proof of correctness and termination can be found at: polynomial3sat.org.

7

	Preliminaries and Definitions
	Description of the algorithm

