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Abstract

The notion of a labelled cycle-decomposition tree for an arbitrary
graph is introduced in this paper. The idea behind the labelled cycle-
decomposition tree, one constructed for each vertex in the graph, is to
attach to each vertex a data structure that gives more than local infor-
mation about the vertex, where the data structures can be compared in
polynomial time. The fact that trees can be compared in linear time, with
particularly efficient algorithms for solving the isomorphism problem for
rooted and labelled trees, led us to consider how we could represent the
vertex’s view of the graph by means of a labelled rooted tree. Of course,
cycles in the graph can’t be directly recorded by means of a tree strucure,
but in this article, we present one method for recording certain of the
cycles that are encountered during a breadth-first search from the vertex
in question. The collection of labelled, so-called cycle-decomposition trees
for the graph, one for each vertex, provides an invariant of the graph.

1 Introduction

The existence of a polynomial time algorithm for determining graph isomor-
phism is still an open problem. A striking result, due to Laszlo Babai (see [2])
established a simple vertex classification algorithm that would in linear time
produce a canonical labeling of an n-vertex random graph with probability
1− e(−O(n)). This result is considered to explain why many graph isomorphism
algorithms behave well in practice.

Most graph isomorphism algorithms employ the technique of graph canon-
ization (see [1], [2], [5], [6] for example), whereby one attempts to construct for
each graph a canonical representation of it such that two graphs are isomor-
phic if and only if their canonical representations are identical. At the present
time, B. McKay’s algorithm nauty ([5], [6]) is widely considered to be the pre-
minent graph isomorphism algorithm, and it is based on graph canonization.
As described in McKay’s work, it is possible to provide some initial data for
the graph that can greatly reduce the amount of work required to construct a
canonical representation. One might still hope that it is will be possible to find
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some such data that would lead to polynomial time construction of a canonical
representation, and this was one of the motivations for our development of the
labelled cycle-decomposition trees for a graph. However, it is quite likely that
the labelled cycle-decomposition trees will be able to play an important role is
the related study of graph similarity. One such application would be in data
mining, for example in chemical database applications (see [3]).

The idea behind the labelled cycle-decomposition tree, one constructed for
each vertex in the graph, was to try to attach to each vertex a data structure that
gave more than local information about the vertex, where the data structures
could be compared in polynomial time. The fact that trees can be compared
in linear time (see [4]), with particularly efficient algorithms for solving the
isomorphism problem for rooted and labelled trees led us to consider how we
could represent the vertex’s view of the graph by means of a labelled rooted
tree. Of course, cycles in the graph can’t be directly recorded by means of a tree
strucure, and the purpose of this article is to present one method for recording
certain of the cycles that are encountered during a breadth-first search from the
vertex in question. The collection of labelled, so-called cycle-decomposition trees
for the graph, one for each vertex, provides an invariant of the graph. While
it is unlikely that this is a complete invariant, at this time we do not have
any examples of non-isomorphic graphs with identical sets of labelled cycle-
decomposition trees. However, we do finish up with a study of an interesting
example, due to R. Mathon [7], of a graph with trivial automorphism group on
50 vertices for which the 50 labelled cycle-decomposition trees are of exactly
two kinds.

2 Constructing the labelled trees

In this section, we describe an algorithm for decomposing an arbitrary connected
graph into a labelled rooted tree. The root may be selected to be any vertex,
and the resulting labelled rooted tree provides a view of the graph from the
perspective of the selected vertex.

The assembly of the labels will make use of the following result, the proof of
which is straightforward.

Proposition 2.1 The relation R on Z × Z defined by (m, n)R (r, s) if one of
the following holds:

(i) m +
⌊

n
2

⌋

< r +
⌊

s
2

⌋

;

(ii) m +
⌊

n
2

⌋

= r +
⌊

s
2

⌋

and m + n < r + s;

(iii) m +
⌊

n
2

⌋

= r +
⌊

s
2

⌋

, m + n = r + s, and m ≥ r

is a total order relation.

Let V denote the set of vertices of the graph G, and let n = |V |. Name the
vertices 1 to n in an arbitrary way. Create an array L of size n, whose entries
are vertex label data structures, as described next.
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parent: a sequence of integers from 1 to n (at
initialization, L[i].parent := null).

depth: an integer from 0 to n − 1 (used to store the
depth of the vertex as set by the breadth-first
search, initially null).

adj list: a sequence of positive integers, initialized using
the data from G.

labels: a sequence of label records, initally null.
tag: an integer, initially null.

During the construction of the labelled tree, new vertices may be added
to the graph, and each new vertex is named with the next available positive
integer. However, each newly created vertex, say j, is linked by the construction
to exactly one of the original n vertices, say i, and the parent field in L[j] is set
to i, the depth field is set to the current value of depth, and the label sequence
will be set. This causes j to become a terminal node in the current tree.

In general, the construction procedure will gradually convert more and more
of the original graph’s edges into directed edges pointing back to the root,
breaking cycles as they are encountered. For each vertex, there will be an
appropriate time at which the parent field will be set to point to the immediate
predecessor in the unique path from the vertex in question back to the root. It
remains a null pointer until it gets set (with the possible exception of a situation
that may be encountered in Step 2, but in such a case, this will be rectified in
Step 3).

To begin with, select a vertex to serve as the root of the labelled tree that
we are to build. We shall let R denote the root vertex. If R has name i,
then set L[i].parent := i (to indicate that this vertex is the root), and set
L[i].depth := 0. Initialize a counter depth to 1 (this will hold the depth of
the vertices that are going to be considered next; namely those attached to
the vertices of the current frontier F ). Set F := {R } (this will be the set of
vertices from which we will extend a breadth-first search). Initialize a counter
tag counter to 1. This counter will hold the next available tag value to be used
to set the tag field of a vertex. The tag field is not part of the label, but is kept
to allow reconstruction of the graph from the full tree data structure. Several
vertices may be assigned the same tag value, and one might incorporate the
information as to which vertices had the same tag value, without actually having
the value itself be part of the label. This would still be a graph invariant, but at
the present time, we have not extended the labels to contain this information.

We remark that at each step, the current tree consists of those L[i] with
non-null depth field, initally just the root vertex.

While F 6= ∅, perform the following procedure.
Begin

Let T denote the set of vertices in G that have not yet been assigned a
breadth-first search depth from R but are adjacent to at least one vertex in F

(the elements of T are found by examining the adjacency list of each vertex
in F , selecting those vertices on the adjacency list that have not yet had their
depth field set).

While T 6= ∅, perform Step 1, then Step 2.
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Step 1. Initialize E to be the set of edges in the induced subgraph G[T ]. While
E 6= ∅, perform the following actions. Choose e ∈ E and replace E by E−{ e }.
Let i, j denote e’s endpoints (e could be a loop, in which case i = j). Remove i

from L[j].adj list and remove j from L[i].adj list. Create two new vertices,
so if we currently have s vertices, name the new vertices s + 1 and s + 2. Set

L[s + 1].parent := i,

L[s + 1].depth := depth,

L[s + 1].adj list := i,

L[s + 1].tag := tag counter,

L[s + 2].parent := j,

L[s + 2].depth := depth,

L[s + 2].adj list := j

L[s + 2].tag := tag counter,

and increment tag counter. Then append s + 1 to L[i].adj list and s + 2
to L[j].adj list. If e is a loop, then set L[s + 1].labels and L[s + 2].labels
equal to the list whose only entry is (depth, 1). Otherwise, create a temporary
linear array M of label records, initially null, and append entries determined
as follows. Construct an array Pi, respectively Pj containing the distinct paths
from i, respectively j, which pass first through a vertex of F and thereafter visit
only vertices whose breadth-first depth has been set (the tree as constructed so
far). Note that all of these paths have the same (weighted) length depth. Let
the number of paths in Pi be m and the number of paths in Pj be n. Then
perform the mn path comparisons, wherein each path in Pi is compared to each
path in Pj in order to identify the first vertex in common to the two paths. Since
all paths terminate at R, such a vertex exists. Suppose that we are comparing
path Pi[r] to path Pj [s]. Let k denote the first vertex in common to Pi[r] and
Pj [s] on the traversal from i to R, respectively from j to R. Then append the
ordered pair (L[k].depth, 2(depth− L[k].depth) + 1) to M . The first entry in
the pair is the depth of attachment of the cycle we are breaking, and the second
entry is the size of the cycle.

Once all mn pairs have been processed, sort M in ascending order according
to the total order as described in Proposition 2.1, deleting duplicates. Then set
L[s + 1].labels := M and L[s + 2].labels := M .

Interpretation: the new vertex s + 1, respectively s + 2, has unique path to
R passing through i, respectively j, and then through vertices in the current
tree. The fact that the depth field has been set means that s + 1 and s + 2
have been added to the current tree, and in recognition of the fact that each is
a terminal vertex, neither has bee added to the frontier for the next iteration.
Each cycle through the edge e that has u +

⌊

v
2

⌋

= depth, where u is the vertex
on the cycle that is closest to R, and v is the cycle size, has been accounted for
with an entry in the labels list.

Step 1 is completed when E = ∅. At this point, we are ready to begin Step
2. G has been modified during Step 1 so that any edge that joined two vertices
in T has been removed and replaced by two new edges, each with one endpoint
a vertex in T but the other a new vertex (which is already in the current tree).
No path from a vertex in T to R for which the first edge leads to a vertex in F

has been modified. Furthermore, neither F nor T has not been changed during
Step 1.

Step 2. Let H denote the subgraph of G whose vertex set is F ∪ T and whose
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edge set consists of those edges of G with one endpoint in F and the other
endpoint in T . For each vertex i of T with deg

H
(i) = 1 (there may be no such

vertices, but this is where all vertices that were created in Step 1 of the previous
iteration will be processed), set L[i].depth := depth and L[i].parent equal to
the unique vertex in F that is adjacent to i in H . Next, process each vertex of
T for which deg

H
(i) > 1 (there may be no such vertices).

For each i in T with deg
H

(i) > 1, perform the actions described in this

paragraph. Let m = deg
H

(i) and suppose that i1, i2, . . . , im are the vertices of
F that are adjacent to i. For each j = 1, . . . , m, there is a unique path in G

from ij to R that passes through vertices that have had their depth field set,
and this path necessarily has (weighted) length depth− 1. Create a temporary
array P of size m, such that for each j, P [j] contains the path in G from ij
to R that passes through only vertices that have had their depth field set. We
shall treat P [j] itself as an array of size at most depth − 1 whose entries are
the names of the vertices on the path (due to our construction, it is possible
that paths might contain edges that are weighted greater than 1). Note that
P [j][1] = ij . Create a temporary array S of size m, with each entry initially
set to null. For an index j, S[j] will be a list of pairs of non-negative integers
of the form (L[z].depth, z), and the kth entry (indexing from 1) in the list S[j]
will be accessed as S[j][k].depth and S[j][k].vertex, respectively. Each list S[j]
is sorted first in nonincreasing order with respect to the first entry (the depth
value), then in increasing order with respect to their second entry (the vertex
label z). For each of the

(

m
2

)

subsets { r, s } of { 1, 2, . . . , m }, determine the
first vertex z to be encountered in common to the two paths P [r] and P [s] on
their way back to R. Insert the pair (L[z].depth, z) so as to maintain the order
described above into each of the two lists S[r] and S[s]. When all pairs of paths
have been examined, sort S and P by the requirement that S[r] (P [r]) precedes
S[s] (P [s]) if S[r][1].depth > S[s][1].depth or if S[r][1].depth = S[s][1].depth
and S[r][1].vertex < S[s][1].vertex. This will arrange it so that all paths from i

back to R that meet at a deepest vertex will come first, and of those, the ones for
which this deepest vertex is least of all such will come first (most importantly,
all paths with the same deepest vertex in common will be contiguous in the sort
order). Now process P in order first to last. Let j = S[1][1].vertex, and suppose
that the first t entries (and no more) in the array P have first common vertex on
the way back to R equal to j. If t = 1, remove P [1] from the P array and save
in a new temporary array P ′, and remove S[1] from the S array, and save in a
new temporary array S′. On the other hand, if t > 1, then process the t paths
as described next. Let ij1 , ij2 , . . . , ijt

denote the initial vertices of these t paths.
Remove i from the adjacency list of each of these t vertices, and at the same
time, remove each of these vertices from the adjacency list of i (which may cause
i to become isolated, or it may cause the number of components in the graph to
increase). Insert the label (L[j].depth, 2(depth−L[j].depth)) at the appropriate
place in the sequence L[i].labels so as to maintain the order according to Propo-
sition 2.1. The next step requires a bit of explanation. It is intended to retain
knowledge of the deepest points of attachment of the even cycles that are being
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broken during the processing of vertex i at this depth. If L[i].parent = null,
then set L[i].parent := j. If L[i].parent 6= null (so that it has been processed
earlier in this step, or at an earlier time), then we consult the last entry (r, s)
in the sequence L[i].labels. If (L[j].depth, 2(depth − L[j].depth)) = (r, s),
then append j to L[i].parent (this is how the parent field can come to contain
a sequence of integers rather than a single integer–see Step 3 for a discussion
of how this sequence will eventually be turned back into a single integer en-
try). If L[i].tag = null, then set L[i].tag := tag counter and increment
tag counter (we only assign a tag once, and the same tag value is then given
to each vertex that is created from this one, whether at this stage or a later
stage). Create t new vertices, and if we currently have s vertices, then name
the new vertices s + 1, . . . , s + t. For each integer k with 1 ≤ k ≤ t, initial-
ize L[s + k].parent := ijk

, L[s + k].depth := depth, L[s + k].adj list := ijk
,

L[s + k].labels := L[i].labels, L[s + k].tag := L[i].tag, and adjoin s + k to
L[ijk

].adj list. Finally, remove P [1], P [2], . . . , P [t] from P and remove the
corresponding entries from S. It is intended in this description that removing
the entries from P causes every entry index to be reduced by t, so the next
path to process is now P [1]. Similarly, removing the corresponding entries from
S causes the indicies of the following entries to be reduced by t. Repeat this
process until either P is completely used up or else has one path left. If the
temporary array P ′ is null, then either P finished up with one path, in which
case we set L[i].depth := depth and L[i].parent := j, where j is the vertex ad-
jacent to i on the unique path left in P , otherwise we remove i from T . On the
other hand, if the temporary array P ′ is not null, then there is more processing
to do. Either P was not completely used up, so it has one path left, and we
then adjoin this last path of P to P ′ and adjoin the last entry of S to S′ and
then set P := P ′ and S := S′, otherwise P was completely used up and we set
P := P ′ and S := S′. The S array and the P array are in sorted order.

We now iterate the following procedure until P is either empty or consists of
a single path Remove the first entry from S[1], and then move the modified S[1]
to the first possible correct position in S according to the sort order described
above, and suppose that its new index is k. Move P [1] to the corresponding
position in P . If j = S[k][1].parent = S[k + 1][1].parent, then process as
described above (t = 2 in all of this processing, and when the processing of
these two is finished, their entries will be removed from P and S). Eventually,
P will either be empty or consist of a single path. If P finished up with one
path, then set L[i].depth := depth and L[i].parent := j, where j is the vertex
adjacent to i on the unique path left in P , otherwise remove i from T . See
Figure 1 for an illustration of such a situation.

Finally, set F := T and increment depth. This completes Step 2.
At the completion of Step 2, the subgraph of G that is induced by the vertices

whose depth field has been set is a tree. Furthermore, every vertex that was in
T at the beginning of Step 2 has been processed. It is possible that T has had
some vertices removed during Step 2, and in fact, T will eventuall be empty.
When T = ∅, the algorithm will exit from the While loop, and will continue
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•

i

•1 • 2 • 3 • 4

•
5

•
6

•

R

j P[j] S[j]

1 1,5,6,7 (2,5),(1,6),(0,7)
2 2,5,6,7 (2,5),(1,6),(0,7)
3 3,6,7 (1,6),(0,7) → P

′

4 4,7 (0,7)

j P[j] S[j]

1 3,6,7 (0,7)
2 4,7 (0,7)

Figure 1:

with Step 3. At this point, the component of G that contains R is a tree. We
also point out that every vertex not in the original graph was created at some
stage as a terminal node of the tree at depth no greater than |V | − 1, so after
at most |V | − 1 iterations of Step 1 and Step 2, we will reach a stage where
T = ∅. However, even though we had started with a connected graph, the
various cycle decompositions that have been carried out may have resulted in
a graph of several components, and we will only have a spanning tree for the
component that contains the root vertex. Step 3 will allow us to deal with the
other components.

Step 3. Set F := ∅, and form the set X of all vertices of the original graph for
which the depth field is still null.

If X = ∅, then we are done, so we return to the top, at which point the
condition F = ∅ is true and the process outputs L and terminates. The graph
that has been constructed provides us with the labelled cycle decomposition
tree for G with root R. Otherwise, X 6= ∅. Of the vertices in X , at least one
must have a non-null label sequence with entries having even second coordinate.
Remove all vertices from X that have either a null label sequence or else a non-
null label sequence in which the first entry has odd second coordinate (in which
case, all entries in the label sequence have odd second coordinate). Next, form
the set

Y = { (m, n) | there exists i ∈ X for which (m, n) is

the first entry in the sequence L[i].labels}

and, using the total order introduced in Proposition 2.1, determine the smallest
element in Y , say (r, s). Finally, let

S = { i ∈ X | the first entry in L[i].labels is equal to (r, s) },

and set depth := r +
⌊

s
2

⌋

(this sets the depth field to the correct depth in
preparation for a return to Step 1).

For each i ∈ S, carry out the following actions for each j in the sequence
L[i].parent. Set F := F ∪ { j }, append j to L[i].adj list (we are in effect
attaching i by a new edge, of weight greater than 1, to the point of attachment
of the cycle which was broken when i was first processed, which was recorded
in the parent field of i at that time), and append i to L[j].adj list. Then set
L[i].parent := null.
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End.
Eventually, Step 3 will result in X = ∅ which will cause control to return

to the top with F = ∅, thereby causing the termination of the algorithm. At
that point, L is the labelled cycle decomposition tree for the original graph.

We remark that during the course of execution of the algorithm for a par-
ticular vertex v, each new vertex that is created will be incorporated into the
current tree immediately upon creation, while any vertex that is an endpoint of
an edge being processed by Step 1 but that is not the midpoint of an even cycle
(with reference to the point of attachment to v); that is, will be added to the
current tree at the beginning of Step 2 of the current iteration. Vertices of the
original graph that do not end up being added to the current tree during their
processing in Step 2 will be processed again during Step 2 of a later iteration due
to Step 3. However, if such a vertex is reattached during Step 3, its degree upon
reattachment will be less than its degree at the time of its previous processing.
Thus the number of times that a given vertex can get repeatedly reattached by
Step 3 is at most the degree of the vertex, and so eventually it will be incorpo-
rated into the current tree. Thus any given vertex will be incorporated into the
current tree in a number of iterations equal at most to its degree in the original
graph, and so it follows that the algorithm will terminate after at most |V |2

iterations.

3 The labelled cycle decomposition trees do not

determine the automorphism group orbits

While the labelled cycle decomposition trees do in general serve to distinguish
vertices that are in different orbits of the graph’s automorphism group, they
are not infallible in this regard. However, they can be used to provide an ini-
tial vertex colouring for the application of canonical labelling algorithms such
as nauty [McKay]. We also expect that the contruction of full or partial la-
belled cycle-decomposition trees will provide a useful tool for similarity testing
[chemists].

The graph A50, shown in Figure 2 and derived by Mathon (see [Ma]) from
a Steiner triple system BIBD(15,31), has trivial automorphism group. It is a
bipartite graph with 35 vertices of degree 3 and 15 vertices of degree 7.

All 15 vertices of degree 7 have the same labelled cycle-decomposition tree. The
tree structure is shown below, where each vertex has null label except for the
terminal vertices (84 of them), each of which has label (0, 6). In the diagram, R

denotes the root vertex. Each of the seven children of R, labelled as v1 through
v7 in the diagram, has the subtree shown below at the right. As well, there were
28 vertices of degree 3 that were decomposed in the creation of the (0, 6) labels,
and so there will be 28 new vertices attached to R by an edge of weight 3, and
these have not been shown.

8



•••••••••••••••••••••••••••••••••••

•••••••••••••••

Figure 2: A50
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R

v1 v2 v3 v4 v5 v6 v7
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•
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•

As for the 35 vertices of degree 3, all have identical labelled cycle-decomposition
trees, with structure as described below. Let R denote any vertex of degree 3.
Then in the labelled cycle-decomposition tree for R, R will have three children
labelled u1, u2 and u3, shown below, twelve children labelled w1 through w12,
represented by wj on the diagram below and connected to R by an edge of
weight 3, and 16 terminal vertices (not shown on the diagram below), each
connected to R by an edge of weight 4. The subtrees connected to u1, u2, and
u3 are identical, each equal to the tree shown as rooted at ui in the diagram
below. As well, there are twelve children of R joined to R by an edge of weight
3, and each of these has subtree as shown below at right, marked as rooted at
wj . Each of the terminal vertices on the three subtrees with root ui, i = 1, 2, 3
has label (0, 6), and for j = 1, 2, . . . , 12, wj has label (0, 6), while each of the
terminal vertices on the subtree with root wj has label (0, 8).

•

• • •

R

u1 u2 u3 • wj , j = 1, 2, . . . , 12

3
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